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Ordering in R

One of the major differences between R and Rp, p ≥ 2, is that the
former admits a natural ordering of its elements.

That is, given a univariate sample x1, . . . , xn, we can order it as

x(1) ≤ x(2) ≤ · · · ≤ x(n−1) ≤ x(n).

This ordering is invaluable in robust statistics:

Extreme observations are seen as outliers.
By “trimming” them we obtain outlier-resistant procedures.
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Ordering in R2?

How to generalize the ordering to bivariate samples?
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Depth functions

Let P be a probability distribution in Rp and let µ ∈ Rp.

Informally, µ 7→ D(µ;P) is a statistical depth function if
1 D(µ;P) takes a high value when µ is located close to the center of P.
2 D(µ;P) takes a small value when µ is outlying w.r.t. to P.

[Zuo and Serfling, 2000] formulated a famous set of axioms that any
proper depth function should satisfy.

Depth functions are “unsigned” generalizations of the ordering in R.
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Tukey’s halfspace depth

The most well-known depth function is possibly Tukey’s halfspace
depth [Tukey, 1975]:

D(µ;P) = infv∈Sp−1P(v ′X > v ′µ).

Informally, the halfspace depth of µ is the least amount of probability
mass one can see when standing at µ and choosing one’s orientation
appropriately.
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Example
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Example
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Halfspace depths of all points
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Spatial depth

Depth functions are typically based on geometric ideas.

Spatial depth [Chaudhuri, 1996, Vardi and Zhang, 2000] is defined as

D(µ;P) := 1−
∥∥∥∥E( X − µ

‖X − µ‖

)∥∥∥∥2 ,
When P is an empirical distribution of a sample, the quantity∥∥∥∥E( X − µ

‖X − µ‖

)∥∥∥∥
is the length of the average of unit-length arrows drawn from µ
towards the sample points.
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Spatial depths of all points
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Other depths

Both the halfspace and spatial depth can be shown to be robust
(extremely outlying observations do not render them useless).

This is true also for most developed depth functions:

Projection depth [Liu, 1992]
Simplicial depth [Liu, 1990]
Oja depth [Oja, 1983]
Lens depth [Liu and Modarres, 2011]
...
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Using depths

The ordering offered by depths leads to natural generalizations of
univariate trimmed estimators.

The point µ0 ∈ Rp with the largest depth can act as a measure of
location.

In R, the deepest point equals the median for most depth functions
(such as for both the halfspace and spatial depth).

Outlier detection.

Depth-depth plots [Li et al., 2012] can be used for classification.
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Object data

In many contemporary applications, the sample X1, . . . ,Xn does not
consist of points in Euclidean space but, rather, of more general
objects, such as images, functions, graphs...

Computing descriptive statistics for a sample of objects is tricky but
often the difference between two objects is easy to quantify.
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Analysing object data

A natural mathematical framework for object data is as follows.

A metric space (X , d).
A distribution P (possibly a sample) taking values in X
Methodology that relies on X ∼ P only through the metric d(·, ·).

Example 1: the Frechét mean of P is

argminµ∈XE{d2(X , µ)}

and the minimal value of the objective function is the Frechét
variance of P.
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Analysing object data

A simple way of developing object data methods is to
1 Formulate a Euclidean method as a function of “‖X − Y ‖” only.
2 Replace ‖X − Y ‖ with d(X ,Y ).

Example 2: Applying the above to PCA results into multidimensional
scaling (MDS).

Virta, Joni Spatial depth for object data TU Wien, 16th of October 2023 21 / 51



Metric halfspace depth

[Dai and Lopez-Pintado, 2022] formulated metric halfspace depth as

D(µ;P) = inf
z1,z2∈X

d(µ,z1)≤d(µ,z2)

P(d(X , z1) ≤ d(X , z2)).

Computing the deepest point µ0 is highly non-trivial.
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Metric spatial depth

We let h : X 3 → R be defined as

h(x1, x2, x3) := I(x3 /∈ {x1, x2})
d2(x1, x3) + d2(x2, x3)− d2(x1, x2)

d(x1, x3)d(x2, x3)
,

where I(·) denotes the indicator function.

The metric spatial depth [Virta, 2023] is then

D(µ;P) := 1− 1

2
E{h(X1,X2, µ)},

where X1,X2 ∼ P are independent.
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Theoretical properties

Property I

When (X , d) is an Euclidean space, then the metric spatial depth equals
the classical spatial depth.
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Theoretical properties

Property II

D(µ;P) is finite for all µ ∈ X and all P.

