
Basic premise Two-sided projection pursuit Matrix location mixtures Further results Simulations Closing remarks

Kurtosis-based projection pursuit for
matrix-valued data

J. Virta

University of Turku, Finland

65th ISI World Statistics Congress
7th of October, The Hague



Basic premise Two-sided projection pursuit Matrix location mixtures Further results Simulations Closing remarks

Reference

This talk is based on the following article:
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Matrix data

Many modern applications produce matrix-valued data
X1, . . . ,Xn ∈ Rp×q.

The following data contains n = 1736 images of size 16× 16
of digits 1 and 2.
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Matrix data, continued

Matrix/image data is typically

Structured
High-dimensional

A natural starting point to their analysis is
structure-acknowledging dimension reduction.
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Projection pursuit

In projection pursuit, one finds a projection w′x which maximizes
the “interestingness” g of a centered random vector x ∈ Rp,

max
w∈Sp−1

g(w′x).

g(z) = E(z2) gives PCA.



Basic premise Two-sided projection pursuit Matrix location mixtures Further results Simulations Closing remarks

Projection pursuit and matrix data

Projection pursuit can be applied to vectorized image data
vec(X1), . . . , vec(Xn) ∈ Rpq.

However, if pq ≥ n − 1 and the data have full rank, a projection
corresponding to any desired point configuration can be found
from the data!



Basic premise Two-sided projection pursuit Matrix location mixtures Further results Simulations Closing remarks

Table of Contents

1 Basic premise

2 Two-sided projection pursuit

3 Matrix location mixtures

4 Further results

5 Simulations

6 Closing remarks



Basic premise Two-sided projection pursuit Matrix location mixtures Further results Simulations Closing remarks

Our proposal

We “regularize” by projecting X as u′Xv instead of as w′vec(X).

Kurtosis-based matrix projection pursuit (MPP)

max
u∈Sp−1,v∈Sq−1

E
{
(u′Xv)4

}
[E {(u′Xv)2}]2

.

Since u′Xv = (v⊗ u)′vec(X), we focus on a specific natural subset
of projections.
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Mixture model

Matrix normal location mixture

Assume that X ∈ Rp×q is generated as

X ∼ α1Np×q(T1,A,B) + α2Np×q(T2,A,B).

The optimal likelihood-based classification rule depends on
the data through the scores tr(WLDAX

′), where

WLDA := A−1(T2 − T1)B
−1.

Given a sample X1, . . . ,Xn and their labels y1, . . . , yn, WLDA

is simple to estimate.
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Separation of the digit data

Given the digit data and their labels, we estimate ŴLDA and
visualize the scores tr(ŴLDAX

′
i ).
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Result

Theorem 1 in [Radojičić et al., 2025] (simplified)

Let (u1, v1), . . . , (ud , vd) be mutually orthogonal, sequential
MPP-solutions. If |α1 − 1/2| ≠ 1/

√
12, then

u1v
′
1 + · · ·+ udv

′
d = WLDA.

MPP uses only the data X1, . . . ,Xn but not the labels (y1, . . . , yn)!
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Separation of the digit data

The scores for the supervised estimator (left) and the unsupervised
MPP (right).
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Optimization

The objective function surface is non-concave with local
optima and saddle points, and we optimize it with
informatively initialized ADAM.
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Standard asymptotics

Let X1, . . . ,Xn be a random sample from a matrix normal location
mixture and assume the non-zero singular values of WLDA to be
distinct.

Corollary 4 in [Radojičić et al., 2025]

ŴLDA →a.s. WLDA

Corollary 5 in [Radojičić et al., 2025]

√
nvec(ŴLDA −WLDA)⇝ Npq×pq(0,Θ)
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High-dimensional asymptotics

Assume that the data dimensions grow, pn → ∞ and qn → ∞.

Theorem 9 in [Radojičić et al., 2025]

If pn + qn = o(n1/4) and if certain technical conditions are
satisfied, then

∥un − u∥ →p 0 and ∥vn − v∥ →p 0.
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Simulation setting

We simulate data from the following models with specific
choices of parameters.

Model 1.2: X ∼ α1N5×3(0,A1,B1) + α2N5×3(T1.2,A1,B1),

Model 2.2: X ∼ α1N32×16(0,A2,B2) + α2N32×16(T2.2,A2,B2),

We estimate WLDA with MPP and NGPP (vectorized
projection pursuit) and report median cosine similarities
(higher is better) over 100 replicates.
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Results
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Future work

If |α1 − 1/2| = 1/
√
12, all directions have the same kurtosis.

This could be solved by using third moments instead of
fourth, or combining the two.

Gaussianity could likely be replaced with ellipticity.
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Thank you for your attention!
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