

Garden-of-Eden -theorem

One of the oldest results in CA theory:

$$\mathbf{G} \text{ is surjective} \iff \mathbf{G}_F \text{ is injective}$$

(\implies by E.F.Moore in 1962, and \Leftarrow by J.Myhill in 1963)

Garden-of-Eden -theorem

One of the oldest results in CA theory:

$$\mathbf{G} \text{ is surjective} \iff \mathbf{G}_F \text{ is injective}$$

(\implies by E.F.Moore in 1962, and \Leftarrow by J.Myhill in 1963)

Injectivity of G_F requires a quiescent state. A more robust concept is pre-injectivity:

Configurations c_1 and c_2 are **asymptotic** if the set

$$diff(c_1, c_2) = \{ \vec{n} \in \mathbb{Z}^d \mid c_1(\vec{n}) \neq c_2(\vec{n}) \}$$

of positions where c_1 and c_2 differ is finite.

Cellular automaton G is **pre-injective** if for any asymptotic c_1 and c_2 holds

$$c_1 \neq c_2 \implies G(c_1) \neq G(c_2).$$

Clearly all injective CA are pre-injective.

For pre-injectivity it is enough that the CA is one-to-one among c -asymptotic configurations, for any fixed configuration c .

Proposition. Let $c \in S^{\mathbb{Z}^d}$ be arbitrary. Cellular automaton G is pre-injective if and only if it is injective on

$$asym(c) = \{e \in S^{\mathbb{Z}^d} \mid c \text{ and } e \text{ are asymptotic}\}.$$

Proof.

For pre-injectivity it is enough that the CA is one-to-one among c -asymptotic configurations, for any fixed configuration c .

Proposition. Let $c \in S^{\mathbb{Z}^d}$ be arbitrary. Cellular automaton G is pre-injective if and only if it is injective on

$$asymph(c) = \{e \in S^{\mathbb{Z}^d} \mid c \text{ and } e \text{ are asymptotic}\}.$$

Proof.

In particular: G (with a quiescent state q) is pre-injective iff G_F is injective. (Apply the proposition with $c = q$ -uniform configuration.)

So the Garden-of-Eden -theorem states that

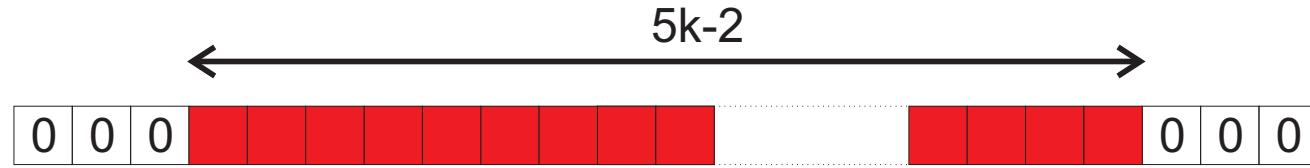
$$\mathbf{G} \text{ is surjective} \iff \mathbf{G} \text{ is pre-injective}$$

Myhill direction: G not surjective $\implies G$ not pre-injective.

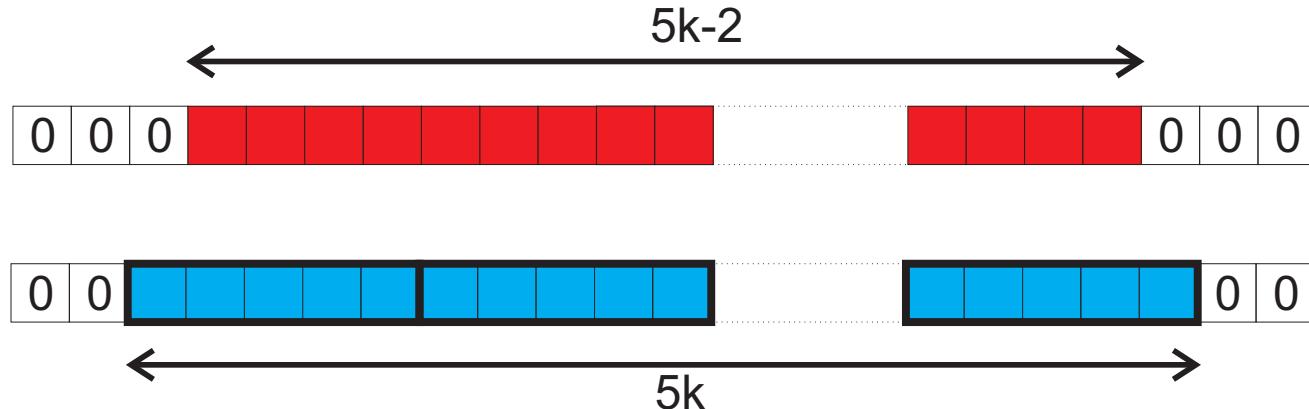
First the **proof idea** using rule 110.

