Spatial depth	Object-valued data	Spatial depth for object-valued data	Data example	Closing remarks

Spatial depth for object-valued data

J. Virta

University of Turku

11th Tartu Conference on Multivariate Statistics, 26th of June 2024

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□□ のQ@

Spatial depth 00000000	Object-valued data	Spatial depth for object-valued data	Data example 000	Closing remarks
Reference	e			

This talk is based on the following preprint:

• Virta, Joni. Spatial depth for data in metric spaces. arXiv preprint arXiv:2306.09740 (2023).

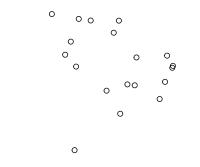
Spatial depth ●0000000	Object-valued data	Spatial depth for object-valued data	Data example 000	Closing remarks 000
Table of	Contents			

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Object-valued data
- 3 Spatial depth for object-valued data
- 4 Data example
- **5** Closing remarks

Spatial depth ○●○○○○○○	Object-valued data	Spatial depth for object-valued data	Data example 000	Closing remarks
Ordering	; in $\mathbb R$			

• Univariate samples of points admit a natural ordering.


• This ordering lets us identify central or outlying points.

シロマート・

Spatial depth 00●00000	Object-valued data	Spatial depth for object-valued data	Data example 000	Closing remarks 000
Ordering	in \mathbb{R}^2			

• How can we order a bivariate sample?

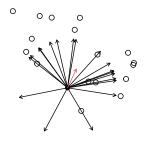
0

<□> <</p>
<□> <</p>
□> <</p>
□> <</p>
□> <</p>
□>
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□

Spatial depth 000●0000	Object-valued data	Spatial depth for object-valued data	Data example 000	Closing remarks 000
Spatial d	epth			

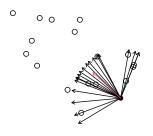
- Spatial depth [Chaudhuri, 1996, Vardi and Zhang, 2000] offers a way to order points in ℝ^p.
- For a point $\mu \in \mathbb{R}^p$ and a random vector $X \sim P$, we define

$$egin{split} \mathcal{D}(\mu; \mathcal{P}) &:= 1 - \left\| \operatorname{E} \left(rac{X-\mu}{\|X-\mu\|}
ight)
ight\|^2. \end{split}$$

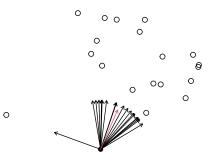

Intuitively,

$$\left\| \mathbb{E}\left(\frac{X - \mu}{\|X - \mu\|} \right) \right\|$$

is the length of the average of unit-length arrows drawn from μ towards the sample points.


ション ふゆ アメビア メロア ひんの

Spatial depth 00000000	Object-valued data	Spatial depth for object-valued data	Data example 000	Closing remarks
Example				


◇ ▷ ◇ 正正 → 雨 → → 雨 → → □ →

Spatial depth 00000●00	Object-valued data	Spatial depth for object-valued data	Data example 000	Closing remarks
Example				

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Spatial depth 000000€0	Object-valued data	Spatial depth for object-valued data	Data example 000	Closing remarks
Example				

Spatial depth 0000000●	Object-valued data 000	Spatial depth for object-valued data	Data example 000	Closing remarks
Spatial d	epths of all	points		

The points are divided into central and outlying.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ④○♡

Spatial depth	Object-valued data	Spatial depth for object-valued data	Data example	Closing remarks
00000000	●00		000	000
Table of	Contents			

1 Spatial depth

Object-valued data

3 Spatial depth for object-valued data

Data example

5 Closing remarks

Spatial depth 00000000	Object-valued data ⊙●⊙	Spatial depth for object-valued data	Data example 000	Closing remarks
Object-v	alued data			

- Nowadays, many samples X₁,..., X_n can be seen to consist of objects, such as
 - images,
 - functions,
 - graphs,
 - correlation matrices,
 - ...
- Often the difference between two objects is easy to quantify.

▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨヨ のへで

Spatial depth 00000000	Object-valued data 00●	Spatial depth for object-valued data	Data example 000	Closing remarks
Analysing	g object dat	а		

- A natural mathematical framework for object-valued data:
 - **1** A metric space (\mathcal{X}, d) .
 - **2** A random variable $X \sim P$ taking values in \mathcal{X} .
 - **3** Methodology that relies on X only through the metric $d(\cdot, \cdot)$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Object methods are extremely general.
- Often, object methodology is constructed such that some familiar method is recovered when (\mathcal{X}, d) is Euclidean.

Spatial depth	Object-valued data	Spatial depth for object-valued data	Data example	Closing remarks
00000000		●000000	000	000
Table of	Contents			

1 Spatial depth

Object-valued data

3 Spatial depth for object-valued data

Data example

5 Closing remarks

◆□▶ ◆□▶ ◆目▶ ◆目■ のへで

Spatial depth 00000000	Object-valued data	Spatial depth for object-valued data o●ooooo	Data example 000	Closing remarks
Metric s	patial depth			

• Let $h: \mathcal{X}^3 \to \mathbb{R}$ be defined as

$$h(x_1, x_2, x_3) := \mathbb{I}(x_3 \notin \{x_1, x_2\}) \frac{d^2(x_1, x_3) + d^2(x_2, x_3) - d^2(x_1, x_2)}{d(x_1, x_3)d(x_2, x_3)},$$

where $\mathbb{I}(\cdot)$ denotes the indicator function.

Metric spatial depth [Virta, 2023]

$$D(\mu; P) := 1 - \frac{1}{2} \mathbb{E} \{ h(X_1, X_2, \mu) \},$$

▲□▶▲□▶▲≡▶▲≡▶ Ξ|= めぬ⊙

where $X_1, X_2 \sim P$ are independent.

Spatial depth 00000000	Object-valued data	Spatial depth for object-valued data	Data example 000	Closing remarks 000
Theoreti	cal propertie	25		

Property 1

When (\mathcal{X}, d) is an Euclidean space, then the metric spatial depth equals the classical spatial depth.

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

Spatial depth 00000000	Object-valued data	Spatial depth for object-valued data 000●000	Data example 000	Closing remarks
Theoreti	cal propertie	es		

Property 2

 $D(\mu; P)$ is finite for all $\mu \in \mathcal{X}$ and all P.

Property 3

The influence function of D satisfies

 $\sup_{z \in \mathcal{X}} |IF(z; D, \mu, P)| \leq 4.$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ■□ のQ@

Spatial depth 00000000	Object-valued data	Spatial depth for object-valued data	Data example 000	Closing remarks
Theoreti	cal propertie	es		

Let L[x, y, z] denote the event that

$$d(x,z) = d(x,y) + d(y,z),$$

i.e., that the point y is along the way from x to z

Property 4

Assume that P has no atoms. Then,

(i)
$$D(\mu; P) \in [0, 2].$$

(ii) $D(\mu; P) = 0$ if and only if $P(L[X_1, X_2, \mu] \cup L[X_2, X_1, \mu]) = 1$.

(iii)
$$D(\mu; P) = 2$$
 if and only if $P(L[X_1, \mu, X_2]) = 1$.

(iv) If (\mathcal{X}, d) is a Hilbert space, then $D(\mu; P) \leq 1$.

Spatial depth 00000000	Object-valued data 000	Spatial depth for object-valued data	Data example 000	Closing remarks
Theoret	ical properti	<u>_</u> C		

Property 5

Let μ_n be a divergent sequence in \mathcal{X} . Then $D(\mu_n; P) \to 0$ as $n \to \infty$.

Spatial depth 00000000	Object-valued data	Spatial depth for object-valued data 000000●	Data example 000	Closing remarks
Theoreti	ical propertie	25		

Property 6

Assume that P has no atoms. Then $D(\mu; P)$ is continuous in both μ and P.

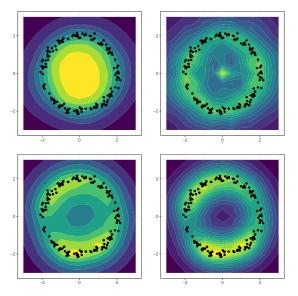
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回■ のへの

Spatial depth 00000000	Object-valued data	Spatial depth for object-valued data	Data example ●00	Closing remarks
Table of	Contents			

1 Spatial depth

- Object-valued data
- 3 Spatial depth for object-valued data

4 Data example


Non-con	vex depth re	orions		
Spatial depth	Object-valued data	Spatial depth for object-valued data	Data example	Closing remarks
00000000	000		0●0	000

 It is not necessary to use the Euclidean metric with data in R^p and we can instead use metrics that promote non-linearity

シロマート・

Spatial depth 00000000	Object-valued data	Spatial depth for object-valued data	Data example 00●	Closing remarks
D				

Depth regions

◆□ > ◆□ > ◆三 > ◆三 > 三日 のへで

Spatial depth 00000000	Object-valued data	Spatial depth for object-valued data	Data example 000	Closing remarks ●00
Table of	Contents			

1 Spatial depth

- Object-valued data
- 3 Spatial depth for object-valued data
- Data example

Spatial depth 00000000	Object-valued data	Spatial depth for object-valued data	Data example 000	Closing remarks 0●0		
Literature						

• A review of the current state of object-valued data analysis can be found in:

Dubey Paromita, Yaqing Chen, and Hans-Georg Müller. *Metric statistics: Exploration and inference for random objects with distance profiles.* Annals of Statistics 52.2 (2024): 757-792.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ のへで

Spatial depth	Object-valued data	Spatial depth for object-valued data	Data example	Closing remarks
				000

Thank you for your attention!

◆□▶ ◆□▶ ◆目▶ ◆目▶ ④○♡

▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨヨ のへで

References I

Chaudhuri, P. (1996).

On a geometric notion of quantiles for multivariate data. Journal of the American Statistical Association. 91(434):862-872.

Li, J., Cuesta-Albertos, J. A., and Liu, R. Y. (2012). DD-classifier: Nonparametric classification procedure based on DD-plot. Journal of the American Statistical Association.

107(498):737-753.

- Vardi, Y. and Zhang, C.-H. (2000).

The multivariate L_1 -median and associated data depth. Proceedings of the National Academy of Sciences, 97(4):1423-1426.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ のへで

References II

Virta, J. (2023).

Spatial depth for data in metric spaces. arXiv preprint arXiv:2306.09740.

Xiao, H., Rasul, K., and Vollgraf, R. (2017).
 Fashion-MNIST: a novel image dataset for benchmarking machine learning algorithms.

arXiv preprint arXiv:1708.07747.

Example metric spaces •0000

Classification example

Table of Contents

Classification example

▲□▶▲□▶▲≡▶▲≡▶ Ξ|= めぬ⊙

- Assume that *P* puts equal mass 1/n to each of the fixed points $z_1, \ldots, z_n \in \mathcal{X}$.
- Question: Under what metric is the depth $D(z_1; P)$ maximal?

Example metric spaces

Classification example

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

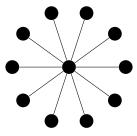
 (日)

 (日)

 (日)

 (日)

 (日)


 (日)

 (日)

 (日)

Example I

• The railway metric uniquely gives $D(z_1; P) = 1 + (1 - \frac{1}{n})(1 - \frac{3}{n}).$

Example metric spaces

Classification example 0000000

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

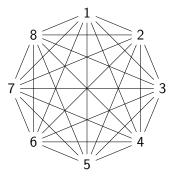
 (日)

 (日)

 (日)

 (日)

 (日)


 (日)

 (日)

 (日)

Example II

• Equip the finite set $\mathcal{X} = \{1, ..., n\}$ with the discrete metric $d(i,j) = 1 - \mathbb{I}(i = j)$.

• For which probability distribution $P = (p_1, ..., p_n)$ is D(1; P) maximized/minimized?

▲□▶▲□▶▲≡▶▲≡▶ Ξ|= めぬ⊙

(i) D(1; P) = 1 if and only if p₁ = 1.
(ii) D(1; P) = 0 if and only if exactly one of p₂,..., p_n equals 1.

Example metric spaces

Classification example • 000000

Table of Contents

6 Example metric spaces

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Depth-depth plot

- Let P_{n1} and P_{n2} be the empirical distributions of two samples corresponding to different groups.
- In DD-classification [Li et al., 2012], we compute the depth vectors

$$z_i := (D(x_i; P_{n1}), D(x_i; P_{n2})).$$

• A test point $x \in \mathcal{X}$ is then classified based on the vector

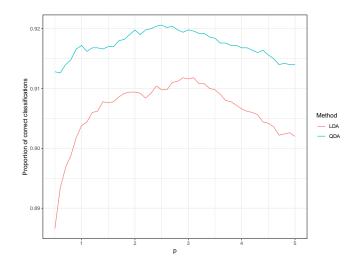
$$z := (D(x; P_{n1}), D(x; P_{n2})).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ のへで

Data example

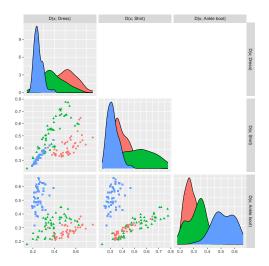
• We applied DD-classification to a subsample of the FashionMNIST data set [Xiao et al., 2017] consisting of images of dresses, shirts and ankle boots.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ のへで


Specifications

- We randomly drew a training sample of n = 150 images and a test sample of $n_0 = 50$ images and used DD-classifier to predict the labels of the test images.
- We used metric spatial depth with the L_p -distance with $p = 0.5, 0.6, \ldots, 5$ as the metric.
- We considered both LDA and QDA.
- The experiment was repeated a total of 100 times.

Example metric spaces


Classification example

Results

◆□ ▶ < @ ▶ < E ▶ < E ▶ E ■ 9 Q @</p>

DD-plot

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

Interpretation

- Both LDA and QDA reach their maximal performance at super-Euclidean geometry.
- QDA is uniformly superior to LDA.