

One-dimensional case

The balance of surjective CA implies in the one-dimensional case the following:

Proposition. For every one-dimensional surjective CA there is a constant n such that every configuration has at most n pre-images.

Proof.

One-dimensional case

The balance of surjective CA implies in the one-dimensional case the following:

Proposition. For every one-dimensional surjective CA there is a constant n such that every configuration has at most n pre-images.

Proof.

Corollary. Let G be a one-dimensional surjective CA function. Pre-images of spatially periodic configurations are all spatially periodic.

Proof.

One-dimensional case

The balance of surjective CA implies in the one-dimensional case the following:

Proposition. For every one-dimensional surjective CA there is a constant n such that every configuration has at most n pre-images.

Proof.

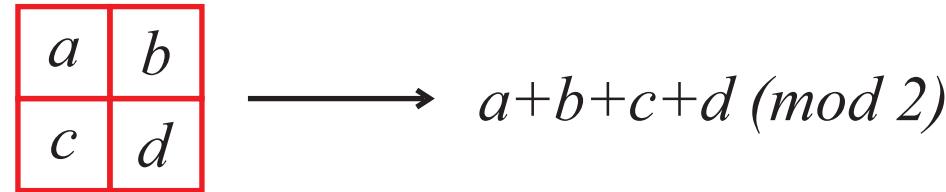
Corollary. Let G be a one-dimensional surjective CA function. Pre-images of spatially periodic configurations are all spatially periodic.

Proof.

So among one-dimensional CA

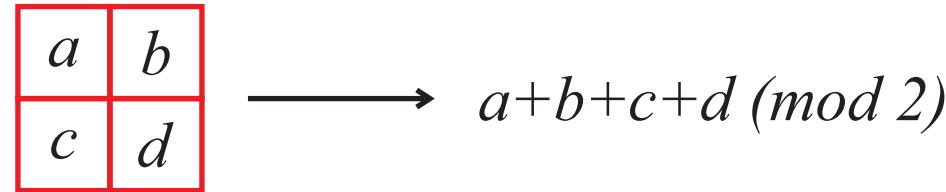
$$G \text{ surjective} \implies G_P \text{ surjective}$$

Example. The proposition and the corollary fail in 2D. Consider the **2D XOR automaton** with radius- $\frac{1}{2}$ neighborhood:



- This CA is **surjective**.
- The 0-uniform configuration c_0 has **uncountably many** pre-images, some of which are not spatially periodic: any modulo 2 sum of horizontal and vertical rows of 1's maps to c_0 .
- However, G_P is surjective so the second part of the Corollary is not refuted by this example.

Example. The proposition and the corollary fail in 2D. Consider the **2D XOR automaton** with radius- $\frac{1}{2}$ neighborhood:



- This CA is **surjective**.
- The 0-uniform configuration c_0 has **uncountably many** pre-images, some of which are not spatially periodic: any modulo 2 sum of horizontal and vertical rows of 1's maps to c_0 .
- However, G_P is surjective so the second part of the Corollary is not refuted by this example.

It is not known whether in 2D

$$G \text{ surjective} \stackrel{?}{\implies} G_P \text{ surjective}$$

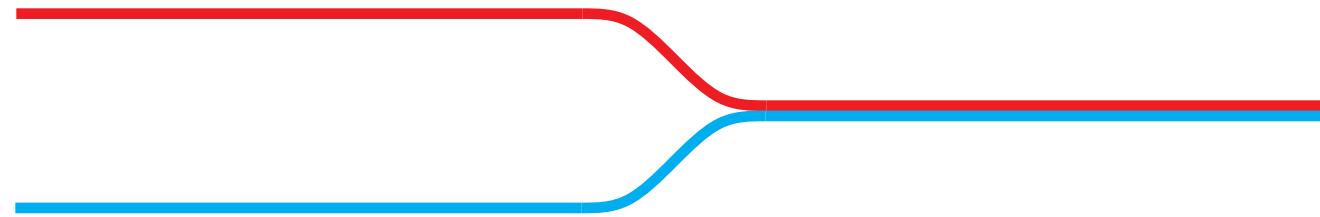
In non-surjective CA there is no finite bound on the number of pre-images. The proposition is valid in any dimension:

Proposition. If G is a **non-surjective** CA then there is a strongly periodic configuration with uncountably many pre-images.