As rule 110 is not surjective it has an orphan: 01010 of length five.

Let us see how this implies that there are different 0-finite configurations with the same image.

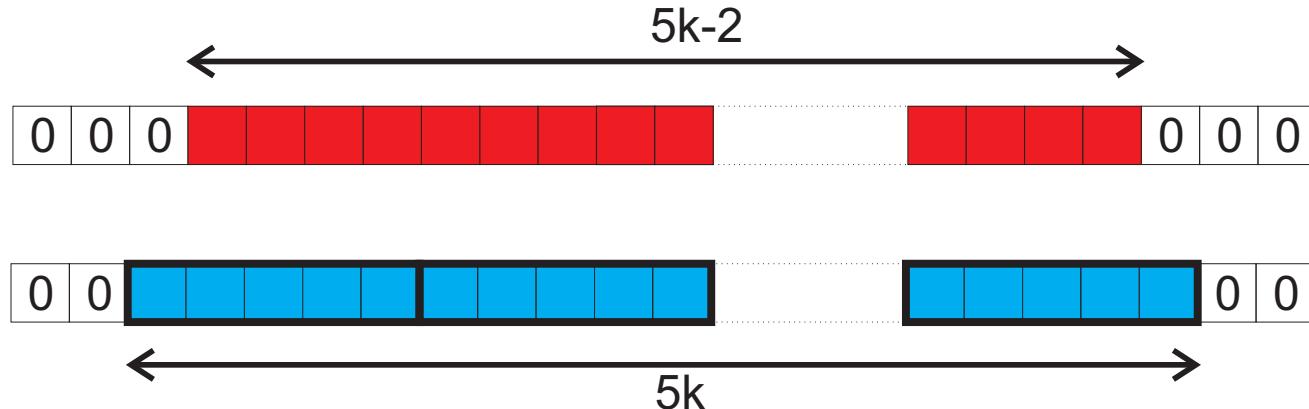


Consider a segment of length $5k - 2$, for some k , and configurations c that are 0 outside of this segment. There are $2^{5k-2} = 32^k/4$ such configurations.



Consider a segment of length $5k - 2$, for some k , and configurations c that are 0 outside of this segment. There are $2^{5k-2} = 32^k/4$ such configurations.

The non-0 part of $G(c)$ is within a segment of length $5k$. Partition this segment into k parts of length 5. Pattern 01010 cannot appear in any part, so only $2^5 - 1 = 31$ different patterns show up in the subsegments. There are at most 31^k possible configurations $G(c)$.



Consider a segment of length $5k - 2$, for some k , and configurations c that are 0 outside of this segment. There are $2^{5k-2} = 32^k/4$ such configurations.

The non-0 part of $G(c)$ is within a segment of length $5k$. Partition this segment into k parts of length 5. Pattern 01010 cannot appear in any part, so only $2^5 - 1 = 31$ different patterns show up in the subsegments. There are at most 31^k possible configurations $G(c)$.

As $32^k/4 > 31^k$ for large k , there are more choices for red than blue segments. So there must exist two different 0-finite configurations with the same image.

The same idea provides a general proof of the Myhill direction:

Proposition. If G is not surjective then G is not pre-injective.

Proof.

The same idea provides a general proof of the Myhill direction:

Proposition. If G is not surjective then G is not pre-injective.

Proof.

Corollary. If G_F is injective then G is surjective.

Proof. G_F injective $\implies G$ pre-injective $\implies G$ surjective

The same idea provides a general proof of the Myhill direction:

Proposition. If G is not surjective then G is not pre-injective.

Proof.

Corollary. If G_F is injective then G is surjective.

