Spatial depth for object data

J. Virta

University of Turku

TU Wien, 16th of October 2023

1 [Statistical depth functions](#page-1-0)

[Object data](#page-17-0)

3 [Spatial depth for object data](#page-22-0)

[Data examples](#page-36-0)

 298

Þ

一 4 (国)

э **IN**

- One of the major differences between $\mathbb R$ and $\mathbb R^p$, $p\geq 2$, is that the former admits a natural ordering of its elements.
- That is, given a univariate sample x_1, \ldots, x_n , we can order it as

$$
x_{(1)}\leq x_{(2)}\leq \cdots \leq x_{(n-1)}\leq x_{(n)}.
$$

- This ordering is invaluable in robust statistics:
	- Extreme observations are seen as outliers.
	- By "trimming" them we obtain outlier-resistant procedures.

Ordering in \mathbb{R}^2 ?

• How to generalize the ordering to bivariate samples?

 \circ

 299

Þ

- Let P be a probability distribution in \mathbb{R}^p and let $\mu \in \mathbb{R}^p$.
- Informally, $\mu \mapsto D(\mu; P)$ is a statistical depth function if
	- \bullet $D(\mu; P)$ takes a high value when μ is located close to the center of P. 2 $D(\mu; P)$ takes a small value when μ is outlying w.r.t. to P.
- [\[Zuo and Serfling, 2000\]](#page-50-1) formulated a famous set of axioms that any proper depth function should satisfy.
- \bullet Depth functions are "unsigned" generalizations of the ordering in \mathbb{R} .

The most well-known depth function is possibly Tukey's halfspace depth [\[Tukey, 1975\]](#page-49-0):

$$
D(\mu; P) = \inf_{v \in \mathbb{S}^{p-1}} P(v'X > v'\mu).
$$

Informally, the halfspace depth of μ **is the least amount of probability** mass one can see when standing at μ and choosing one's orientation appropriately.

 299

 299

重

Halfspace depths of all points

÷,

- Depth functions are typically based on geometric ideas.
- Spatial depth [\[Chaudhuri, 1996,](#page-47-0) [Vardi and Zhang, 2000\]](#page-49-1) is defined as

$$
D(\mu;P):=1-\left\|\mathrm{E}\left(\frac{X-\mu}{\|X-\mu\|}\right)\right\|^2,
$$

 \bullet When P is an empirical distribution of a sample, the quantity

$$
\left\| \mathbf{E}\left(\frac{X-\mu}{\|X-\mu\|}\right) \right\|
$$

is the length of the average of unit-length arrows drawn from μ towards the sample points.

 \circ

 \circ

イロト イ部 トイモ トイモト

 299

Example

 \circ

イロト イ部 トイモ トイモト

 299

 299

Spatial depths of all points

Ξ

Ξ

÷,

- Both the halfspace and spatial depth can be shown to be robust (extremely outlying observations do not render them useless).
- This is true also for most developed depth functions:
	- Projection depth [\[Liu, 1992\]](#page-48-0)
	- Simplicial depth [\[Liu, 1990\]](#page-48-1)
	- Oja depth [\[Oja, 1983\]](#page-48-2)
	- Lens depth [\[Liu and Modarres, 2011\]](#page-48-3)
	- ...

- The ordering offered by depths leads to natural generalizations of univariate trimmed estimators.
- The point $\mu_0 \in \mathbb{R}^p$ with the largest depth can act as a measure of location.
	- \bullet In \mathbb{R} , the deepest point equals the median for most depth functions (such as for both the halfspace and spatial depth).
- **•** Outlier detection
- Depth-depth plots [\[Li et al., 2012\]](#page-47-1) can be used for classification.

[Statistical depth functions](#page-1-0)

2 [Object data](#page-17-0)

3 [Spatial depth for object data](#page-22-0)

[Data examples](#page-36-0)

Þ \triangleright \rightarrow \equiv

×.

 298

э

- In many contemporary applications, the sample X_1, \ldots, X_n does not consist of points in Euclidean space but, rather, of more general objects, such as images, functions, graphs...
- Computing descriptive statistics for a sample of objects is tricky but often the difference between two objects is easy to quantify.

A natural mathematical framework for object data is as follows.

- A metric space (\mathcal{X}, d) .
- A distribution P (possibly a sample) taking values in $\mathcal X$
- Methodology that relies on $X \sim P$ only through the metric $d(\cdot, \cdot)$.
- Example 1: the Frechet mean of P is

$$
\mathrm{argmin}_{\mu \in \mathcal{X}} \mathrm{E}\{d^2(X,\mu)\}\
$$

and the minimal value of the objective function is the Frechet variance of P.