Proof. Homework

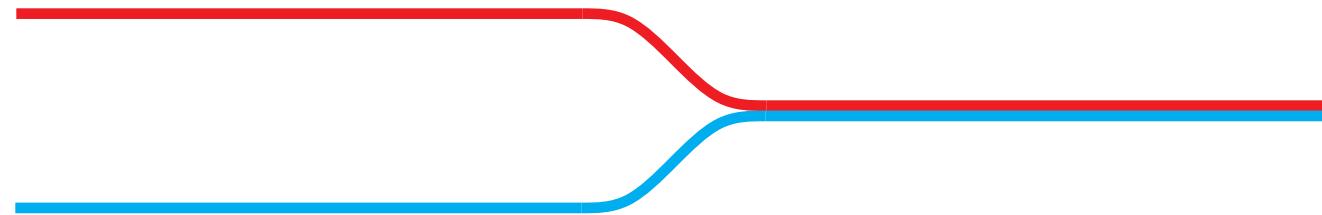
One-dimensional configurations $c, e \in S^{\mathbb{Z}}$ are

- **positively asymptotic** if $\exists m \in \mathbb{Z}$ such that $c(i) = e(i)$ for all $i \geq m$,

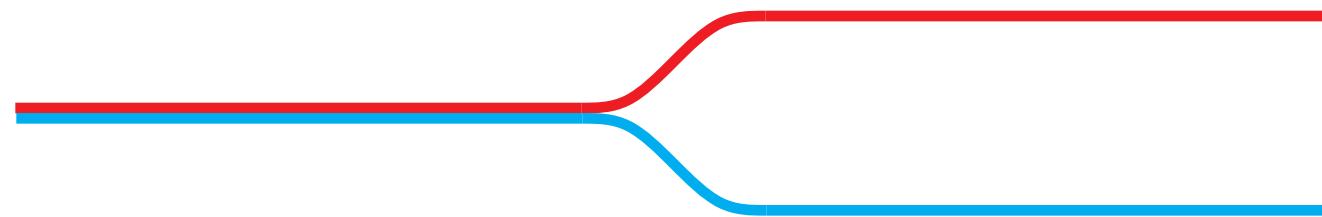


One-dimensional configurations $c, e \in S^{\mathbb{Z}}$ are

- **positively asymptotic** if $\exists m \in \mathbb{Z}$ such that $c(i) = e(i)$ for all $i \geq m$,

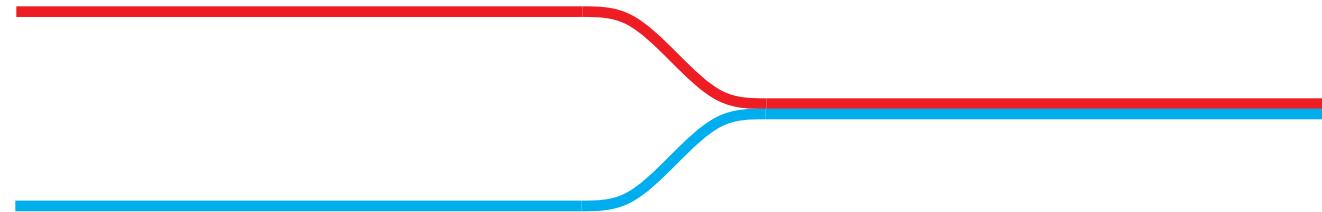


- **negatively asymptotic** if $\exists m \in \mathbb{Z}$ such that $c(i) = e(i)$ for all $i \leq m$,

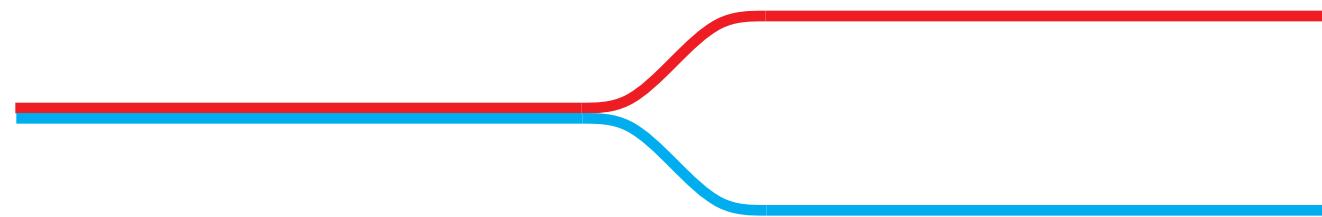


One-dimensional configurations $c, e \in S^{\mathbb{Z}}$ are

- **positively asymptotic** if $\exists m \in \mathbb{Z}$ such that $c(i) = e(i)$ for all $i \geq m$,