Proof. G_F injective $\implies G$ pre-injective $\implies G$ surjective

Remark: We have now two different proofs for the implication

\mathbf{G} injective $\implies \mathbf{G}$ surjective

Namely

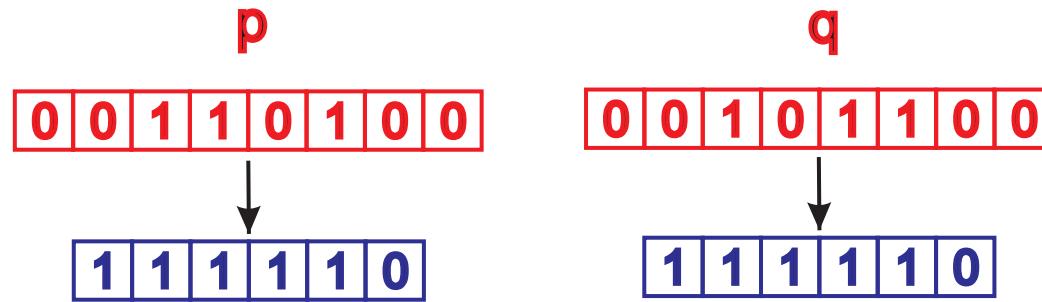
G injective $\implies G$ pre-injective $\implies G$ surjective

G injective $\implies G_P$ injective $\implies G_P$ surjective $\implies G$ surjective

Moore direction: G not pre-injective $\implies G$ not surjective.

First the **proof idea** using rule 110.

As rule 110 is not pre-injective it has two patterns with identical borders with the same image:

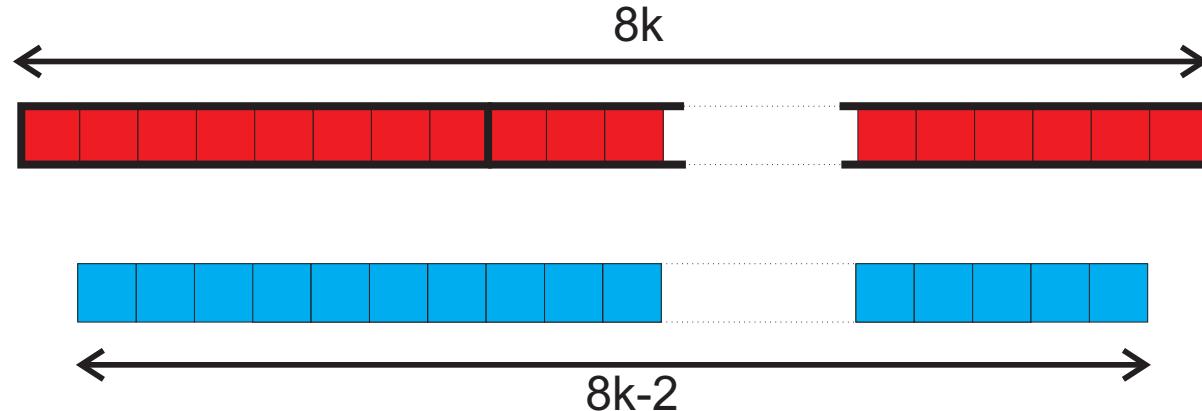


These patterns p and q of length 8 can be exchanged to each other in any configuration without affecting its image. There exist just

$$2^8 - 1 = 255$$

essentially different blocks of length 8.

Let us see how this implies that there exists an orphan.



Consider a segment of $8k$ cells, consisting of k parts of length 8. Patterns p and q are exchangeable, so the segment has at most 255^k different images.

There are, however, $2^{8k-2} = 256^k/4$ different patterns of size $8k - 2$. Because $255^k < 256^k/4$ for large k , there are blue patterns without any pre-image.

The same idea provides a general proof of the Moore direction:

Proposition. If G is not pre-injective then G is not surjective.

Proof.

The same idea provides a general proof of the Moore direction:

Proposition. If G is not pre-injective then G is not surjective.

Proof.

Corollary. If G is surjective then G_F is injective.

Proof. G surjective $\implies G$ pre-injective $\implies G_F$ injective

Examples

The **majority rule** is not surjective: finite configurations

$\dots 0000000 \dots$ and $\dots 0001000 \dots$

have the same image, so G is not pre-injective.

Examples

The **majority rule** is not surjective: finite configurations

$\dots 0000000 \dots$ and $\dots 0001000 \dots$

have the same image, so G is not pre-injective.

Pattern

01001

is an orphan.