- A simple way of developing object data methods is to \bullet Formulate a Euclidean method as a function of " $||X - Y||$ " only.
	- 2 Replace $||X Y||$ with $d(X, Y)$.
- **Example 2:** Applying the above to PCA results into multidimensional scaling (MDS).

 QQ

[\[Dai and Lopez-Pintado, 2022\]](#page-47-2) formulated metric halfspace depth as

$$
D(\mu; P) = \inf_{\substack{z_1, z_2 \in \mathcal{X} \\ d(\mu, z_1) \le d(\mu, z_2)}} P(d(X, z_1) \le d(X, z_2)).
$$

• Computing the deepest point μ_0 is highly non-trivial.

 QQ

- **[Statistical depth functions](#page-1-0)**
- [Object data](#page-17-0)
- 3 [Spatial depth for object data](#page-22-0)

[Data examples](#page-36-0)

⋍ \sim 298

Þ

We let $h:\mathcal{X}^3\rightarrow \mathbb{R}$ be defined as

$$
h(x_1, x_2, x_3) := \mathbb{I}(x_3 \notin \{x_1, x_2\}) \frac{d^2(x_1, x_3) + d^2(x_2, x_3) - d^2(x_1, x_2)}{d(x_1, x_3) d(x_2, x_3)},
$$

where $\mathbb{I}(\cdot)$ denotes the indicator function.

• The *metric spatial depth* [\[Virta, 2023\]](#page-49-2) is then

$$
D(\mu; P) := 1 - \frac{1}{2} \mathrm{E} \{ h(X_1, X_2, \mu) \},
$$

where $X_1, X_2 \sim P$ are independent.

Property I

When (X, d) is an Euclidean space, then the metric spatial depth equals the classical spatial depth.

Property II

 $D(\mu; P)$ is finite for all $\mu \in \mathcal{X}$ and all P.

Property III

The influence function of D satisfies

 $\sup_{z \in \mathcal{X}} |I F(z; D, \mu, P)| \leq 4.$

⊜⊪

医单侧 化重

Theoretical properties

 $L[x_1, x_2, x_3]$ denotes the event that

$$
d(x_1,x_3)=d(x_1,x_2)+d(x_2,x_3),
$$

i.e., that the three points $x_1, x_2, x_3 \in \mathcal{X}$ fall in a line (in the sense of the metric d) such that x_2 is in the middle of the other two.

Property IV

 $D(\mu; P)$ takes values in the interval [0, 2]. Additionally,

(i) $D(\mu; P) = 0$ if and only if

$$
P({\mu}) = 0
$$
 and $P(L[X_1, X_2, \mu] \cup L[X_2, X_1, \mu]) = 1.$

(ii) $D(\mu; P) = 2$ if and only if

$$
P({\mu}) = 0
$$
 and $P(L[X_1, \mu, X_2]) = 1$.

(iii) If (X, d) is a Hilbert space, then $D(\mu; P) \leq 1$.

K ロ ▶ K 個 ▶ K 差 ▶ K 差 ▶

 290

Property V

Let μ_n be a divergent sequence in X. Then $D(\mu_n; P) \to 0$ as $n \to \infty$.

 298

э

Э×.

Property VI

Assume that $P({\mu}) = 0$ for all $\mu \in \mathcal{X}$. Then $D(\mu; P)$ is continuous in both μ and P .

AD > 4 B > 4 B >

 298

э

- Metric spatial depth also inherits the invariance properties of the used metric.
- Interestingly, the previous results use all four axioms of a metric.

Biskin

- Assume that P puts equal mass $1/n$ to each of the fixed points $z_1, \ldots, z_n \in \mathcal{X}$.
- Question: Under what metric is the depth $D(z_1; P)$ maximal?

э

 298

э

The railway metric uniquely gives $D(z_1;P)=1+(1-\frac{1}{n})$ $\frac{1}{n}$) $\left(1-\frac{3}{n}\right)$ $\frac{3}{n}$.

×. э **IN** -4 F 298

э

Example II

• Equip the finite set $\mathcal{X} = \{1, \ldots, n\}$ with the discrete metric $d(i, i) = 1 - \mathbb{I}(i = i).$

• For which probability distribution $P = (p_1, \ldots, p_n)$ is $D(1; P)$ maximized/minimized?

 QQ

(i) $D(1; P) = 1$ if and only if $p_1 = 1$. (ii) $D(1; P) = 0$ if and only if exactly one of p_2, \ldots, p_n equals 1.

