One-dimensional case
The balance of surjective CA implies in the one-dimensional case the following:

Proposition. For every one-dimensional surjective CA there is a constant n
such that every configuration has at most n pre-images.

Proof.
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The balance of surjective CA implies in the one-dimensional case the following:

Proposition. For every one-dimensional surjective CA there is a constant n
such that every configuration has at most n pre-images.

Proof.

Corollary. Let G be a one-dimensional surjective CA function. Pre-images of
spatially periodic configurations are all spatially periodic.

Proof.

So among one-dimensional CA

G surjective = Gp surjective



Example. The proposition and the corollary fail in 2D. Consider the 2D
XOR automaton with radius—% neighborhood:

a

b

C

d

e This CA is surjective.

> a+b+c+d (mod 2)

e The O-uniform configuration cy has uncountably many pre-images, some
of which are not spatially periodic: any modulo 2 sum of horizontal and

vertical rows of 1’s maps to cj.

e However, G p is surjective so the second part of the Corollary is not refuted

by this example.



Example. The proposition and the corollary fail in 2D. Consider the 2D
XOR automaton with radius—% neighborhood:

alb
c|d

> a+b+c+d (mod 2)

e This CA is surjective.

e The O-uniform configuration cy has uncountably many pre-images, some
of which are not spatially periodic: any modulo 2 sum of horizontal and
vertical rows of 1’s maps to cj.

e However, G p is surjective so the second part of the Corollary is not refuted
by this example.

It 1s not known whether in 2D

L ? L.
G surjective = Gp surjective



In non-surjective CA there is no finite bound on the number of pre-images. The
proposition is valid in any dimension:

Proposition. If GG is a non-surjective CA then there is a strongly periodic
configuration with uncountably many pre-images.

Proof. Homework
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e negatively asymptotic if Im € Z such that ¢(i) = e(i) for all i < m,

e asymptotic if it is both positively and negatively asymptotic.
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One-dimensional configurations c, e € S% are

e positively n-separated if 3m € Z such that for all ¢ > m holds:
c(i+j) # e(i+ 7) for some j € {1,...,n}

(Every m-segment sufficiently far on the right contains a difference.)

e negatively n-separated if 3m € Z such that for all 7+ < m holds:
c(i+j) # e(i+7) for some j € {1,...,n}

e totally n-separated if for all = € Z holds:
c(i+j) # e(i + 7) for some j € {1,...,n}



One-dimensional configurations c, e € S% are

e positively separated if they are positively n-separated for some n.
e negatively separated if they are negatively n-separated for some n.

e totally separated if they are totally n-separated for some n. (Equiva-
lently: they are positively and negatively separated.)



Number m is a neighborhood range of a CA function G if G is defined by
a CA whose neighborhood consists of m consecutive integers. (Some of which
may be dummy neighbors.)

In particular, a radius—% CA has neighborhood range 2, and a radius-r CA has

range 2r + 1, for any r € Z,.



Proposition. Let G be a one-dimensional surjective CA function with neigh-
borhood range m, and let ¢, e € S% be such that ¢ # e and G(c) = G(e). Then
exactly one of the following three conditions is true:

(i) ¢ and e are negatively asymptotic and positively (m — 1)-separated,
(ii) ¢ and e are positively asymptotic and negatively (m — 1)-separated, or

(iii) ¢ and e are both positively and negatively (m — 1)-separated.

Proof.



Example. Three states S = {0, 1,2}, radius—% neighborhood, local rule
2, ifa=2,
fla,b) =< 0, ifa+# 2 and a+ b is even, and
1, ifa+# 2 and a+ b is odd.

(State 2 is unchanged. States 0 and 1 are changed using modulo 2 sum with
the right neighbor.)
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fla,b) =< 0, ifa+# 2 and a+ b is even, and
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The local rule is left permutive: For every y, z € S there is a unique x such
that f(x,y) = z.

The CA is pre-injective and hence surjective: this follows from left-permutivity:.



Example. Three states S = {0, 1,2}, radius—% neighborhood, local rule
2, ifa=2,
fla,b) =< 0, ifa+# 2 and a+ b is even, and
1, ifa+# 2 and a+ b is odd.

(State 2 is unchanged. States 0 and 1 are changed using modulo 2 sum with
the right neighbor.)

e Configuration ...222... has a unique pre-image.
e Configuration ...000... has two pre-images.



Example. Three states S = {0, 1,2}, radius—% neighborhood, local rule

2. ifa=2
fla,b) =< 0, ifa+# 2 and a+ b is even, and
1, ifa+# 2 and a+ b is odd.

(State 2 is unchanged. States 0 and 1 are changed using modulo 2 sum with
the right neighbor.)

Configurations
...000020000. . .

...000021111 . .,

are negatively asymptotic and positively 1-separated. They have the same
Image.



Example. Three states S = {0, 1,2}, radius—% neighborhood, local rule

2. ifa=2
fla,b) =< 0, ifa+# 2 and a+ b is even, and
1, ifa+# 2 and a+ b is odd.

(State 2 is unchanged. States 0 and 1 are changed using modulo 2 sum with
the right neighbor.)

Configurations
...00000000. ..

o LITIIIT .

are totally 1-separated and have the same image.
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Example. Three states S = {0, 1,2}, radius—% neighborhood, local rule

2. ifa=2
fla,b) =< 0, ifa+# 2 and a+ b is even, and
1, ifa+# 2 and a+ b is odd.

(State 2 is unchanged. States 0 and 1 are changed using modulo 2 sum with
the right neighbor.)

(G is not injective but G'p is surjective if ¢ = 2 is the quiescent state:

Gy surjective #=- (= injective

(G is surjective but G'p is not surjective if ¢ = 0 is the quiescent state:

G surjective #=- Gy surjective



Proposition. Among one-dimensional cellular automata, if G'p is injective
then G is injective.

Proof.



We have proved all implications and non-implications in the figure of 1D CA:

G injective =<— Ggp, Injective

B

B

Gg injective =< G surjective ~<—> Gp surjective




