Poisson PCA for matrix count data

J. Virtal  A. Artemiou?

LUniversity of Turku

2University of Limassol

Statistical Days 2024



Reference

This talk is based on the paper

e Virta, J. and Artemiou, A. (2023). Poisson PCA for matrix
count data. Pattern Recognition, 138:109401.
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Abundance matrix data

e Let Xi,..., X, € RP**P2 be 3 sample of abundance matrices
for n species.

e n = number of animal species,
e p; = number of areas,
e p> = number of time periods.

Abundance matrix for the ith species

Time; - Timep,

Area; Xi11 Xi 1ps

Areap, Xipil 0 Xipips
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Vectorization

@ One way to model Xj, ..., X, is to vectorize them and use
standard multivariate models.

Xi 11

Xj 21
X € RPL*P2 —> VeC(X,') = . € RP1P2,

Xi,pLp2

@ This (a) loses the matrix row-column structure, and (b) leads
to high-dimensional vectors.
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Row-column paradigm

@ Often the rows and columns of X; are modeled separately

e E.g., instead of working with the linear combinations
BTvec(X;), B eRPP,
we work with the linear combinations
B Xif2 1 € R™, B € RP2.

@ The “weight” of an element is the combined weight of its row
and column.
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Row-column paradigm, cont.

@ In row-column modeling, the number of parameters drops
from p1p> to p1 + po.

@ In many applications, it captures the essential structure of the
data, see the references in [Virta and Artemiou, 2023].
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Matrix-variate normal distribution

@ We want to fit a factor model to the abundance data.

@ A classical option is the matrix-variate normal distribution
[Gupta and Nagar, 2018],

Xi ~ Np1><P2(IU/7 Zla z2)')

e 11 = the mean matrix,
e Y1 = the row covariance matrix,
e Y, = the column covariance matrix.

@ Not a natural choice for count-valued data.
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Poisson factor model

Poisson-Normal mixture

We assume a hierarchical model for the X;:

Zi ~ Nayxa,(0,A1,A2)
Xi | Zi ~ Popxp,{exp(p + hiZUy )},

@ Z; = the latent factor matrix of the ith species.

@ A1,/\» = diagonal matrices giving the importances of the row
factors and column factors,

@ Ui, U, = the row and column loadings,

@ 1 = mean shift.
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Poisson factor model, cont.

Z; Xi | Zi ~ Popxp {exp(p + U1 Z:Uj3 )}
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Poisson factor model, cont.

@ The model uses an exponential “link function” between
continuous latent variables and discete observed data.

@ Compared to GLM, we do not observe the Z;

@ To fit the model to the data, we have to

@ estimate the parameters,
@ estimate the dimensions dy, d>,
© predict the latent factor matrices.

@ Usually p1 > di, pop > db, leading to considerable dimension
reduction.
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Vector Poisson-Normal mixture

o If pp =1, we obtain a vector Poisson-Normal mixture that
was originally proposed by [Aitchison and Ho, 1989] under the
title of Poisson-Lognormal model.

@ The model was later studied by
[Hall et al., 2011, Kenney et al., 2021].
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Parameter estimation

@ The method of moments yields closed-form solutions for the
model parameters.

0= (,U, U17 /\17 U27/\2)-

@ For example, the left loadings U; and scale A; can be
estimated from the eigendecomposition of the matrix S;
defined as,

L SR
J (xj)E(xke) J

{4

_ E{xje(x;¢e — 1)}
o 3w [P
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Dimension estimation

We estimate the latent dimensions di, d> using predictor
augmentation [Luo and Li, 2020]:

@ The dimension di equals the rank of the matrix S;.

o We augment the observed matrices with noise,

where R; have iid Poisson(1)-elements.

@ By comparing the sample estimates S,; and S} it is possible
to identify where the di-dimension signal “ends”.



Poisson factor model
0000000080

Augmentation curve
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Figure: The minimum of the augmentation curve is achieved at d; = 3.
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Latent factor prediction

We predict Z; as the mode of the conditional distribution Z; | X;

Gradient descent can be used for finding the mode as Z; | X; has a
log-concave unimodal density function.
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Data description

@ Abundance data available at
https://github.com/rfrelat/Multivariate2D3D.
@ The data consists of abundances of a total of n = 65 fish
species
o inseven areas (RA1-RAT7), p1 =7,

e during 6 time periods
(1985 — 1989, . ..,2005 — 2009, 2010 — 2015), p» = 6.


https://github.com/rfrelat/Multivariate2D3D
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Figure: The seven areas in the study. Image from [Frelat et al., 2017].
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Dimension estimation
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Figure: The dimensions are estimated as d; = 3 and d> = 1.
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Latent components

@ We estimate (3 x 1)-sized latent matrices,

Zi 11
Zi=|zin

Zj31

@ z; 11 measures the overall abundances of the species.
e We plot z; 51, z; 31 with the row loadings into a biplot.

@ We color the species according to the six biologically
meaningful clusters [Frelat et al., 2017] identified in the data.
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Possible next steps

@ Zero-inflated variant for sparse matrix count data?

@ Bernoulli-Normal mixture for binary matrix data?
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Thank you for your attention!
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Efficiency study

@ We simulated samples of 4 x 3 matrices from the Poisson
factor model and estimated its parameters using three
different methods:

]
o Vectorizing and method of moments [Aitchison and Ho, 1989].

[Hall et al., 2011].

@ Average errors over 1000 replicates for various sample sizes
and covariance structures are shown on the following slide.
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Efficiency plot
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estimation errors of the three methods.
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