∢何 ▶ ∢ ヨ ▶ ∢ ヨ ▶

 298

目

 \bullet Let P_n be the empirical distribution of $X_1, \ldots, X_n \sim P$. The sample metric spatial depth is

$$
D(\mu; P_n) = 1 - \frac{1}{2n^2} \sum_{i,j=1}^n h(X_i, X_j, \mu).
$$

• Standard U-statistic theory says that, for a fixed $\mu \in \mathcal{X}$, we have,

$$
D(\mu; P_n) = D(\mu; P) + \mathcal{O}\left(\frac{1}{\sqrt{n}}\right).
$$

 QQ

- **[Statistical depth functions](#page-1-0)**
- [Object data](#page-17-0)
- 3 [Spatial depth for object data](#page-22-0)
- 4 [Data examples](#page-36-0)

Þ \triangleright \rightarrow \equiv

×.

 298

Þ

- \bullet The freedom to choose the metric d in the formulation of the metric spatial depth means that, in the case of Euclidean data, we can use metrics that promote non-linearity:
	- ¹ Kernel trick [\[Chen et al., 2008\]](#page-47-3)
	- ² ISOMAP.

Figure: Used "metrics" from left to right, top to bottom: Euclidean, ISOMAP, Rational quadratic kernel, Gaussian kernel.

- Let P_{n1} and P_{n2} be the empirical distributions of two samples corresponding to different groups.
- In DD-classification [\[Li et al., 2012\]](#page-47-1), we compute the depth vectors

$$
z_i := (D(x_i; P_{n1}), D(x_i; P_{n2})).
$$

• A test point $x \in \mathcal{X}$ is then classified based on the vector

$$
z := (D(x; P_{n1}), D(x; P_{n2})).
$$

We applied DD-classification to a subsample of the FashionMNIST data set [\[Xiao et al., 2017\]](#page-49-3) consisting of images of dresses, shirts and ankle boots.

- We randomly drew a training sample of $n = 150$ images and a test sample of $n_0 = 50$ images and used DD-classifier to predict the labels of the test images.
- \bullet We used metric spatial depth with the L_p -distance with $p = 0.5, 0.6, \ldots, 5$ as the metric.
- We considered both LDA and QDA.
- The experiment was repeated a total of 100 times.

Results

DD-plot

 299

B

× K. × ×. Þ э

- Both LDA and QDA reach their maximal performance at super-Euclidean geometry.
- QDA is uniformly superior to LDA.

÷

 QQ

- Is the point μ_0 with the largest depth ("spatial median") unique under some natural conditions?
- In the Euclidean case, the spatial median is equivalent to the Frechet median. Does the same hold for some object spaces?
- How to find the spatial median in practice?

Thank you for your attention!

 299

Þ

References I

Chaudhuri, P. (1996).

On a geometric notion of quantiles for multivariate data. Journal of the American Statistical Association, 91(434):862–872.

- 量 Chen, Y., Dang, X., Peng, H., and Bart, H. L. (2008). Outlier detection with the kernelized spatial depth function. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(2):288–305.
- Dai, X. and Lopez-Pintado, S. (2022). Tukey's depth for object data. Journal of the American Statistical Association, pages 1–13.
- Li, J., Cuesta-Albertos, J. A., and Liu, R. Y. (2012). DD-classifier: Nonparametric classification procedure based on DD-plot.

Journal of the American Statistical Association, 107(498):737–753.

化重 经间

 QQQ

Liu, R. Y. (1990).

On a notion of data depth based on random simplices. Annals of Statistics, pages 405–414.

F. Liu, R. Y. (1992).

Data depth and multivariate rank tests. L1-Statistical Analysis and Related Methods, pages 279–294.

Journal of Nonparametric Statistics, 23(4):1063–1074.

Oja, H. (1983).

Descriptive statistics for multivariate distributions.

Statistics & Probability Letters, 1(6):327–332.

References III

Tukey, J. W. (1975).

Mathematics and the picturing of data.

In Proceedings of the International Congress of Mathematicians, Vancouver, 1975, volume 2, pages 523–531.

Vardi, Y. and Zhang, C.-H. (2000). The multivariate L_1 -median and associated data depth. Proceedings of the National Academy of Sciences, 97(4):1423–1426.

i Virta, J. (2023).

Spatial depth for data in metric spaces. arXiv preprint arXiv:2306.09740.

Xiao, H., Rasul, K., and Vollgraf, R. (2017). Fashion-MNIST: a novel image dataset for benchmarking machine learning algorithms.

arXiv preprint arXiv:1708.07747.

 Ω

≮ @ ▶ ∢ ミ ▶ ∢ ミ

F

Zuo, Y. and Serfling, R. (2000). General notions of statistical depth function. Annals of Statistics, pages 461–482.