

Poisson PCA for matrix count data

J. Virta¹ A. Artemiou²

¹University of Turku

²University of Limassol

Statistical Days 2024

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ [할 날 수 있어

This talk is based on the paper

Virta, J. and Artemiou, A. (2023). Poisson PCA for matrix count data. Pattern Recognition, 138:109401.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ [할 바) 9 Q @

1 [Modelling matrix data](#page-2-0)

2 [Poisson factor model](#page-7-0)

3 [Data example](#page-17-0)

4 [Closing remarks](#page-23-0)

K ロ K K 伊 K K ミ K K ミ K ミ ミ ヨ つ Q Q Q

- Let $X_1, \ldots, X_n \in \mathbb{R}^{p_1 \times p_2}$ be a sample of abundance matrices for *n* species.
	- \bullet n = number of animal species,
	- p_1 = number of areas,
	- p_2 = number of time periods.

Abundance matrix for the ith species

$$
X_{i} = \begin{array}{c} \text{Time}_{1} & \cdots & \text{Time}_{p_{2}} \\ \vdots & \vdots & \ddots & \vdots \\ \text{Area}_{p_{1}} & \vdots & \ddots & \vdots \\ x_{i, p_{1}} & \cdots & x_{i, p_{1}p_{2}} \end{array}
$$

 \bullet One way to model X_1, \ldots, X_n is to vectorize them and use standard multivariate models.

$$
X_i \in \mathbb{R}^{p_1 \times p_2} \quad \mapsto \quad \text{vec}(X_i) = \begin{pmatrix} x_{i,11} \\ x_{i,21} \\ \vdots \\ x_{i,p_1p_2} \end{pmatrix} \in \mathbb{R}^{p_1p_2}.
$$

This (a) loses the matrix row-column structure, and (b) leads to high-dimensional vectors.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ [활]할 게 이익어

- \bullet Often the rows and columns of X_i are modeled separately
- E.g., instead of working with the linear combinations

$$
\beta^{\top} \text{vec}(X_i), \quad \beta \in \mathbb{R}^{p_1 p_2},
$$

we work with the linear combinations

$$
\beta_1^\top X_i \beta_2 \quad \beta_1 \in \mathbb{R}^{p_1}, \beta_2 \in \mathbb{R}^{p_2}.
$$

The "weight" of an element is the combined weight of its row and column.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ [콜] 늘 10 0 0 0

- In row-column modeling, the number of parameters drops from p_1p_2 to $p_1 + p_2$.
	- In many applications, it captures the essential structure of the data, see the references in [\[Virta and Artemiou, 2023\]](#page-27-0).

Matrix-variate normal distribution

- We want to fit a factor model to the abundance data.
- A classical option is the **matrix-variate normal distribution** [\[Gupta and Nagar, 2018\]](#page-26-0),

$$
X_i \sim \mathcal{N}_{p_1 \times p_2}(\mu, \Sigma_1, \Sigma_2),
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ [활]일 10 Q Q Q

- $\mu =$ the mean matrix,
- Σ_1 = the row covariance matrix,
- Σ_2 = the column covariance matrix.
- Not a natural choice for count-valued data.

Poisson-Normal mixture

We assume a hierarchical model for the \mathcal{X}_i :

$$
\begin{cases} Z_i \sim \mathcal{N}_{d_1 \times d_2}(0, \Lambda_1, \Lambda_2) \\ X_i \mid Z_i \sim \mathrm{Po}_{p_1 \times p_2}\{\exp(\mu + U_1 Z_i U_2^{\top})\}, \end{cases}
$$

- \bullet Z_i = the latent factor matrix of the *i*th species.
- Λ_1, Λ_2 = diagonal matrices giving the importances of the row factors and column factors,
- \bullet U_1, U_2 = the row and column loadings,
- \bullet μ = mean shift.

Poisson factor model, cont.

K ロ ▶ K 個 ▶ K 결 ▶ K 결 ▶ (결)됨. 9 Q @

- The model uses an exponential "link function" between continuous latent variables and discete observed data.
- Compared to GLM, we do not observe the Z_i
- To fit the model to the data, we have to
	- **1** estimate the parameters,
	- **2** estimate the dimensions d_1 , d_2 ,
	- ³ predict the latent factor matrices.
- Usually $p_1 \gg d_1, p_2 \gg d_2$, leading to considerable dimension reduction.

Vector Poisson-Normal mixture

If $p_2 = 1$, we obtain a vector Poisson-Normal mixture that was originally proposed by [\[Aitchison and Ho, 1989\]](#page-26-1) under the title of Poisson-Lognormal model.

KID KAR KE KE KE HE YO

• The model was later studied by [\[Hall et al., 2011,](#page-27-1) [Kenney et al., 2021\]](#page-27-2).