- **negatively asymptotic** if $\exists m \in \mathbb{Z}$ such that $c(i) = e(i)$ for all $i \leq m$,

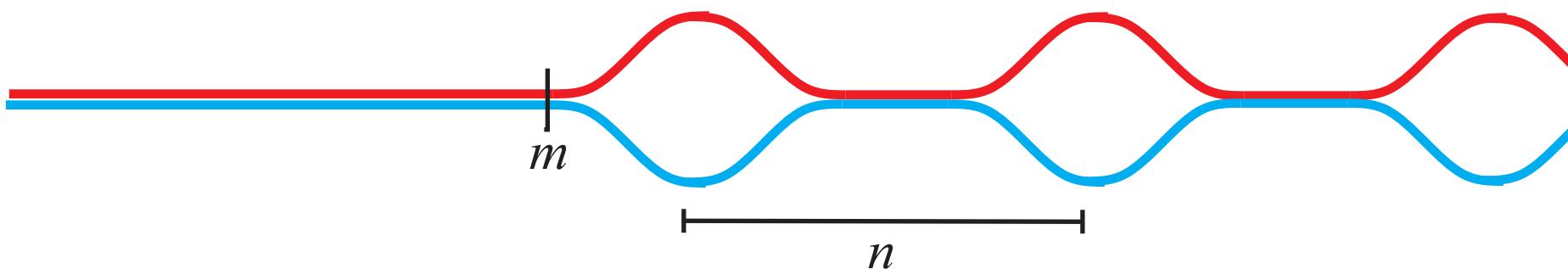


- **asymptotic** if it is both positively and negatively asymptotic.

One-dimensional configurations $c, e \in S^{\mathbb{Z}}$ are

- **positively n -separated** if $\exists m \in \mathbb{Z}$ such that for all $i \geq m$ holds:

$$c(i+j) \neq e(i+j) \text{ for some } j \in \{1, \dots, n\}$$

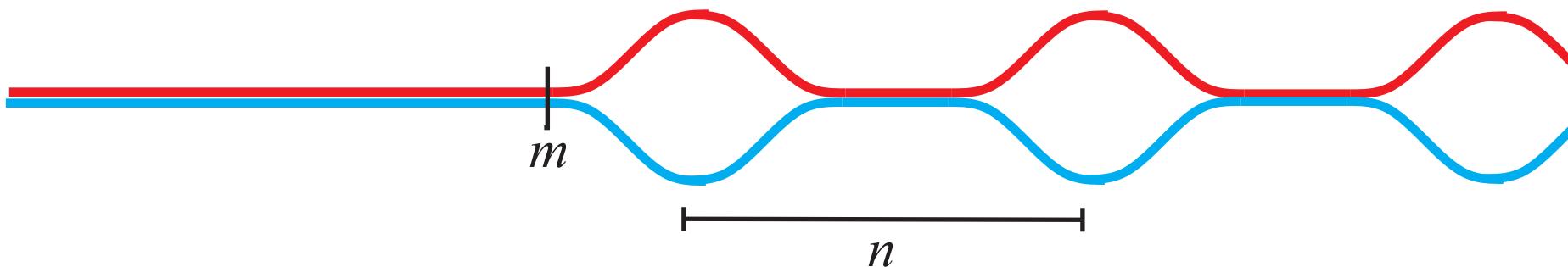


(Every n -segment sufficiently far on the right contains a difference.)

One-dimensional configurations $c, e \in S^{\mathbb{Z}}$ are

- **positively n -separated** if $\exists m \in \mathbb{Z}$ such that for all $i \geq m$ holds:

$$c(i + j) \neq e(i + j) \text{ for some } j \in \{1, \dots, n\}$$



(Every n -segment sufficiently far on the right contains a difference.)

