Kurtosis-based projection pursuit for matrix-valued data

J. Virta

University of Turku, Finland

KU Leuven, ESAT Seminar 21st of November 2025

Reference

This talk is based on the following article:

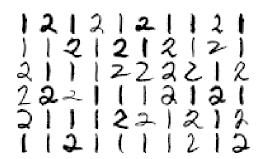
Radojičić, U., Nordhausen, K. and Virta, J. (2025).
Kurtosis-based projection pursuit for matrix-valued data.
Accepted for publication in Annals of Statistics.

These slides are available at the speaker's website https://users.utu.fi/jomivi/talks/

- Basic premise
- 2 Two-sided projection pursuit
- Matrix location mixtures
- Further results
- Simulations
- 6 Closing remarks

Matrix data

- Many modern applications produce matrix-valued data $\mathbf{X}_1, \dots, \mathbf{X}_n \in \mathbb{R}^{p \times q}$.
- The following data contains n = 1736 images of size 16×16 of digits 1 and 2.



Matrix data, continued

- Matrix/image data is typically
 - Structured
 - High-dimensional
- A natural starting point to their analysis is structure-acknowledging dimension reduction.

Projection pursuit

In projection pursuit, one finds a projection $\mathbf{w}'\mathbf{x}$ which maximizes the "interestingness" g of a centered random vector $\mathbf{x} \in \mathbb{R}^p$,

$$\max_{\mathbf{w} \in \mathbb{S}^{p-1}} g(\mathbf{w}'\mathbf{x}).$$

•
$$g(z) = E(z^2)$$
 gives PCA.

Projection pursuit and matrix data

• Projection pursuit can be applied to vectorized image data $vec(\mathbf{X}_1), \dots, vec(\mathbf{X}_n) \in \mathbb{R}^{pq}$.

However, if $pq \ge n-1$ and the data have full rank, a projection corresponding to **any desired point configuration** can be found from the data!

- Basic premise
- 2 Two-sided projection pursuit
- Matrix location mixtures
- 4 Further results
- Simulations
- 6 Closing remarks

Our proposal

We "regularize" by projecting \mathbf{X} as $\mathbf{u}'\mathbf{X}\mathbf{v}$ instead of as $\mathbf{w}'\operatorname{vec}(\mathbf{X})$.

Kurtosis-based matrix projection pursuit (MPP)

$$\max_{\mathbf{u} \in \mathbb{S}^{p-1}, \mathbf{v} \in \mathbb{S}^{q-1}} \frac{\mathrm{E}\left\{ (\mathbf{u}'\mathbf{X}\mathbf{v})^4 \right\}}{\left[\mathrm{E}\left\{ (\mathbf{u}'\mathbf{X}\mathbf{v})^2 \right\} \right]^2}.$$

Since $\mathbf{u}'\mathbf{X}\mathbf{v}=(\mathbf{v}\otimes\mathbf{u})'\mathrm{vec}(\mathbf{X})$, we focus on a specific natural subset of projections.

Sequential solutions

MPP can be applied sequentially to produce solution pairs $(\mathbf{u}_1, \mathbf{v}_1), (\mathbf{u}_2, \mathbf{v}_2), \dots, (\mathbf{u}_d, \mathbf{v}_d)$ which are required to be mutually orthogonal.

This gives us a vector of projections $(\mathbf{u}_1'\mathbf{X}\mathbf{v}_1, \dots, \mathbf{u}_d'\mathbf{X}\mathbf{v}_d)$ which can be visualized to reveal hidden structures.

- Basic premise
- 2 Two-sided projection pursuit
- Matrix location mixtures
- 4 Further results
- Simulations
- 6 Closing remarks

Mixture model

Matrix normal location mixture

Assume that $\mathbf{X} \in \mathbb{R}^{p \times q}$ is generated as

$$\mathbf{X} \sim \alpha_1 \mathcal{N}_{\mathbf{p} \times \mathbf{q}}(\mathbf{T}_1, \mathbf{A}, \mathbf{B}) + \alpha_2 \mathcal{N}_{\mathbf{p} \times \mathbf{q}}(\mathbf{T}_2, \mathbf{A}, \mathbf{B}).$$

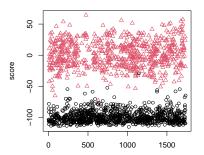
 The optimal likelihood-based classification rule depends on the data through the scores tr(W_{LDA}X'), where

$$\boldsymbol{\mathsf{W}}_{\mathrm{LDA}} := \boldsymbol{\mathsf{A}}^{-1} (\boldsymbol{\mathsf{T}}_2 - \boldsymbol{\mathsf{T}}_1) \boldsymbol{\mathsf{B}}^{-1}.$$

• Given a sample $\mathbf{X}_1, \dots, \mathbf{X}_n$ and their labels y_1, \dots, y_n , \mathbf{W}_{LDA} is simple to estimate.

