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Matrix data

@ Many modern applications produce matrix-valued data
Xi1,..., X, € RPX9,

@ The following data contains n = 1736 images of size 16 x 16
of digits 1 and 2.
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Matrix data, continued

e Matrix/image data is typically
e Structured
e High-dimensional
@ A natural starting point to their analysis is
structure-acknowledging dimension reduction.
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Projection pursuit

In projection pursuit, one finds a projection w'x which maximizes
the “interestingness” g of a centered random vector x € RP,

max g(w’'x).
weSp—1 g( )

o g(z) = E(z?) gives PCA.
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Projection pursuit and matrix data

@ Projection pursuit can be applied to vectorized image data
vee(X1), ..., vec(X,) € RPI.

However, if pg > n— 1 and the data have full rank, a projection
corresponding to any desired point configuration can be found
from the datal
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Our proposal

We “regularize” by projecting X as u’Xv instead of as w'vec(X).

Kurtosis-based matrix projection pursuit (MPP)

o EAWXv)t)
uesr—ivesst [E {(u'Xv)2}]?

Since u’Xv = (v ® u)’'vec(X), we focus on a specific natural subset
of projections.
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Sequential solutions

MPP can be applied sequentially to produce solution pairs

(ug,v1), (u2,v2),. .., (ug,vg) which are required to be mutually
orthogonal.
This gives us a vector of projections (ujXvi, ..., u,,Xvg) which

can be visualized to reveal hidden structures.
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Mixture model

Matrix normal location mixture

Assume that X € RP*9 is generated as
X ~ aleXq(Tl, A, B) aF angXq(Tz, A, B)

@ The optimal likelihood-based classification rule depends on
the data through the scores tr(WppaX’), where

Wips = A YT, - T;)B~L.

@ Given a sample X1,...,X, and their labels y1,..., y,, WiDa
is simple to estimate.
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Separation of the digit data

@ Given the digit data and their labels, we estimate WLDA and
visualize the scores tr(WppaX)}).
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Result

Theorem 1 in [Radoji¢i¢ et al., 2025] (simplified)

Let (u1,v1),...,(uq,vy) be mutually orthogonal, sequential
MPP-solutions. If |ag — 1/2] # 1/4/12, then

wy - u'1Xv1 + o+ wy - u’dde = tI‘(WLDAX,)7

for specific weights wy, ..., wy.

MPP uses only the data Xy, ..., X, but not the labels (y1,...,yn)!
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Separation of the digit data

The scores for the supervised estimator (left) and the unsupervised
MPP (right).
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Optimization

@ The objective function surface is non-concave with local
optima and saddle points, and we optimize it with
informatively initialized ADAM.

uz
°
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Standard asymptotics

Let Xq,...,X, be a random sample from a matrix normal location
mixture and assume the non-zero singular values of Wypa to be
distinct.

Corollary 4 in [Radojiti¢ et al., 2025]

Wipa —*as. WrLpa

Corollary 5 in [Radojiti¢ et al., 2025]

Vnvec(Wipa — Wipa) ~ Npgxpq(0, ©)
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High-dimensional asymptotics

Assume that the data dimensions grow, p, — oo and g, — co.

Theorem 9 in [Radojici¢ et al., 2025]

If py + gn = o(n*/*) and if certain technical conditions are
satisfied, then

luip —ui|| =p 0 and |lvip — vy =5 0.
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Simulation setting

@ We simulate data from the following models with specific
choices of parameters.

Model 1.2: X ~ a1 N5x3(0, A1, B1) + apNs543(T12, A1, B1),
Model 2.2: X ~ a1/N32x16(0, A2, B2) + aoN32x16(T2.2, Az, Ba),

e We estimate Wyps with MPP and NGPP (vectorized
projection pursuit) and report median cosine similarities
(higher is better) over 100 replicates.
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Results
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Future work

@ Skewness instead of kurtosis?
o Ellipticity instead of Gaussianity?
@ Multiple groups instead of two?

@ Tensors instead of matrices?
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Thank you for your attention!
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