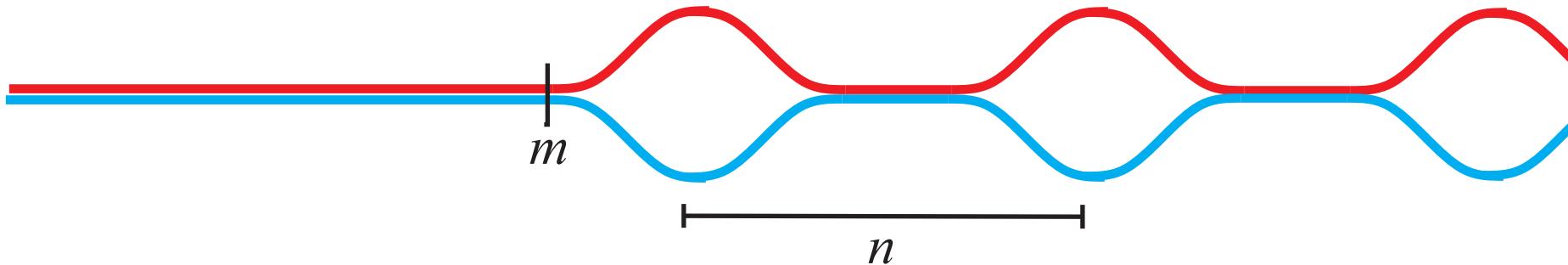
- **negatively n -separated** if $\exists m \in \mathbb{Z}$ such that for all $i \leq m$ holds:

$$c(i + j) \neq e(i + j) \text{ for some } j \in \{1, \dots, n\}$$

One-dimensional configurations $c, e \in S^{\mathbb{Z}}$ are

- **positively n -separated** if $\exists m \in \mathbb{Z}$ such that for all $i \geq m$ holds:

$$c(i + j) \neq e(i + j) \text{ for some } j \in \{1, \dots, n\}$$



(Every n -segment sufficiently far on the right contains a difference.)

- **negatively n -separated** if $\exists m \in \mathbb{Z}$ such that for all $i \leq m$ holds:

$$c(i + j) \neq e(i + j) \text{ for some } j \in \{1, \dots, n\}$$

- **totally n -separated** if for all $i \in \mathbb{Z}$ holds:

$$c(i + j) \neq e(i + j) \text{ for some } j \in \{1, \dots, n\}$$

One-dimensional configurations $c, e \in S^{\mathbb{Z}}$ are

- **positively separated** if they are positively n -separated for some n .
- **negatively separated** if they are negatively n -separated for some n .
- **totally separated** if they are totally n -separated for some n . (Equivalently: they are positively and negatively separated.)

Number m is a neighborhood **range** of a CA function G if G is defined by a CA whose neighborhood consists of m consecutive integers. (Some of which may be dummy neighbors.)

In particular, a radius- $\frac{1}{2}$ CA has neighborhood range 2, and a radius- r CA has range $2r + 1$, for any $r \in \mathbb{Z}_+$.

Proposition. Let G be a one-dimensional surjective CA function with neighborhood range m , and let $c, e \in S^{\mathbb{Z}}$ be such that $c \neq e$ and $G(c) = G(e)$. Then exactly one of the following three conditions is true:

- (i) c and e are negatively asymptotic and positively $(m - 1)$ -separated,
- (ii) c and e are positively asymptotic and negatively $(m - 1)$ -separated, or
- (iii) c and e are both positively and negatively $(m - 1)$ -separated.

Proof.

Example. Three states $S = \{0, 1, 2\}$, radius- $\frac{1}{2}$ neighborhood, local rule

$$f(a, b) = \begin{cases} 2, & \text{if } a = 2, \\ 0, & \text{if } a \neq 2 \text{ and } a + b \text{ is even, and} \\ 1, & \text{if } a \neq 2 \text{ and } a + b \text{ is odd.} \end{cases}$$

(State 2 is unchanged. States 0 and 1 are changed using modulo 2 sum with the right neighbor.)

