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Ordering in R

@ Univariate samples of points admit a natural ordering.
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Ordering in R?

@ How can we order a bivariate sample?
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Spatial depth
The spatial depth [Chaudhuri, 1996, Vardi and Zhang, 2000] of a
point 1 € RP with respect to the distribution of X ~ P is

(i )= 1~ |1 (3= ).
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Example
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Spatial depths of all points

The points are divided into central and outlying.
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Object-valued data

@ Nowadays, many samples Xi, ..., X, can be seen to consist of
objects, such as
e images,
functions,
graphs,
correlation matrices,

@ A natural mathematical framework for object-valued data:
@ A metric space (X, d).
@ A random variable X ~ P taking values in X.
© Methodology that relies on X only through the metric d(-, ).
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Metric spatial depth

o Let h: X3 — R be defined as

d?(x1, x3) + d?*(x2, x3) — d?(x, x
A x0) 1= T o) SRR )

where I(-) denotes the indicator function.
Metric spatial depth [Virta, 2023]
1
D(/J,, P) =1- EE{h(XbX%:u)}v

where X3, Xo ~ P are independent.
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Theoretical properties

Property 1

When (X, d) is an Euclidean space, then the metric spatial depth
reduces to (a one-to-one transformation of) the classical spatial
depth.
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Theoretical properties

Property 2

D(w; P) is finite for all 4 € X and all P.

Property 3

The influence function of D satisfies

sup,cx|IF(z; D, i, P)| < 4.
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Theoretical properties

Let L[x, y, z] denote the event that
d(x,z) = d(x,y) +d(y, 2),

i.e., that the point y is along the way from x to z

Property 4

Assume that P has no atoms. Then,
(i) D(u; P) €10,2].
(i) D(u; P) =0 if and only if P(L[X1, X2, p] U L[ X2, X1, p]) = 1.
(i) D(w; P) = 2 if and only if P(L[X1, p, X2]) = 1.
(iv) If (X,d) is a Hilbert space, then D(u; P) < 1.
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Railroad metric
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Theoretical properties

Property 5

Let pun be a divergent sequence in X'. Then D(un; P) — 0 as
n— oo.
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Theoretical properties

Property 6

Assume that P has no atoms. Then D(u; P) is continuous in both
wand P.



Data example
@00

Table of Contents

@ Data example



Data example
oeo

Non-convex depth regions

@ It is not necessary to use the Euclidean metric with data in RP
and we can instead use metrics that promote non-linearity



Data example
ooe

Depth regions
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Literature

@ A review of the current state of object-valued data analysis
can be found in:

Dubey Paromita, Yaging Chen, and Hans-Georg Miiller.
Metric statistics: Exploration and inference for random objects
with distance profiles. Annals of Statistics 52.2 (2024):
757-792.
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Thank you for your attention!
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Example |

@ Assume that P puts equal mass 1/n to each of the fixed
points z1,...,z, € X.

@ Question: Under what metric is the depth D(z1; P) maximal?
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@ The railway metric uniquely gives
D(z;P)=1+(1-1)(1-23).

n
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Example Il

e Equip the finite set X = {1,..., n} with the discrete metric
d(i,j) =1-1(i = ).

@ For which probability distribution P = (p1,...,pn) is D(1; P)
maximized /minimized?
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Example Il

(i) D(1;P)=1if and only if p; = 1.
(i) D(1; P) =0 if and only if exactly one of p,..., p, equals 1.
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Depth-depth plot

@ Let P,; and P, be the empirical distributions of two samples
corresponding to different groups.

o In DD-classification [Li et al., 2012], we compute the depth
vectors

zi == (D(xi; Pn1), D(xi; Pn2))-
@ A test point x € X is then classified based on the vector

z := (D(x; Pn1), D(x; Pp2)).
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Data example

@ We applied DD-classification to a subsample of the
FashionMNIST data set [Xiao et al., 2017] consisting of
images of dresses, shirts and ankle boots.
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Specifications

@ We randomly drew a training sample of n = 150 images and a
test sample of ng = 50 images and used DD-classifier to
predict the labels of the test images.

@ We used metric spatial depth with the L,-distance with
p=0.5,0.6,...,5 as the metric.

@ We considered both LDA and QDA.

@ The experiment was repeated a total of 100 times.
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Results

Method
LDA
~— QDA

Proportion of correct classifications
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Interpretation

@ Both LDA and QDA reach their maximal performance at
super-Euclidean geometry.

@ QDA is uniformly superior to LDA.
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