Unsupervised linear discrimination using skewness

J. Virta

University of Turku

December 3rd 2024, RIKEN Center for Brain Science

Reference

This talk is based on the papers

- Radojičić, U., Nordhausen, K. and Virta, J. (2024).
 Unsupervised linear discrimination using skewness. Submitted.
- Radojičić, U., Nordhausen, K. and Virta, J. (2021).
 Large-sample properties of unsupervised estimation of the linear discriminant using projection pursuit. *Electronic Journal* of Statistics, 15(2), 6677-6739.

These slides are available at the speaker's website https://users.utu.fi/jomivi/talks/

Table of Contents

- 1 Two-group separation
- Unsupervised estimator
- More estimators
- 4 Finite-sample behavior
- Closing remarks

Normal mixture

Our model

Let $X_1, \ldots, X_n \in \mathbb{R}^p$ be a random sample from the normal location mixture,

$$X \sim \alpha_1 \mathcal{N}(\mu_1, \Sigma) + \alpha_2 \mathcal{N}(\mu_2, \Sigma),$$

where

- $\alpha_1, \alpha_2 \in (0,1)$, $\alpha_1 + \alpha_2 = 1$,
- $\mu_1 \neq \mu_2$,
- Σ is positive definite.

Illustration

Separating projections

• We are interested in vectors $\theta \in \mathbb{R}^p$ such that the projection of the data

$$X \mapsto \theta' X$$

onto θ separates the two groups of the mixture

Illustration

The projection

Fisher's linear discriminant

• The projection direction on the previous slide is

$$\theta = \Sigma^{-1}(\mu_2 - \mu_1).$$

 This projection is used in linear discriminant analysis (LDA) and it leads to the Bayes optimal classifier under Gaussianity.

Sample estimator and asymptotic normality

- The sample LDA-estimator $\hat{\theta}$ is simple to compute given the sample X_1, \dots, X_n and the labels Y_1, \dots, Y_n .
- $\hat{\theta}$ satisfies

$$\sqrt{n}\left(rac{\hat{ heta}}{\|\hat{ heta}\|}-rac{ heta}{\| heta\|}
ight)\leadsto\mathcal{N}_{p}(0,\Psi),$$

for a specific asymptotic covariance matrix Ψ .

Table of Contents

- 1 Two-group separation
- Unsupervised estimator
- More estimators
- 4 Finite-sample behavior
- Closing remarks

From classification to clustering

- The estimator $\hat{\theta}$ allows classification when (X_i, Y_i) are known.
- However, θ can be estimated also without the group labels Y_i ! [Peña and Prieto, 2001]
- This lets us use the projection $\theta' X_i$ for clustering.

Unknown groups

Unknown groups

Histogram of the projection

Projection pursuit

• In projection pursuit [Huber, 1985], one chooses a projection index g which measures how "interesting" a random variable is and optimizes

$$\max_{\theta_0} g(\theta_0' X).$$

• One particular choice is squared Pearson's skewness, g_{skew} , which searches for maximally skewed projections.

Skewness and θ

Proposition 1 in [Loperfido, 2013]

For our normal mixture, if $\alpha_1 \neq \alpha_2$, the maximizer $\theta_{\rm skew}$ of $g_{\rm skew}$ has

$$\frac{\theta_{\text{skew}}}{\|\theta_{\text{skew}}\|} = \frac{\theta}{\|\theta\|}.$$

Theorem 3 in [Radojičić et al., 2021]

Moreover,

$$\sqrt{n}\left(\frac{\hat{\theta}_{\mathrm{skew}}}{\|\hat{\theta}_{\mathrm{skew}}\|} - \frac{\theta}{\|\theta\|}\right) \rightsquigarrow \mathcal{N}_{\rho}(0, C\Psi),$$

for some constant $C \equiv C((\mu_2 - \mu_1)'\Sigma^{-1}(\mu_2 - \mu_1), \alpha_1\alpha_2)$.

Relative efficiencies vs. LDA

Table of Contents

- 1 Two-group separation
- 2 Unsupervised estimator
- More estimators
- 4 Finite-sample behavior
- Closing remarks

Affine equivariance

• An estimator $u(X_i) \in \mathbb{R}^p$ is affine equivariant if

$$u(A'X_i+b)=A^{-1}u(X_i)$$

for all $b \in \mathbb{R}^p$ and all invertible $A \in \mathbb{R}^{p \times p}$.

 Projections onto affine equivariant directions are unaffected by the choice of the coordinate system of the data.

General result

Theorem 5 in [Radojičić et al., 2024]

Any affine equivariant estimator of $\theta/\|\theta\|$ has asymptotic covariance matrix proportional to Ψ .

Standardization

The standardized random vector $X_{\rm st}$ is obtained as

$$X_{\mathrm{st}} = \mathrm{Cov}(X)^{-1/2} \{ X - \mathrm{E}(X) \}.$$

Illustration

Original data, X

Stndardized data, X_{st}

Estimator from Loperfido (2013)

• [Loperfido, 2013] defines the affine equivariant estimator $\theta_{\rm L} = {\rm Cov}(X)^{-1/2}u(X)$, where u(X) is the leading unit-length eigenvector of the matrix

$$[\mathrm{E}\{(X_{\mathrm{st}}\otimes X_{\mathrm{st}})X_{\mathrm{st}}'\}]'[\mathrm{E}\{(X_{\mathrm{st}}\otimes X_{\mathrm{st}})X_{\mathrm{st}}'\}].$$

Proposition 3 in [Loperfido, 2013]

For our normal mixture, if $\alpha_1 \neq \alpha_2$, then

$$\frac{\theta_{\rm L}}{\|\theta_{\rm L}\|} = \frac{\theta}{\|\theta\|}.$$

A novel estimator

• [Radojičić et al., 2024] defines the affine equivariant estimator $\theta_{\rm J} = {\rm Cov}(X)^{-1/2}u(X)$, where u(X) is the maximizer of

$$\max_{v \in \mathbb{R}^p, \|v\|=1} \sum_{k=1}^p \left\{ v^\top \mathrm{E}(X_{\mathrm{st}} X_{\mathrm{st}}' e_k X_{\mathrm{st}}') v \right\}^2.$$

Lemma 7 in [Radojičić et al., 2024]

For our normal mixture, if $\alpha_1 \neq \alpha_2$, then

$$\frac{\theta_{\rm J}}{\|\theta_{\rm J}\|} = \frac{\theta}{\|\theta\|}$$

Limiting covariance matrices

Theorems 6 and 7 in [Radojičić et al., 2024]

The asymptotic covariance matrices of $\hat{\theta}_{\rm J}/\|\hat{\theta}_{\rm J}\|$ and $\hat{\theta}_{\rm L}/\|\hat{\theta}_{\rm L}\|$ are exactly the same and equal to that of $\hat{\theta}_{\rm skew}/\|\hat{\theta}_{\rm skew}\|$.

Table of Contents

- 1 Two-group separation
- 2 Unsupervised estimator
- More estimators
- 4 Finite-sample behavior
- Closing remarks

Simulation comparison

Table of Contents

- 1 Two-group separation
- 2 Unsupervised estimator
- More estimators
- 4 Finite-sample behavior
- Closing remarks

History of the problem

Kurtosis-based approaches:

- [Peña and Prieto, 2001]
- [Peña et al., 2010]
- [Peña et al., 2017]
- [Radojičić et al., 2021]

Skewness-based approaches:

- [Loperfido, 2013]
- [Loperfido, 2015]
- [Radojičić et al., 2021]
- [Radojičić et al., 2024]

Closing remarks

Future directions

- Analogous study for kurtosis would allow discarding the assumption that $\alpha_1 \neq \alpha_2$.
- Going beyond Gaussianity?
- Unequal covariance matrices?
- Multiple groups?
- High-dimensional variants?

Thank you for your attention!

References I

Two-group separation

Huber, P. J. (1985).

Projection pursuit.

Annals of Statistics, 13:435-475.

Loperfido, N. (2013).

Skewness and the linear discriminant function.

Statistics & Probability Letters, 83(1):93–99.

Loperfido, N. (2015).

Vector-valued skewness for model-based clustering.

Statistics & Probability Letters, 99:230–237.

Peña, D. and Prieto, F. J. (2001).

Cluster identification using projections.

Journal of the American Statistical Association, 96:1433–1445.

Peña, D., Prieto, F. J., and Viladomat, J. (2010).

Eigenvectors of a kurtosis matrix as interesting directions to reveal cluster structure

Journal of Multivariate Analysis, 101:1995–2007.

Peña, D., Prieto, J., and Rendon, C. (2017).

Clustering big data by extreme kurtosis projections.

References II

Radojičić, U., Nordhausen, K., and Virta, J. (2021). Large-sample properties of blind estimation of the linear discriminant using

Electronic Journal of Statistics, 15(2).

projection pursuit.

Radojičić, U., Nordhausen, K., and Virta, J. (2024). Unsupervised linear discrimination using skewness. *Submitted*.