
De Bruijn -graphs

A finite graph representation of a one-dimensional CA from which one can
see whether the CA is injective or surjective.



A directed (multi)graph consists of

� a finite vertex set V ,

� a finite edge set E,

� functions h : E −→ V and t : E −→ V that give for each edge its head
and tail vertex.

We say that an edge e ∈ E is from t(e) to h(e). If t(e) = h(e) then the edge e
is a loop.

The graph is conveniently drawn as a diagram with nodes V and each edge e
drawn as an arrow from node t(e) to node h(e):



The outdegree of a vertex v is the number of outgoing edges from v (=edges
whose tail is v).

The indegree of a vertex v is the number of incoming edges from v (=edges
whose head is v).



A finite path (of length k) is a sequence

e1, e2, . . . , ek

of edges where for all i
h(ei) = t(ei+1).

(Paths ”follow the arrows” in the diagram.)

A two-way infinite path is a sequence

p : Z −→ E

such that for every i ∈ Z we have h(p(i)) = t(p(i + 1)).



An (edge) labeled directed graph is a directed graph together with a la-
beling function

ℓ : E −→ Σ

which assigns each edge a symbol from a finite set Σ of labels.

b

c
a

a

b b

c

The label of a finite or infinite path is the sequence of elements of Σ obtained
by reading the labels of its edges:

. . . aaabcbcbcbc . . .



Let m be a positive integer and let S be a finite set. The de Bruijn graph
of width m over alphabet S is the directed graph with

V = Sm−1,
E = Sm,

t(s1s2 . . . sm) = s1s2 . . . sm−1, and
h(s1s2 . . . sm) = s2s3 . . . sm.

(There is an edge sut from node su to node ut for all s, t ∈ S and u ∈ Sm−2.)

111

00 01

1110

000

001

010

011

100
101

110

S = {0, 1},m = 3



Let m be a positive integer and let S be a finite set. The de Bruijn graph
of width m over alphabet S is the directed graph with

V = Sm−1,
E = Sm,

t(s1s2 . . . sm) = s1s2 . . . sm−1, and
h(s1s2 . . . sm) = s2s3 . . . sm.

(There is an edge sut from node su to node ut for all s, t ∈ S and u ∈ Sm−2.)

cc

a

bc

aa

ab

ac
ba

bb

bc
ca

cb

S = {a, b, c},m = 2



111

00 01

1110

000

001

010

011

100
101

110

For every c ∈ SZ there is a corresponding two-way infinite path p ∈ EZ with

p(i) = c(i)c(i + 1) . . . c(i +m− 1) for all i ∈ Z.

Path p is obtained by sliding a window of width m over c. The views through
the sliding window are the edges on p.



111

00 01

1110

000

001

010

011

100
101

110

For every c ∈ SZ there is a corresponding two-way infinite path p ∈ EZ with

p(i) = c(i)c(i + 1) . . . c(i +m− 1) for all i ∈ Z.

Path p is obtained by sliding a window of width m over c. The views through
the sliding window are the edges on p.

c = . . . 0 0 1 0 1 1 0 1 0 1 1 1 . . .
p = . . .001,010,101,011,110,100,010,101,011,111, . . .



111

00 01

1110

000

001

010

011

100
101

110

For every c ∈ SZ there is a corresponding two-way infinite path p ∈ EZ with

p(i) = c(i)c(i + 1) . . . c(i +m− 1) for all i ∈ Z.

Path p is obtained by sliding a window of width m over c. The views through
the sliding window are the edges on p.

c = . . . 0 0 1 0 1 1 0 1 0 1 1 1 . . .
p = . . .001,010,101,011,110,100,010,101,011,111, . . .

The correspondence c↔ p is bijective: c is obtained from path p by reading
the first letters of the edges. Let us denote the configuration c that corresponds
to path p by cp.



Let G be a one-dimensional CA with

� state set S,

� neighborhood range m, and

� local rule f : Sm −→ S.

The de Bruijn representation of the CA is the labeled de Bruijn graph of
width m over the alphabet S where edge e ∈ Sm is labeled by f (e) ∈ S.

Here’s de Bruijn representation of rule 110:

1

00 01

1110

0

0

0

1

1

1

1



1

00 01

1110

0

0

0

1

1

1

1

Remark: Since the position of the CA neighborhood is not given, the CA
functions G ◦ σk are represented by the same de Bruijn graph for all k ∈ Z.

Fortunately this is not a problem since we use the de Bruijn representations to
study properties (injectivity and surjectivity) that are not affected by transla-
tions.



1

00 01

1110

0

0

0

1

1

1

1

001

000

1 00

010

1 10

011

110

111

Infinite paths p in the de Bruijn representations provide two configurations:

� cp, the sequence obtained by reading the first symbol of the names of the
edges along p,

� fp, the sequence obtained by reading the labels of the edges.

