Spatial depth in metric spaces

J. Virta

University of Turku

Hannu Oja's academic descendants Seminar 7th of November, Tampere

Reference

This talk is based on the following preprint:

• Virta, J.. Spatial depth for data in metric spaces. arXiv preprint arXiv:2306.09740 (2023).

These slides are available at the speaker's website https://users.utu.fi/jomivi/talks/

Spatial depth

- Spatial depth
- Object-valued data
- 3 Spatial depth for object-valued data
- 4 Data example
- Closing remarks

Ordering in \mathbb{R}

• Univariate samples of points admit a natural ordering.

Ordering in \mathbb{R}^2

• How can we order a bivariate sample?

0



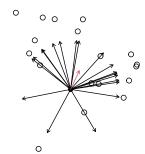
Spatial depth

The spatial depth [Chaudhuri, 1996, Vardi and Zhang, 2000] of a point $\mu \in \mathbb{R}^p$ with respect to the distribution of $X \sim P$ is

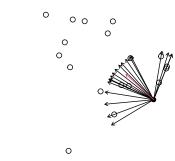
$$D(\mu; P) := 1 - \left\| \operatorname{E} \left(\frac{X - \mu}{\|X - \mu\|} \right) \right\|.$$

0

Example



Example



0

Example

Spatial depths of all points

The points are divided into central and outlying.

Table of Contents

- Spatial depth
- Object-valued data
- 3 Spatial depth for object-valued data
- 4 Data example
- Closing remarks

Object-valued data

- Nowadays, many samples X_1, \ldots, X_n can be seen to consist of objects, such as
 - images,
 - functions,
 - graphs,
 - correlation matrices,
 - ...
- A natural mathematical framework for object-valued data:
 - **1** A metric space (\mathcal{X}, d) .
 - ② A random variable $X \sim P$ taking values in \mathcal{X} .
 - **3** Methodology that relies on X only through the metric $d(\cdot, \cdot)$.

Table of Contents

- Spatial depth
- Object-valued data
- 3 Spatial depth for object-valued data
- 4 Data example
- Closing remarks

Closing remarks

Metric spatial depth

• Let $h: \mathcal{X}^3 \to \mathbb{R}$ be defined as

$$h(x_1,x_2,x_3) := \mathbb{I}(x_3 \notin \{x_1,x_2\}) \frac{d^2(x_1,x_3) + d^2(x_2,x_3) - d^2(x_1,x_2)}{d(x_1,x_3)d(x_2,x_3)},$$

where $\mathbb{I}(\cdot)$ denotes the indicator function.

Metric spatial depth [Virta, 2023]

$$D(\mu; P) := 1 - \frac{1}{2} \mathbb{E}\{h(X_1, X_2, \mu)\},$$

where $X_1, X_2 \sim P$ are independent.

Property 1

When (\mathcal{X}, d) is an Euclidean space, then the metric spatial depth reduces to (a one-to-one transformation of) the classical spatial depth.

Property 2

 $D(\mu; P)$ is finite for all $\mu \in \mathcal{X}$ and all P.

Property 3

The influence function of *D* satisfies

$$\sup_{z \in \mathcal{X}} |IF(z; D, \mu, P)| \le 4.$$

Let L[x, y, z] denote the event that

$$d(x,z)=d(x,y)+d(y,z),$$

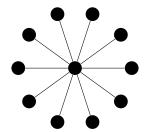
i.e., that the point y is along the way from x to z

Property 4

Assume that P has no atoms. Then,

- (i) $D(\mu; P) \in [0, 2]$.
- (ii) $D(\mu; P) = 0$ if and only if $P(L[X_1, X_2, \mu] \cup L[X_2, X_1, \mu]) = 1$.
- (iii) $D(\mu; P) = 2$ if and only if $P(L[X_1, \mu, X_2]) = 1$.
- (iv) If (\mathcal{X}, d) is a Hilbert space, then $D(\mu; P) \leq 1$.

Railroad metric



Property 5

Let μ_n be a divergent sequence in \mathcal{X} . Then $D(\mu_n; P) \to 0$ as $n \to \infty$.

Property 6

Assume that P has no atoms. Then $D(\mu; P)$ is continuous in both μ and P.

Table of Contents

- Spatial depth
- 2 Object-valued data
- 3 Spatial depth for object-valued data
- 4 Data example
- Closing remarks

Non-convex depth regions

• It is not necessary to use the Euclidean metric with data in \mathbb{R}^p and we can instead use metrics that promote non-linearity

Depth regions

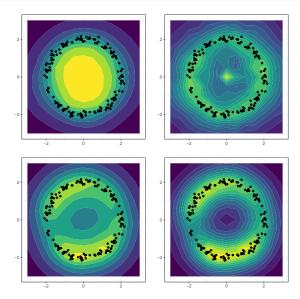


Table of Contents

Spatial depth

- Spatial depth
- Object-valued data
- 3 Spatial depth for object-valued data
- 4 Data example
- Closing remarks

Data example

Literature

 A review of the current state of object-valued data analysis can be found in:

Dubey Paromita, Yaqing Chen, and Hans-Georg Müller. *Metric statistics: Exploration and inference for random objects with distance profiles.* Annals of Statistics 52.2 (2024): 757-792.

Thank you for your attention!

References I

Chaudhuri, P. (1996).

On a geometric notion of quantiles for multivariate data.

Journal of the American Statistical Association. 91(434):862-872.

Li, J., Cuesta-Albertos, J. A., and Liu, R. Y. (2012).

DD-classifier: Nonparametric classification procedure based on DD-plot.

Journal of the American Statistical Association. 107(498):737-753.

Vardi, Y. and Zhang, C.-H. (2000).

The multivariate L_1 -median and associated data depth.

Proceedings of the National Academy of Sciences, 97(4):1423-1426.

References II

Virta, J. (2023). Spatial depth for data in metric spaces. arXiv preprint arXiv:2306.09740.

Xiao, H., Rasul, K., and Vollgraf, R. (2017). Fashion-MNIST: a novel image dataset for benchmarking machine learning algorithms.

arXiv preprint arXiv:1708.07747.

Table of Contents

6 Example metric spaces

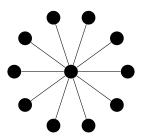
Classification example

Example I

- Assume that P puts equal mass 1/n to each of the fixed points $z_1, \ldots, z_n \in \mathcal{X}$.
- Question: Under what metric is the depth $D(z_1; P)$ maximal?

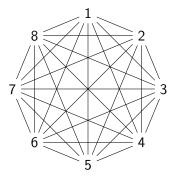
Example I

• The railway metric uniquely gives $D(z_1; P) = 1 + \left(1 - \frac{1}{n}\right) \left(1 - \frac{3}{n}\right)$.



Example II

• Equip the finite set $\mathcal{X} = \{1, ..., n\}$ with the discrete metric $d(i,j) = 1 - \mathbb{I}(i=j)$.



• For which probability distribution $P = (p_1, ..., p_n)$ is D(1; P) maximized/minimized?

Example II

- (i) D(1; P) = 1 if and only if $p_1 = 1$.
- (ii) D(1; P) = 0 if and only if exactly one of p_2, \ldots, p_n equals 1.

Table of Contents

6 Example metric spaces

Classification example

Depth-depth plot

- Let P_{n1} and P_{n2} be the empirical distributions of two samples corresponding to different groups.
- In DD-classification [Li et al., 2012], we compute the depth vectors

$$z_i := (D(x_i; P_{n1}), D(x_i; P_{n2})).$$

• A test point $x \in \mathcal{X}$ is then classified based on the vector

$$z := (D(x; P_{n1}), D(x; P_{n2})).$$

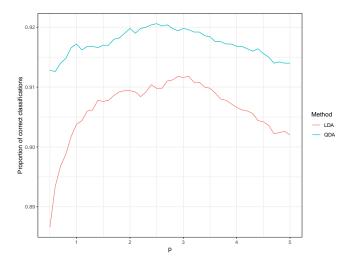
Data example

 We applied DD-classification to a subsample of the FashionMNIST data set [Xiao et al., 2017] consisting of images of dresses, shirts and ankle boots.

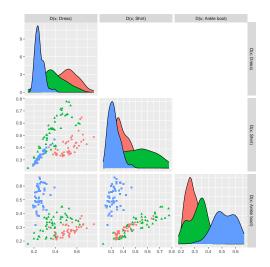
Specifications

- We randomly drew a training sample of n=150 images and a test sample of $n_0=50$ images and used DD-classifier to predict the labels of the test images.
- We used metric spatial depth with the L_p -distance with $p = 0.5, 0.6, \dots, 5$ as the metric.
- We considered both LDA and QDA.
- The experiment was repeated a total of 100 times.

Results



DD-plot



Interpretation

- Both LDA and QDA reach their maximal performance at super-Euclidean geometry.
- QDA is uniformly superior to LDA.