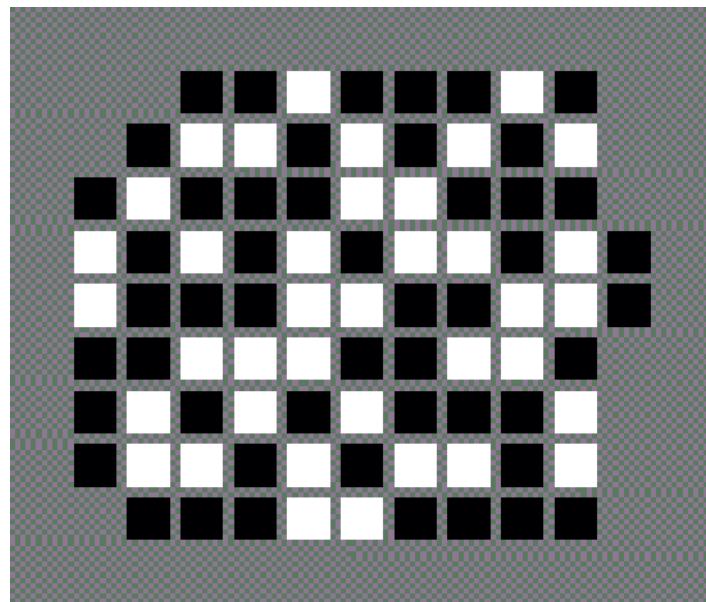
Examples

In **Game-Of-Life** a lonely living cell dies immediately, so G is not pre-injective. GOL is hence not surjective.

Examples

In **Game-Of-Life** a lonely living cell dies immediately, so G is not pre-injective. GOL is hence not surjective.

Interestingly, no small orphans are known for Game-Of-Life. Currently, the smallest known orphan consists of 88 cells (50 life, 38 dead):



Steven Eker (2017)

Examples

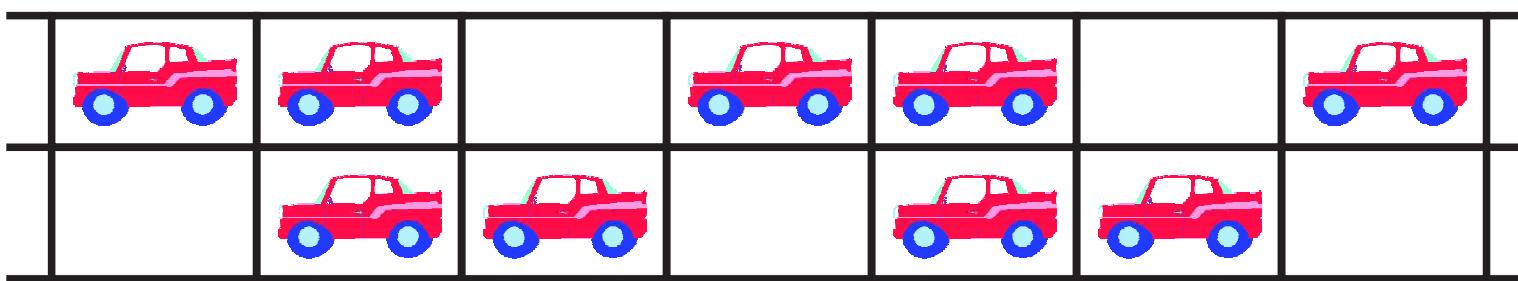
The **Traffic CA** is the elementary CA number 226.

$$\begin{array}{rcl} 111 & \longrightarrow & 1 \\ 110 & \longrightarrow & 1 \\ 101 & \longrightarrow & 1 \\ 100 & \longrightarrow & 0 \\ 011 & \longrightarrow & 0 \\ 010 & \longrightarrow & 0 \\ 001 & \longrightarrow & 1 \\ 000 & \longrightarrow & 0 \end{array}$$

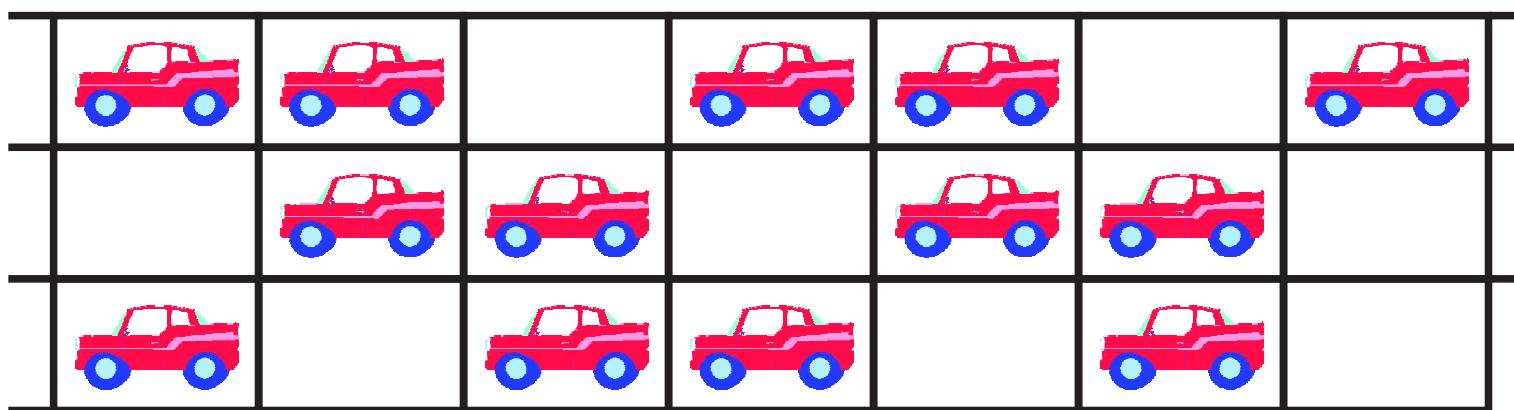
The local rule replaces pattern 01 by pattern 10.