Property III

The influence function of D satisfies

supz∈X |IF (z ;D, µ,P)| ≤ 4.
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Theoretical properties

L[x1, x2, x3] denotes the event that

d(x1, x3) = d(x1, x2) + d(x2, x3),

i.e., that the three points x1, x2, x3 ∈ X fall in a line (in the sense of the
metric d) such that x2 is in the middle of the other two.

Property IV

D(µ;P) takes values in the interval [0, 2]. Additionally,

(i) D(µ;P) = 0 if and only if

P({µ}) = 0 and P(L[X1,X2, µ] ∪ L[X2,X1, µ]) = 1.

(ii) D(µ;P) = 2 if and only if

P({µ}) = 0 and P(L[X1, µ,X2]) = 1.

(iii) If (X , d) is a Hilbert space, then D(µ;P) ≤ 1.
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Theoretical properties

Property V

Let µn be a divergent sequence in X . Then D(µn;P)→ 0 as n→∞.
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Theoretical properties

Property VI

Assume that P({µ}) = 0 for all µ ∈ X . Then D(µ;P) is continuous in
both µ and P.
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Remarks

Metric spatial depth also inherits the invariance properties of the used
metric.

Interestingly, the previous results use all four axioms of a metric.
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Example I

Assume that P puts equal mass 1/n to each of the fixed points
z1, . . . , zn ∈ X .

Question: Under what metric is the depth D(z1;P) maximal?
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Example I

The railway metric uniquely gives D(z1;P) = 1 +
(
1− 1

n

) (
1− 3

n

)
.
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Example II

Equip the finite set X = {1, . . . , n} with the discrete metric
d(i , j) = 1− I(i = j).

1

2

3

4

5

6

7

8

For which probability distribution P = (p1, . . . , pn) is D(1;P)
maximized/minimized?
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Example II

(i) D(1;P) = 1 if and only if p1 = 1.

(ii) D(1;P) = 0 if and only if exactly one of p2, . . . , pn equals 1.
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Sample metric spatial depth

Let Pn be the empirical distribution of X1, . . . ,Xn ∼ P. The sample
metric spatial depth is

D(µ;Pn) = 1− 1

2n2

n∑
i ,j=1

h(Xi ,Xj , µ).

Standard U-statistic theory says that, for a fixed µ ∈ X , we have,

D(µ;Pn) = D(µ;P) +O
(

1√
n

)
.

Virta, Joni Spatial depth for object data TU Wien, 16th of October 2023 36 / 51



Table of Contents

1 Statistical depth functions

2 Object data

3 Spatial depth for object data

4 Data examples

Virta, Joni Spatial depth for object data TU Wien, 16th of October 2023 37 / 51



Non-convex depth regions

The freedom to choose the metric d in the formulation of the metric
spatial depth means that, in the case of Euclidean data, we can use
metrics that promote non-linearity:

1 Kernel trick [Chen et al., 2008]
2 ISOMAP.
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Depth regions
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Figure: Used “metrics” from left to right, top to bottom: Euclidean, ISOMAP,
Rational quadratic kernel, Gaussian kernel.
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Depth-depth plot

Let Pn1 and Pn2 be the empirical distributions of two samples
corresponding to different groups.

In DD-classification [Li et al., 2012], we compute the depth vectors

zi := (D(xi ;Pn1),D(xi ;Pn2)).

A test point x ∈ X is then classified based on the vector

z := (D(x ;Pn1),D(x ;Pn2)).
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Data example

We applied DD-classification to a subsample of the FashionMNIST
data set [Xiao et al., 2017] consisting of images of dresses, shirts and
ankle boots.
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Specifications

We randomly drew a training sample of n = 150 images and a test
sample of n0 = 50 images and used DD-classifier to predict the labels
of the test images.

We used metric spatial depth with the Lp-distance with
p = 0.5, 0.6, . . . , 5 as the metric.

We considered both LDA and QDA.

The experiment was repeated a total of 100 times.
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Results
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DD-plot
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Interpretation

Both LDA and QDA reach their maximal performance at
super-Euclidean geometry.

QDA is uniformly superior to LDA.
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Final remarks

Is the point µ0 with the largest depth (“spatial median”) unique
under some natural conditions?

In the Euclidean case, the spatial median is equivalent to the Frechét
median. Does the same hold for some object spaces?

How to find the spatial median in practice?
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Thank you for your attention!
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