Separation of the digit data

ullet Given the digit data and their labels, we estimate $\hat{m W}_{\rm LDA}$ and visualize the scores ${\rm tr}(\hat{m W}_{\rm LDA}{m X}_i')$.



Result

Theorem 1 in [Radojičić et al., 2025] (simplified)

Let $(\mathbf{u}_1, \mathbf{v}_1), \dots, (\mathbf{u}_d, \mathbf{v}_d)$ be mutually orthogonal, sequential MPP-solutions. If $|\alpha_1 - 1/2| \neq 1/\sqrt{12}$, then

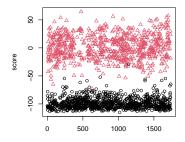
$$w_1 \cdot \mathbf{u}_1' \mathbf{X} \mathbf{v}_1 + \cdots + w_d \cdot \mathbf{u}_d' \mathbf{X} \mathbf{v}_d = \operatorname{tr}(\mathbf{W}_{LDA} \mathbf{X}'),$$

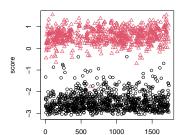
for specific weights w_1, \ldots, w_d .

MPP uses only the data X_1, \dots, X_n but not the labels $(y_1, \dots, y_n)!$

Separation of the digit data

The scores for the supervised estimator (left) and the unsupervised MPP (right).

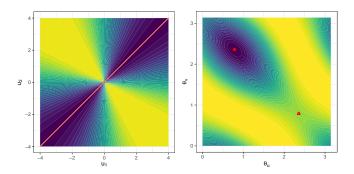




- Basic premise
- 2 Two-sided projection pursuit
- Matrix location mixtures
- 4 Further results
- 5 Simulations
- 6 Closing remarks

Optimization

 The objective function surface is non-concave with local optima and saddle points, and we optimize it with informatively initialized ADAM.



Standard asymptotics

Let $\mathbf{X}_1, \dots, \mathbf{X}_n$ be a random sample from a matrix normal location mixture and assume the non-zero singular values of $\mathbf{W}_{\mathrm{LDA}}$ to be distinct.

Corollary 4 in [Radojičić et al., 2025]

$$\hat{\textbf{W}}_{LDA} \rightarrow_{\mathrm{a.s.}} \textbf{W}_{LDA}$$

Corollary 5 in [Radojičić et al., 2025]

$$\sqrt{n} \mathrm{vec}(\hat{\mathbf{W}}_{\mathrm{LDA}} - \mathbf{W}_{\mathrm{LDA}}) \rightsquigarrow \mathcal{N}_{pq \times pq}(\mathbf{0}, \mathbf{\Theta})$$

High-dimensional asymptotics

Assume that the data dimensions grow, $p_n \to \infty$ and $q_n \to \infty$.

Theorem 9 in [Radojičić et al., 2025]

If $p_n + q_n = o(n^{1/4})$ and if certain technical conditions are satisfied, then

$$\|\mathbf{u}_{1n} - \mathbf{u}_1\| \rightarrow_{p} 0$$
 and $\|\mathbf{v}_{1n} - \mathbf{v}_1\| \rightarrow_{p} 0$.

- 1 Basic premise
- 2 Two-sided projection pursuit
- Matrix location mixtures
- 4 Further results
- 5 Simulations
- 6 Closing remarks

Simulation setting

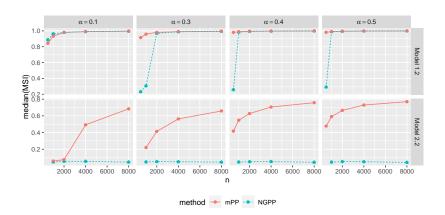
 We simulate data from the following models with specific choices of parameters.

Model 1.2:
$$\mathbf{X} \sim \alpha_1 \mathcal{N}_{5\times3}(\mathbf{0}, \mathbf{A}_1, \mathbf{B}_1) + \alpha_2 \mathcal{N}_{5\times3}(\mathbf{T}_{1.2}, \mathbf{A}_1, \mathbf{B}_1),$$

Model 2.2: $\mathbf{X} \sim \alpha_1 \mathcal{N}_{32\times16}(\mathbf{0}, \mathbf{A}_2, \mathbf{B}_2) + \alpha_2 \mathcal{N}_{32\times16}(\mathbf{T}_{2.2}, \mathbf{A}_2, \mathbf{B}_2),$

• We estimate $\mathbf{W}_{\mathrm{LDA}}$ with MPP and NGPP (vectorized projection pursuit) and report median cosine similarities (higher is better) over 100 replicates.

Results



- 1 Basic premise
- 2 Two-sided projection pursuit
- Matrix location mixtures
- 4 Further results
- 5 Simulations
- 6 Closing remarks

Future work

- Skewness instead of kurtosis?
- Ellipticity instead of Gaussianity?
- Multiple groups instead of two?
- Tensors instead of matrices?

Thank you for your attention!

References I