111	→	1
110	→	1
101	→	1
100	→	0
011	→	0
010	→	0
001	→	1
000	→	0

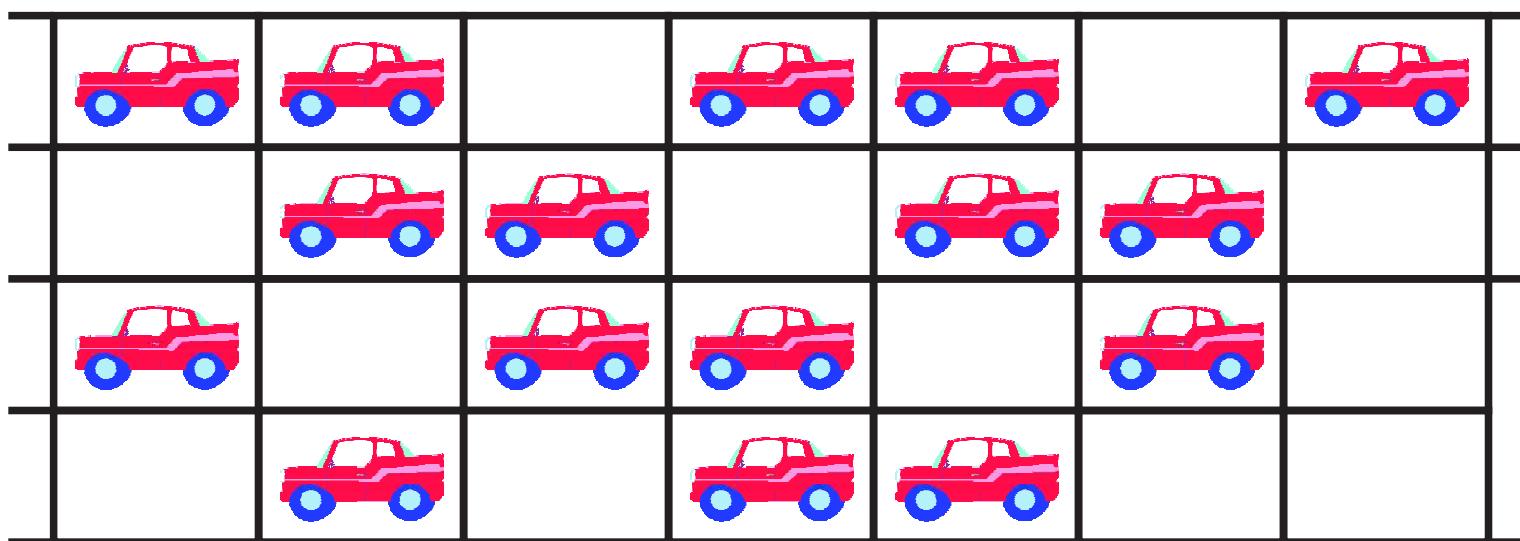
111	→	1
110	→	1
101	→	1
100	→	0
011	→	0
010	→	0
001	→	1
000	→	0



111	→	1
110	→	1
101	→	1
100	→	0
011	→	0
010	→	0
001	→	1
000	→	0



111	→	1
110	→	1
101	→	1
100	→	0
011	→	0
010	→	0
001	→	1
000	→	0



The local rule is balanced. However, there are two finite configurations with the same successor:

and hence the traffic CA is not surjective.

The local rule is balanced. However, there are two finite configurations with the same successor:

and hence the traffic CA is not surjective.

There is an orphan of size four:

