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Premise

I A common denominator behind all (natural) sciences:

Data from n observational units and p variables.

I This talk discusses a specific shift/trend in the way statistical
methodology is viewing data.
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Classical statistics

I Classical statistical procedures assume that the sample size n→∞.


x11 x12 · · · x1p
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I Increasing amount of information smooths out randomness and lets
us make precise probabilistic statements.

I Simple interpretation: We recruit more subjects.
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High-dimensional statistics

I High-dimensional methodology assumes n→∞ AND p →∞!
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I Current literature on statistical methodology has a strong emphasis
on such high-dimensional regimes.
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Practical considerations

I Targeted to (and motivated by) datasets where

1. The sample size n is large, and
2. The number of variables p is large relative to n.

I For example, microarray gene expression data can have n ∼ 100 and
p ∼ 10000.

I High-dimensional (HD) versions of classical methods, e.g.,
correlation matrix estimation, are being developed.

I HD methods typically yield significantly more useful results on HD
data sets, compared to classical methods.
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Theoretical considerations

1. Unexpected phenomena:
I Basic estimators (means) might no longer converge.
I Standard techniques, such as the central limit theorem, no longer

work.

2. Random matrix theory allows constructing new tools.
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Dimension reduction

d SIGNALS

NOISE

OBSERVED 
p VARIABLES

I Dimension reduction (DR) attempts to recover a low-dimensional
signal behind the data, without any loss of important information.

I This makes DR especially valuable in high-dimensional data analysis.
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Principal component analysis

I Principal component analysis (PCA) is a classical dimension
reduction method.

I A key question in PCA is how to choose the number of signals.

I A modification of a certain classical method can be used to construct
the high-dimensional estimator d̂ for their number (Schott, 2006).



8/10

Principal component analysis

I Principal component analysis (PCA) is a classical dimension
reduction method.

I A key question in PCA is how to choose the number of signals.

I A modification of a certain classical method can be used to construct
the high-dimensional estimator d̂ for their number (Schott, 2006).



8/10

Principal component analysis

I Principal component analysis (PCA) is a classical dimension
reduction method.

I A key question in PCA is how to choose the number of signals.

I A modification of a certain classical method can be used to construct
the high-dimensional estimator d̂ for their number (Schott, 2006).



9/10

A result

Theorem (Schott, 2006; Virta, 2021)

Assume that the ratio

p

n
→ c ,

where either c = 0, c ∈ (0,∞) or c =∞.

Under certain regularity conditions, the limiting behavior of the estimator
d̂ is identical in all three cases.
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