
Spatial depth Object-valued data Spatial depth for object-valued data Data example Closing remarks

Spatial depth for object-valued data

J. Virta

University of Turku

11th Tartu Conference on Multivariate Statistics, 26th of June
2024



Spatial depth Object-valued data Spatial depth for object-valued data Data example Closing remarks

Reference

This talk is based on the following preprint:

Virta, Joni. Spatial depth for data in metric spaces. arXiv
preprint arXiv:2306.09740 (2023).
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Ordering in R

Univariate samples of points admit a natural ordering.

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

This ordering lets us identify central or outlying points.
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Ordering in R2

How can we order a bivariate sample?
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Spatial depth

Spatial depth [Chaudhuri, 1996, Vardi and Zhang, 2000]
offers a way to order points in Rp.

For a point µ ∈ Rp and a random vector X ∼ P, we define

D(µ;P) := 1−
∥∥∥∥E(

X − µ
‖X − µ‖

)∥∥∥∥2

.

Intuitively, ∥∥∥∥E(
X − µ
‖X − µ‖

)∥∥∥∥
is the length of the average of unit-length arrows drawn from
µ towards the sample points.
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Spatial depths of all points

The points are divided into central and outlying.
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Object-valued data

Nowadays, many samples X1, . . . ,Xn can be seen to consist of
objects, such as

images,
functions,
graphs,
correlation matrices,
...

Often the difference between two objects is easy to quantify.
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Analysing object data

A natural mathematical framework for object-valued data:
1 A metric space (X , d).
2 A random variable X ∼ P taking values in X .
3 Methodology that relies on X only through the metric d(·, ·).

Object methods are extremely general.

Often, object methodology is constructed such that some
familiar method is recovered when (X , d) is Euclidean.
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Metric spatial depth

Let h : X 3 → R be defined as

h(x1, x2, x3) := I(x3 /∈ {x1, x2})
d2(x1, x3) + d2(x2, x3)− d2(x1, x2)

d(x1, x3)d(x2, x3)
,

where I(·) denotes the indicator function.

Metric spatial depth [Virta, 2023]

D(µ;P) := 1− 1

2
E{h(X1,X2, µ)},

where X1,X2 ∼ P are independent.
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Theoretical properties

Property 1

When (X , d) is an Euclidean space, then the metric spatial depth
equals the classical spatial depth.
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Theoretical properties

Property 2

D(µ;P) is finite for all µ ∈ X and all P.

Property 3

The influence function of D satisfies

supz∈X |IF (z ;D, µ,P)| ≤ 4.
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Theoretical properties

Let L[x , y , z ] denote the event that

d(x , z) = d(x , y) + d(y , z),

i.e., that the point y is along the way from x to z

Property 4

Assume that P has no atoms. Then,

(i) D(µ;P) ∈ [0, 2].

(ii) D(µ;P) = 0 if and only if P(L[X1,X2, µ] ∪ L[X2,X1, µ]) = 1.

(iii) D(µ;P) = 2 if and only if P(L[X1, µ,X2]) = 1.

(iv) If (X , d) is a Hilbert space, then D(µ;P) ≤ 1.
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Theoretical properties

Property 5

Let µn be a divergent sequence in X . Then D(µn;P)→ 0 as
n→∞.
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Theoretical properties

Property 6

Assume that P has no atoms. Then D(µ;P) is continuous in both
µ and P.
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Non-convex depth regions

It is not necessary to use the Euclidean metric with data in Rp

and we can instead use metrics that promote non-linearity
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Depth regions
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Literature

A review of the current state of object-valued data analysis
can be found in:

Dubey Paromita, Yaqing Chen, and Hans-Georg Müller.
Metric statistics: Exploration and inference for random objects
with distance profiles. Annals of Statistics 52.2 (2024):
757-792.
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Thank you for your attention!
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Example I

Assume that P puts equal mass 1/n to each of the fixed
points z1, . . . , zn ∈ X .

Question: Under what metric is the depth D(z1;P) maximal?
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Example I

The railway metric uniquely gives
D(z1;P) = 1 +

(
1− 1

n

) (
1− 3

n

)
.
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Example II

Equip the finite set X = {1, . . . , n} with the discrete metric
d(i , j) = 1− I(i = j).

1

2

3

4

5

6

7

8

For which probability distribution P = (p1, . . . , pn) is D(1;P)
maximized/minimized?
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Example II

(i) D(1;P) = 1 if and only if p1 = 1.

(ii) D(1;P) = 0 if and only if exactly one of p2, . . . , pn equals 1.
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Depth-depth plot

Let Pn1 and Pn2 be the empirical distributions of two samples
corresponding to different groups.

In DD-classification [Li et al., 2012], we compute the depth
vectors

zi := (D(xi ;Pn1),D(xi ;Pn2)).

A test point x ∈ X is then classified based on the vector

z := (D(x ;Pn1),D(x ;Pn2)).
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Data example

We applied DD-classification to a subsample of the
FashionMNIST data set [Xiao et al., 2017] consisting of
images of dresses, shirts and ankle boots.



Example metric spaces Classification example

Specifications

We randomly drew a training sample of n = 150 images and a
test sample of n0 = 50 images and used DD-classifier to
predict the labels of the test images.

We used metric spatial depth with the Lp-distance with
p = 0.5, 0.6, . . . , 5 as the metric.

We considered both LDA and QDA.

The experiment was repeated a total of 100 times.
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Results
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DD-plot
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Interpretation

Both LDA and QDA reach their maximal performance at
super-Euclidean geometry.

QDA is uniformly superior to LDA.
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