
One-dimensional case

The balance of surjective CA implies in the one-dimensional case the following:

Proposition. For every one-dimensional surjective CA there is a constant n
such that every configuration has at most n pre-images.

Proof.
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Proposition. For every one-dimensional surjective CA there is a constant n
such that every configuration has at most n pre-images.

Proof.

Corollary. Let G be a one-dimensional surjective CA function. Pre-images of
spatially periodic configurations are all spatially periodic.

Proof.

So among one-dimensional CA

G surjective =⇒ GP surjective



Example. The proposition and the corollary fail in 2D. Consider the 2D
XOR automaton with radius-12 neighborhood:

a b

c d
a+b+c+d (mod 2)

� This CA is surjective.

� The 0-uniform configuration c0 has uncountably many pre-images, some
of which are not spatially periodic: any modulo 2 sum of horizontal and
vertical rows of 1’s maps to c0.

� However, GP is surjective so the second part of the Corollary is not refuted
by this example.
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XOR automaton with radius-12 neighborhood:

a b

c d
a+b+c+d (mod 2)

� This CA is surjective.

� The 0-uniform configuration c0 has uncountably many pre-images, some
of which are not spatially periodic: any modulo 2 sum of horizontal and
vertical rows of 1’s maps to c0.

� However, GP is surjective so the second part of the Corollary is not refuted
by this example.

It is not known whether in 2D

G surjective
?

=⇒ GP surjective



In non-surjective CA there is no finite bound on the number of pre-images. The
proposition is valid in any dimension:

Proposition. If G is a non-surjective CA then there is a strongly periodic
configuration with uncountably many pre-images.

Proof. Homework
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� asymptotic if it is both positively and negatively asymptotic.
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(Every n-segment sufficiently far on the right contains a difference.)
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� negatively n-separated if ∃m ∈ Z such that for all i ≤ m holds:

c(i + j) ̸= e(i + j) for some j ∈ {1, . . . , n}

� totally n-separated if for all i ∈ Z holds:

c(i + j) ̸= e(i + j) for some j ∈ {1, . . . , n}



One-dimensional configurations c, e ∈ SZ are

� positively separated if they are positively n-separated for some n.

� negatively separated if they are negatively n-separated for some n.

� totally separated if they are totally n-separated for some n. (Equiva-
lently: they are positively and negatively separated.)



Number m is a neighborhood range of a CA function G if G is defined by
a CA whose neighborhood consists of m consecutive integers. (Some of which
may be dummy neighbors.)

In particular, a radius-12 CA has neighborhood range 2, and a radius-r CA has
range 2r + 1, for any r ∈ Z+.



Proposition. Let G be a one-dimensional surjective CA function with neigh-
borhood rangem, and let c, e ∈ SZ be such that c ̸= e and G(c) = G(e). Then
exactly one of the following three conditions is true:

(i) c and e are negatively asymptotic and positively (m− 1)-separated,

(ii) c and e are positively asymptotic and negatively (m− 1)-separated, or

(iii) c and e are both positively and negatively (m− 1)-separated.

Proof.



Example. Three states S = {0, 1, 2}, radius-12 neighborhood, local rule

f (a, b) =

 2, if a = 2,
0, if a ̸= 2 and a + b is even, and
1, if a ̸= 2 and a + b is odd.

(State 2 is unchanged. States 0 and 1 are changed using modulo 2 sum with
the right neighbor.)
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The local rule is left permutive: For every y, z ∈ S there is a unique x such
that f (x, y) = z.

The CA is pre-injective and hence surjective: this follows from left-permutivity.
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• Configuration . . . 222 . . . has a unique pre-image.
• Configuration . . . 000 . . . has two pre-images.



Example. Three states S = {0, 1, 2}, radius-12 neighborhood, local rule

f (a, b) =

 2, if a = 2,
0, if a ̸= 2 and a + b is even, and
1, if a ̸= 2 and a + b is odd.

(State 2 is unchanged. States 0 and 1 are changed using modulo 2 sum with
the right neighbor.)

Configurations
. . . 000020000 . . .
. . . 000021111 . . .

are negatively asymptotic and positively 1-separated. They have the same
image.
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Configurations
. . . 00000000 . . .
. . . 11111111 . . .

are totally 1-separated and have the same image.
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Example. Three states S = {0, 1, 2}, radius-12 neighborhood, local rule

f (a, b) =

 2, if a = 2,
0, if a ̸= 2 and a + b is even, and
1, if a ̸= 2 and a + b is odd.

(State 2 is unchanged. States 0 and 1 are changed using modulo 2 sum with
the right neighbor.)

G is not injective but GF is surjective if q = 2 is the quiescent state:

GF surjective ̸=⇒ G injective

G is surjective but GF is not surjective if q = 0 is the quiescent state:

G surjective ̸=⇒ GF surjective



Proposition. Among one-dimensional cellular automata, if GP is injective
then G is injective.

Proof.



We have proved all implications and non-implications in the figure of 1D CA:

G injective G   injective

G   surjective

G surjectiveG   injective G   surjective
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