• The method of moments yields **closed-form solutions** for the model parameters.

$$
\theta := (\mu, U_1, \Lambda_1, U_2, \Lambda_2).
$$

• For example, the left loadings U_1 and scale Λ_1 can be estimated from the eigendecomposition of the matrix S_1 defined as,

$$
\begin{aligned} s_{1,jk} &:= \frac{1}{p_2} \sum_{\ell=1}^{p_2} \log \left\{ \frac{\mathrm{E}(x_{j\ell}x_{k\ell})}{\mathrm{E}(x_{j\ell}) \mathrm{E}(x_{k\ell})} \right\}, \\ s_{1,jj} &:= \frac{1}{p_2} \sum_{\ell=1}^{p_2} \log \left[\frac{\mathrm{E}\{x_{j\ell}(x_{j\ell}-1)\}}{\{\mathrm{E}(x_{j\ell})\}^2} \right], \end{aligned}
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ [활]일 10 Q Q Q

We estimate the latent dimensions d_1, d_2 using predictor augmentation [\[Luo and Li, 2020\]](#page-27-3):

- The dimension d_1 equals the rank of the matrix S_1 .
- We augment the observed matrices with noise,

$$
X_i^* = \begin{pmatrix} X_i \\ R_i \end{pmatrix},
$$

where R_i have iid $Poisson(1)$ -elements.

By comparing the sample estimates S_{n1} and S_{n1}^* it is possible to identify where the d_1 -dimension signal "ends".

Figure: The minimum of the augmentation curve is achieved at $d_1 = 3$.

K ロ K K 伊 K K ミ K K ミ K ミ ミ ヨ つ Q Q Q

We predict Z_i as the <mark>mode of the conditional distribution $Z_i \mid X_i$ </mark>

Gradient descent can be used for finding the mode as $Z_i \mid X_i$ has a log-concave unimodal density function.

1 [Modelling matrix data](#page-2-0)

2 [Poisson factor model](#page-7-0)

3 [Data example](#page-17-0)

4 [Closing remarks](#page-23-0)

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ [할 바) 의 Q @

- Abundance data available at <https://github.com/rfrelat/Multivariate2D3D>.
- The data consists of abundances of a total of $n = 65$ fish species
	- in seven areas (RA $1 RA$ 7), $p_1 = 7$,

Countrusin

• during 6 time periods $(1985 - 1989, \ldots, 2005 - 2009, 2010 - 2015), p_2 = 6.$

Figure: The seven areas in the study. Image from [\[Frelat et al., 2017\]](#page-26-2).

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ [할 날 수 있어

Figure: The dimensions are estimated as $d_1 = 3$ and $d_2 = 1$.

• We estimate (3×1) -sized latent matrices,

$$
Z_i = \begin{pmatrix} z_{i,11} \\ z_{i,21} \\ z_{i,31} \end{pmatrix}.
$$

- \bullet $z_{i,11}$ measures the overall abundances of the species.
- We plot $z_{i,21}, z_{i,31}$ with the row loadings into a **biplot**.
- We color the species according to the six biologically meaningful clusters [\[Frelat et al., 2017\]](#page-26-2) identified in the data.

 DQ

[Modelling matrix data](#page-2-0)

[Poisson factor model](#page-7-0)

[Data example](#page-17-0)

- Zero-inflated variant for sparse matrix count data?
- · Bernoulli-Normal mixture for binary matrix data?

Thank you for your attention!

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ 〈君〉 ◆ 이익⊙

暈 Aitchison, J. and Ho, C. (1989).

The multivariate Poisson-log normal distribution. Biometrika, 76(4):643–653.

Frelat, R., Lindegren, M., Denker, T. S., Floeter, J., Fock, H. O., Sguotti, C., Stäbler, M., Otto, S. A., and Möllmann, C. (2017).

Community ecology in 3D: Tensor decomposition reveals spatio-temporal dynamics of large ecological communities. PloS one, 12(11):e0188205.

KID KAR KE KE KE HE YO

Gupta, A. K. and Nagar, D. K. (2018) . Matrix Variate Distributions, volume 104. CRC Press.

暈 Hall, P., Ormerod, J. T., and Wand, M. P. (2011).

Theory of Gaussian variational approximation for a Poisson mixed model.

Statistica Sinica, pages 369–389.

Kenney, T., Gu, H., and Huang, T. (2021). Poisson PCA: Poisson measurement error corrected PCA, with application to microbiome data. Biometrics.

KID KAR KE KE KE HE YO

 \Box Luo, W. and Li, B. (2020).

On order determination by predictor augmentation. Biometrika.

Virta, J. and Artemiou, A. (2023). Poisson PCA for matrix count data. Pattern Recognition, 138:109401.

[Simulation study](#page-28-0)
 \bullet 00

Table of Contents

Efficiency study

- We simulated samples of 4×3 matrices from the Poisson factor model and estimated its parameters using three different methods:
	- Our proposal.
	- Vectorizing and method of moments [\[Aitchison and Ho, 1989\]](#page-26-1).

- Vectorizing and MLE with variational inference [\[Hall et al., 2011\]](#page-27-1).
- Average errors over 1000 replicates for various sample sizes and covariance structures are shown on the following slide.

Efficiency plot

Figure: Average estimation errors of the three methods.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ [할 게 이익어