Because the labels are the outputs of the local update rule of the CA, fp is
(possibly translated) G(cp):

σk(fp) = G(cp) for some k ∈ Z.
(Number k depends on the positioning of the neighborhood in the CA.)



1

00 01

1110

0

0

0

1

1

1

1

� The CA is injective if and only if different two-way infinite paths have
always different labels.

� The CA is surjective if and only if for every c ∈ SZ there is a path labeled
by c.

� The CA is pre-injectiveif and only if the graph does not have a diamond:
two different finite paths with identical labels that begin in the same vertex
and end in the same vertex.

� An orphan is a word over alphabet S that is not a label of any path.



Recall some finite automata terminology:

� A labeled digraph is a finite semiautomaton. Vertices are the states of
the automaton, labels are input letters, edges are transitions.



Recall some finite automata terminology:

� A labeled digraph is a finite semiautomaton. Vertices are the states of
the automaton, labels are input letters, edges are transitions.

� Specifying two subsets I ⊆ V and F ⊆ V of vertices turns the graph into
a finite automaton. Elements of I and F are the initial and the final
states.



Recall some finite automata terminology:

� A labeled digraph is a finite semiautomaton. Vertices are the states of
the automaton, labels are input letters, edges are transitions.

� Specifying two subsets I ⊆ V and F ⊆ V of vertices turns the graph into
a finite automaton. Elements of I and F are the initial and the final
states.

� Finite automaton accepts a word w if there exists a path labeled by w
from an initial state to a final state.



Recall some finite automata terminology:

� A labeled digraph is a finite semiautomaton. Vertices are the states of
the automaton, labels are input letters, edges are transitions.

� Specifying two subsets I ⊆ V and F ⊆ V of vertices turns the graph into
a finite automaton. Elements of I and F are the initial and the final
states.

� Finite automaton accepts a word w if there exists a path labeled by w
from an initial state to a final state.

� The language recognized by a finite automaton is the set of all words
that it accepts.



Recall some finite automata terminology:

� A labeled digraph is a finite semiautomaton. Vertices are the states of
the automaton, labels are input letters, edges are transitions.

� Specifying two subsets I ⊆ V and F ⊆ V of vertices turns the graph into
a finite automaton. Elements of I and F are the initial and the final
states.

� Finite automaton accepts a word w if there exists a path labeled by w
from an initial state to a final state.

� The language recognized by a finite automaton is the set of all words
that it accepts.

� Languages that are recognized by finite automata are regular.



Recall some finite automata terminology:

� A labeled digraph is a finite semiautomaton. Vertices are the states of
the automaton, labels are input letters, edges are transitions.

� Specifying two subsets I ⊆ V and F ⊆ V of vertices turns the graph into
a finite automaton. Elements of I and F are the initial and the final
states.

� Finite automaton accepts a word w if there exists a path labeled by w
from an initial state to a final state.

� The language recognized by a finite automaton is the set of all words
that it accepts.

� Languages that are recognized by finite automata are regular.

� Two finite automata are equivalent if they recognize the same language.



Recall: A word is not an orphan if and only if it labels some finite path in
the de Bruijn representation of the CA.

Make every state initial and final
=⇒ a finite automaton that recognizes exactly non-orphan words.

1

0

0

0

1

1

1

1



To recognize orphans we need a finite automaton for the complement lan-
guage. And for complementation we need determinism.

A finite automaton is deterministic (DFA) if

� there is only one initial state, and

� for each state v ∈ V and letter a ∈ Σ there is at most one transition with
label a from state v.

=⇒ at most one path from the initial state for every input word w ∈ Σ∗. Word
w is accepted iff the path ends at a final state:

w



A DFA is complete if there is a (unique) transition from every state with every
input letter.

It is easy to make any DFA into an equivalent complete DFA by adding a new
state (which is not final) and making all missing transitions into this sink state.



Well known: Any finite automaton can be effectively converted into an equiv-
alent complete DFA using the powerset construction.

� The states of the powerset automaton are subsets of the original state set
V .

� For any X ⊆ V and a ∈ Σ we add the transition

X
a−→ {v ∈ V | for some x ∈ X there is an edge x

a−→ v with label a }.

� The set I ⊆ V of initial states is made the unique initial state.

� A set X ⊆ V is made final if and only if X contains at least one original
final state.



Example. Let us construct a complete DFA that is equivalent to the de Bruijn
representation of rule 110:

1

0

0

0

1

1

1

1

a b

c d

Note that the construction can be started with the initial state set I , and only
the sets reached from I need to be included in the powerset automaton.



A complete DFA is easily modified to recognize the complement language: sim-
ply make final states non-final and vice versa:

final ←→ non-final

In the case of the powerset automaton of the de Bruijn representation of CA
this means that there will be a unique final state: the empty set ∅.



A complete DFA is easily modified to recognize the complement language: sim-
ply make final states non-final and vice versa:

final ←→ non-final

In the case of the powerset automaton of the de Bruijn representation of CA
this means that there will be a unique final state: the empty set ∅.

The resulting complete DFA exactly recognizes all words that are orphans. From
the automaton we can determine

� what are the shortest orphans,

� are there orphans at all (i.e., is the automaton surjective or not).

Proposition. The orphan words of a one-dimensional CA form a regular
language.



Example. A complete DFA for the orphans of rule 110:

1

00

01

10�

11

00
11

01
10

00 01

10
11

01
10
11

0

0

0

0

0

0
0

1

1

1

11

1 0,1

The shortest orphan is 01010, given by the shortest path from the initial state
to the final state.



The CA is surjective if and only if there is no path in the complemented powerset
automaton from the initial state (= V ) to the final state (= ∅).

This algorithm to decide surjectivity is however very inefficient: the size of
the powerset grows exponentially with the number of states in the CA.



The pair automaton provides an efficient way of deciding surjectivity and
injectivity. Let B be the de Bruijn representation of the CA. In the pair au-
tomaton

� the state set is V × V where V = Sm−1 is the vertex set of B,

� there is an edge
(u1, u2)

a−→ (v1, v2)

with label a if and only if in B there are both edges

u1
a−→ v1 and u2

a−→ v2.

No initial or final states need to be fixed. (So semiautomaton.)



Example. Let us construct the pair automaton for rule 110 from its de Bruijn
representation

1

00 01

1110

0

0

0

1

1

1

1



∆

00

00

01

01

01

01

10

10

10

1011

11

11

11

11

11

01

00

01
00

0

1

1

1

1

1

00
00

00

00

01
01

10
10

10
10

11
11

0

0

1

1

0

0

1

1

0

0

1

1

1

1

1

1

1

1

1

1

1

1

0

0

1

1

1

1



Any two-way infinite path p in the pair graph corresponds to a pair of
paths in the original de Bruijn automaton with identical labels. These represent
a pair of configurations with the same image under the CA.

Conversely, and pair c
(1)
p and c

(2)
p of configurations such that G(c

(1)
p ) = G(c

(2)
p )

provides a path p in the pair automaton.

The correspondence
p↔ (c(1)p , c

(2)
p )

is a bijection between paths p in the pair automaton and pairs of configurations
that satisfy

G(c1p) = G(c2p).



Let
∆ = {(u, u) | u ∈ V }

the set of diagonal vertices in the pair automaton.

The induced subgraph with vertex set ∆ is an isomorphic copy of the de Bruijn
automaton. In particular, there is a path between any two vertices in ∆.

Any two-way infinite path p that only uses diagonal vertices has c
(1)
p = c

(2)
p ,

so it does not provide two different configurations with the same image. Only
paths that contain a vertex outside of ∆ provide such configurations.



Basic connections between the pair graph and the CA:

Proposition. A one-dimensional CA A is

(i) not injective if and only if its pair graph has a cycle that contains a node
outside of ∆,

(ii) not surjective if and only the pair graph has a cycle that contains a node of
∆ and a node outside of ∆.

Proof.



∆

00

00

01

01

01

01

10

10

10

1011

11

11

11

11

11

01

00

01
00

0

1

1

1

1

1

00
00

00

00

01
01

10
10

10
10

11
11

0

0

1

1

0

0

1

1

0

0

1

1

1

1

1

1

1

1

1

1

1

1

0

0

1

1

1

1

Example. One sees from the cycles that rule 110 is not injective or surjective.

The shortest path that begins and ends in node (00, 00) and is not inside ∆ has
length 6. The corresponding patterns 00110100 and 00101100 are the shortest
pair of distinct patterns that begin and end in 00, and have the same image.



One gets directly from the pair graph some of our previous results:

� If G is surjective then any distinct pair c, e of configurations with the same
image G(c) = G(e) has three possibilities regarding asymptoticity (inside
∆) and (m− 1)-separation (outside ∆). Namely, path going

inside ∆ −→ outside ∆ −→ inside ∆

is not possible.

� G is non-injective (∃ an infinite path containing a node outside of ∆) if and
only if GP is non-injective (∃ a cycle containing a node outside of ∆).



The pair graph is symmetric w.r.t. swapping the two components of the
vertices.

The reduced pair graph is obtained by

� Merging all pairs (u, v) and (v, u), and

� Merging all vertices of ∆. Add no loop at the merged ∆.

The size of the graph gets reduced by a factor ≈ 2.

The CA is

� injective if and only if there is no cycle in the reduced pair graph,

� surjective if and only if there is no cycle through node ∆.



Example. The reduced pair graph of rule 110

∆
10
00

10
11

00
11

01
10

11
01

01
00

0,1

1

1

1

1

1

111

0

0