Example. Three states $S = \{0, 1, 2\}$, radius- $\frac{1}{2}$ neighborhood, local rule

$$f(a, b) = \begin{cases} 2, & \text{if } a = 2, \\ 0, & \text{if } a \neq 2 \text{ and } a + b \text{ is even, and} \\ 1, & \text{if } a \neq 2 \text{ and } a + b \text{ is odd.} \end{cases}$$

(State 2 is unchanged. States 0 and 1 are changed using modulo 2 sum with the right neighbor.)

The local rule is **left permutive**: For every $y, z \in S$ there is a unique x such that $f(x, y) = z$.

The CA is pre-injective and hence surjective: this follows from left-permutivity.

Example. Three states $S = \{0, 1, 2\}$, radius- $\frac{1}{2}$ neighborhood, local rule

$$f(a, b) = \begin{cases} 2, & \text{if } a = 2, \\ 0, & \text{if } a \neq 2 \text{ and } a + b \text{ is even, and} \\ 1, & \text{if } a \neq 2 \text{ and } a + b \text{ is odd.} \end{cases}$$

(State 2 is unchanged. States 0 and 1 are changed using modulo 2 sum with the right neighbor.)

- Configuration $\dots 222 \dots$ has a unique pre-image.
- Configuration $\dots 000 \dots$ has two pre-images.

Example. Three states $S = \{0, 1, 2\}$, radius- $\frac{1}{2}$ neighborhood, local rule

$$f(a, b) = \begin{cases} 2, & \text{if } a = 2, \\ 0, & \text{if } a \neq 2 \text{ and } a + b \text{ is even, and} \\ 1, & \text{if } a \neq 2 \text{ and } a + b \text{ is odd.} \end{cases}$$

(State 2 is unchanged. States 0 and 1 are changed using modulo 2 sum with the right neighbor.)

Configurations

... 000020000 ...

... 000021111 ...

are negatively asymptotic and positively 1-separated. They have the same image.

Example. Three states $S = \{0, 1, 2\}$, radius- $\frac{1}{2}$ neighborhood, local rule

$$f(a, b) = \begin{cases} 2, & \text{if } a = 2, \\ 0, & \text{if } a \neq 2 \text{ and } a + b \text{ is even, and} \\ 1, & \text{if } a \neq 2 \text{ and } a + b \text{ is odd.} \end{cases}$$

(State 2 is unchanged. States 0 and 1 are changed using modulo 2 sum with the right neighbor.)

Configurations

... 00000000 ...

... 11111111 ...

are totally 1-separated and have the same image.

Example. Three states $S = \{0, 1, 2\}$, radius- $\frac{1}{2}$ neighborhood, local rule

$$f(a, b) = \begin{cases} 2, & \text{if } a = 2, \\ 0, & \text{if } a \neq 2 \text{ and } a + b \text{ is even, and} \\ 1, & \text{if } a \neq 2 \text{ and } a + b \text{ is odd.} \end{cases}$$

(State 2 is unchanged. States 0 and 1 are changed using modulo 2 sum with the right neighbor.)

G is not injective but G_F is surjective if $q = 2$ is the quiescent state:

$$\mathbf{G}_F \text{ surjective} \not\Rightarrow \mathbf{G} \text{ injective}$$

Example. Three states $S = \{0, 1, 2\}$, radius- $\frac{1}{2}$ neighborhood, local rule

$$f(a, b) = \begin{cases} 2, & \text{if } a = 2, \\ 0, & \text{if } a \neq 2 \text{ and } a + b \text{ is even, and} \\ 1, & \text{if } a \neq 2 \text{ and } a + b \text{ is odd.} \end{cases}$$

(State 2 is unchanged. States 0 and 1 are changed using modulo 2 sum with the right neighbor.)

G is not injective but G_F is surjective if $q = 2$ is the quiescent state:

$$\mathbf{G}_F \text{ surjective} \not\Rightarrow \mathbf{G} \text{ injective}$$

G is surjective but G_F is not surjective if $q = 0$ is the quiescent state:

$$\mathbf{G} \text{ surjective} \not\Rightarrow \mathbf{G}_F \text{ surjective}$$

Proposition. Among one-dimensional cellular automata, if G_P is injective then G is injective.

Proof.

We have proved all implications and non-implications in the figure of 1D CA:

