Spatial depth 00000000	Object-valued data	Spatial depth for object-valued data	Data example 000	Closing remarks

Spatial depth in metric spaces

J. Virta

University of Turku

ICORS 2025 19th May, Stresa

00000000	00	00000000	000	000		
Reference						

This talk is based on the following preprint:

• Virta, J.. Spatial depth for data in metric spaces. arXiv preprint arXiv:2306.09740 (2023).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ のへで

These slides are available at the speaker's website https://users.utu.fi/jomivi/talks/

0000000	00	0000000	000	000
Table of	Contonto			

Table of Contents

- Object-valued data
- 3 Spatial depth for object-valued data
- 4 Data example
- 5 Closing remarks

Spatial depth ○●○○○○○○	Object-valued data	Spatial depth for object-valued data	Data example 000	Closing remarks
Ordering	in $\mathbb R$			

• Univariate samples of points admit a natural ordering.

シロマート・(用・(用・(日・))

Spatial depth 00●00000	Object-valued data	Spatial depth for object-valued data	Data example 000	Closing remarks
Ordering	in \mathbb{R}^2			

• How can we order a bivariate sample?

0

Spatial depth 000●0000	Object-valued data	Spatial depth for object-valued data	Data example 000	Closing remarks

Spatial depth

The spatial depth [Chaudhuri, 1996, Vardi and Zhang, 2000] of a point $\mu \in \mathbb{R}^{p}$ with respect to the distribution of $X \sim P$ is

$$D(\mu; P) := 1 - \left\| \operatorname{E} \left(\frac{X - \mu}{\|X - \mu\|} \right) \right\|.$$

Spatial depth 0000●000	Object-valued data	Spatial depth for object-valued data	Data example 000	Closing remarks
Example				

◆□ > ◆□ > ◆目 > ◆目 > ◆目 ◆ ○ < ○ >

Spatial depth 00000●00	Object-valued data	Spatial depth for object-valued data	Data example 000	Closing remarks
Example				

◆□▶ ◆□▶ ◆目▶ ◆目▶ ④○♡

Spatial depth 000000€0	Object-valued data	Spatial depth for object-valued data	Data example 000	Closing remarks
Example				

Spatial de	opthe of all r	ainta		
Spatial depth 0000000●	Object-valued data	Spatial depth for object-valued data	Data example 000	Closing remarks

The points are divided into central and outlying.

Spatial depth 00000000	Object-valued data ●○	Spatial depth for object-valued data	Data example 000	Closing remarks
Table of	Contonto			

Table of Contents

1 Spatial depth

Object-valued data

3 Spatial depth for object-valued data

Data example

5 Closing remarks

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Spatial depth 00000000	Object-valued data ⊙●	Spatial depth for object-valued data	Data example 000	Closing remarks
Object-va	alued data			

- Nowadays, many samples X₁,..., X_n can be seen to consist of objects, such as
 - images,
 - functions,
 - graphs,
 - correlation matrices,
 - ...
- A natural mathematical framework for object-valued data:
 - **1** A metric space (\mathcal{X}, d) .
 - **2** A random variable $X \sim P$ taking values in \mathcal{X} .
 - **③** Methodology that relies on X only through the metric $d(\cdot, \cdot)$.

Spatial depth 00000000	Object-valued data	Spatial depth for object-valued data ●0000000	Data example 000	Closing remarks
Table of	Contents			

1 Spatial depth

2 Object-valued data

3 Spatial depth for object-valued data

Data example

5 Closing remarks

Spatial depth 00000000	Object-valued data	Spatial depth for object-valued data ○●○○○○○○	Data example 000	Closing remarks
Metric sr	patial depth			

• Let $h: \mathcal{X}^3 \to \mathbb{R}$ be defined as

$$h(x_1, x_2, x_3) := \mathbb{I}(x_3 \notin \{x_1, x_2\}) \frac{d^2(x_1, x_3) + d^2(x_2, x_3) - d^2(x_1, x_2)}{d(x_1, x_3)d(x_2, x_3)},$$

where $\mathbb{I}(\cdot)$ denotes the indicator function.

Metric spatial depth [Virta, 2023]

$$D(\mu; P) := 1 - \frac{1}{2} \mathbb{E} \{ h(X_1, X_2, \mu) \},$$

・ロト・4回ト・4回ト・4回ト・4回ト

where $X_1, X_2 \sim P$ are independent.

Spatial depth Object-valued data Object-valued data

Theoretical properties

Property 1

When (\mathcal{X}, d) is an Euclidean space, then the metric spatial depth reduces to (a one-to-one transformation of) the classical spatial depth.

Spatial depth 00000000	Object-valued dat	Spatial depth for object-valued data 000●0000	Data example 000	Closing remarks

Theoretical properties

Property 2

 $D(\mu; P)$ is finite for all $\mu \in \mathcal{X}$ and all P.

Property 3

The influence function of D satisfies

 $\sup_{z \in \mathcal{X}} |IF(z; D, \mu, P)| \leq 4.$

Spatial depth 00000000	Object-valued data	Spatial depth for object-valued data	Data example 000	Closing remarks
Theoretic	cal properties	S		

Let L[x, y, z] denote the event that

$$d(x,z) = d(x,y) + d(y,z),$$

i.e., that the point y is along the way from x to z

Property 4

Assume that P has no atoms. Then,

(i)
$$D(\mu; P) \in [0, 2].$$

(ii) $D(\mu; P) = 0$ if and only if $P(L[X_1, X_2, \mu] \cup L[X_2, X_1, \mu]) = 1$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

(iii) $D(\mu; P) = 2$ if and only if $P(L[X_1, \mu, X_2]) = 1$.

(iv) If (\mathcal{X}, d) is a Hilbert space, then $D(\mu; P) \leq 1$.

Spatial depth 00000000	Object-valued data	Spatial depth for object-valued data	Data example 000	Closing remarks
Railroad	metric			

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国■ 釣۹0

Spatial depth 00000000	Object-valued data	Spatial depth for object-valued data 000000€0	Data example 000	Closing remarks
Theoretic	al properties	5		

Property 5

Let μ_n be a divergent sequence in \mathcal{X} . Then $D(\mu_n; P) \to 0$ as $n \to \infty$.

Spatial depth	Object-valued data	Spatial depth for object-valued data 0000000●	Data example 000	Closing remarks
-				

Theoretical properties

Property 6

Assume that P has no atoms. Then $D(\mu; P)$ is continuous in both μ and P.

Spatial depth 00000000	Object-valued data	Spatial depth for object-valued data	Data example ●00	Closing remarks
Table of	Contents			

1 Spatial depth

Object-valued data

3 Spatial depth for object-valued data

4 Data example

5 Closing remarks

 Spatial depth
 Object-valued data
 Spatial depth for object-valued data
 Data example
 Closing remarks

 Non-convex depth regions
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 <

 It is not necessary to use the Euclidean metric with data in R^p and we can instead use metrics that promote non-linearity

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ のへで

Spatial depth 00000000 Object-valued data

Spatial depth for object-valued data

Data example 000

Closing remarks

Depth regions

・ロト < 団ト < 三ト < 三ト < 三日 < のへの

Spatial depth 00000000	Object-valued data	Spatial depth for object-valued data	Data example 000	Closing remarks ●00
Table of	Contents			

1 Spatial depth

- Object-valued data
- 3 Spatial depth for object-valued data

Data example

Spatial depth 00000000	Object-valued data	Spatial depth for object-valued data	Data example 000	Closing remarks 0●0
Literature	e			

• A review of the current state of object-valued data analysis can be found in:

Dubey Paromita, Yaqing Chen, and Hans-Georg Müller. *Metric statistics: Exploration and inference for random objects with distance profiles.* Annals of Statistics 52.2 (2024): 757-792.

g remarks

Thank you for your attention!

◆□▶ ◆□▶ ◆目▶ ◆目▶ ④○♡

References I

Chaudhuri, P. (1996).

On a geometric notion of quantiles for multivariate data. Journal of the American Statistical Association, 91(434):862–872.

 Li, J., Cuesta-Albertos, J. A., and Liu, R. Y. (2012).
 DD-classifier: Nonparametric classification procedure based on DD-plot.

Journal of the American Statistical Association, 107(498):737–753.

Vardi, Y. and Zhang, C.-H. (2000).

The multivariate L_1 -median and associated data depth. Proceedings of the National Academy of Sciences, 97(4):1423–1426.

References II

Xiao, H., Rasul, K., and Vollgraf, R. (2017). Fashion-MNIST: a novel image dataset for benchmarking machine learning algorithms.

arXiv preprint arXiv:1708.07747.

Example metric spaces

Classification example

Table of Contents

Classification example

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□□ のQ@

- Assume that P puts equal mass 1/n to each of the fixed points z₁,..., z_n ∈ X.
- Question: Under what metric is the depth $D(z_1; P)$ maximal?

▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨヨ のへで

Example I

• The railway metric uniquely gives $D(z_1; P) = 1 + (1 - \frac{1}{n})(1 - \frac{3}{n}).$

Example metric spaces

Example II

• Equip the finite set $\mathcal{X} = \{1, ..., n\}$ with the discrete metric $d(i,j) = 1 - \mathbb{I}(i = j)$.

 For which probability distribution P = (p₁,..., p_n) is D(1; P) maximized/minimized?

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□□ のQ@

(i) D(1; P) = 1 if and only if p₁ = 1.
(ii) D(1; P) = 0 if and only if exactly one of p₂,..., p_n equals 1.

Example metric spaces

Classification example •000000

Table of Contents

6 Example metric spaces

Depth-depth plot

- Let P_{n1} and P_{n2} be the empirical distributions of two samples corresponding to different groups.
- In DD-classification [Li et al., 2012], we compute the depth vectors

$$z_i := (D(x_i; P_{n1}), D(x_i; P_{n2})).$$

• A test point $x \in \mathcal{X}$ is then classified based on the vector

$$z := (D(x; P_{n1}), D(x; P_{n2})).$$

Data example

• We applied DD-classification to a subsample of the FashionMNIST data set [Xiao et al., 2017] consisting of images of dresses, shirts and ankle boots.

Specifications

- We randomly drew a training sample of n = 150 images and a test sample of $n_0 = 50$ images and used DD-classifier to predict the labels of the test images.
- We used metric spatial depth with the L_p -distance with $p = 0.5, 0.6, \dots, 5$ as the metric.
- We considered both LDA and QDA.
- The experiment was repeated a total of 100 times.

Example metric spaces

Classification example

Results

◆□ ▶ < 個 ▶ < 目 ▶ < 目 ▶ 3000</p>

Example metric spaces 00000

DD-plot

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨヨ のへで

Interpretation

- Both LDA and QDA reach their maximal performance at super-Euclidean geometry.
- QDA is uniformly superior to LDA.