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Multiplicative functions

A function g : N→ C is multiplicative if g(mn) = g(m)g(n)
whenever m, n ∈ N are coprime.
A function g is 1-bounded if it takes values in the unit disc
D = {z ∈ C : |z | ≤ 1}.
Let Ω(n) be the number of prime factors of n, with multiplicities.
Examples of multiplicative functions:

g(n) = µ(n) =

{
(−1)Ω(n), n squarefree

0 otherwise
– the Möbius function

g(n) = λ(n) = (−1)Ω(n) – the Liouville function

g(n) = e2πiαΩ(n) – generalized Liouville function

g(n) = nit , t ∈ R – the Archimedean characters

g(n) = χ(n) – the Dirichlet characters

g(n) = d(n) – the divisor function (unbounded).
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Mean values

Mean values for multiplicative functions

1

x

∑
n≤x

g(n) (1)

have a long history, and are related to many important topics (PNT,
sieve methods,... )

They are quite well-understood by a theorem of Halász, which tells
that (1) is o(1), unless

inf
t∈R

D(g , n 7→ nit ,X ) = O(1),

where D(·) is the pretentious distance

D(f , g ;X ) =

(∑
p≤x

1− Re(f (p)g(p))

p

)1/2

.

We want to avoid functions g with D(g , n 7→ nit ,X ) or D(g , χ,X )
bounded (pretentious functions).
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Elliott’s conjecture

Correlations of multiplicative functions also have found various
applications (sign patterns, rigidity theorems for multiplicative
functions, Erdös discrepancy problem(!),...), but have proved to be
much more difficult than mean values.

For any multiplicative functions g1, . . . , gk : N→ D, there is no
reason why their shifts would correlate, unless the gj are pretentious

Elliott’s conjecture

Let g1, . . . , gk : N→ D be 1-bounded multiplicative functions
and h1, . . . , hk ∈ Z distinct. Then we have the bound

1

x

∑
n≤x

g1(n + h1) · · · gk(n + hk) = o(1),

provided that ∃j : infχ inf|t|≤X D(gj , χ(n)nit ,X )→∞.
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Progress towards Elliott’s conjecture

The case k = 1 of Elliott’s conjecture is the theorem of Halász (and
includes PNT in arithmetic progressions).

Elliott proved that, under certain additional assumptions, the
correleation is bounded by 1− δk (as opposed to o(1)).

Matomäki-Radziwi l l-Tao (2015): Elliott’s conjecture holds for
almost all shifts h1, . . . , hk ∈ [−H,H]k , where H = H(x)→∞
arbitrarily slowly.

Tao (2015): The two-point case k = 2 holds with logarithmic
averaging:

1

log x

∑
n≤x

g1(n + h1)g2(n + h2)

n
= o(1),

provided again that g1 or g2 does not pretend to be any twisted
character χ(n)nit .

The logarithmic averages are easier, since if ordinary averages are
o(1), so are the logarithmic ones.
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Connections to other conjectures

The Elliott conjecture, and its special case, the Chowla conjecture, are
connected to many other important questions.

Chowla’s conjecture

For any k ≥ 1 and any distinct shifts h1, . . . , hk ∈ Z,

1

x

∑
n≤x

λ(n + h1) · · ·λ(n + hk) = o(1).

Sarnak’s conjecture in turn states that the Möbius function does
not correlate with any determinisitic sequence:

1

x

∑
n≤x

µ(n)F (T nx) = o(1), if (X ,T ) has 0 topol. entropy, F ∈ C (X ).

Tao (2015): The Chowla and Sarnak cojectures are equivalent, if
both are in their logarithmic forms.
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Connections to other conjectures

Sarnak’s conjecture has been verified in the case of
nilsequences, horocycle flows, automatic sequences,...

Frantzikinakis-Host (2017): The logarithmic Sarnak
conjecture holds in the case of uniquely ergodic systems.
They also proved that shifted products of the Liouville
function do not correlate with ergodic sequences, when
weighted logarithmically.

We make no progress on Sarnak’s conjecture here.
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Connections to other conjectures

Correlations of the Liouville function have been shown by Tao
to have some relation to the difficult problem of local Gowers
uniformity of λ.

This conjecture states that ‖λ‖Ud [x ,x+H] = o(1) for almost all

x , with H = H(x)→∞ slowly, and Ud is the Gowers norm.
The case d = 1 is already the Matomäki-Radziwi l l theorem.

In particular, the case of d = 2 is related to the sup norm
problem for λ:

1

X

∫ X

0
sup
α∈R

∣∣∣∣∣∣ 1

H

∑
x≤n≤x+H

λ(n)e(αn)

∣∣∣∣∣∣
2

dx = o(1).

We manage to go around these problems, and make no
progress on them. This is possible, since we only consider odd
order Chowlas.
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Main result

Weak form of logarithmic Elliott conjecture (Tao, T., 2017)

Let g1, . . . , gk : N→ D be 1-bounded multiplicative functions
and h1, . . . , hk ∈ Z distinct shifts. Then

1

log x

∑
n≤x

g1(n + h1) · · · gk(n + hk)

n
= o(1),

provided that the product g1 · · · gk does not weakly pretend
to be any Dirichlet character χ.

We say that f : N→ D pretends to be g : N→ D weakly if∑
p≤x

1− Re(f (p)g(p))

p
= o(log log x).
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Applications

If k is odd, then λk = λ does not weakly pretend to be χ. On the
other hand, if k is even, then λk = 1 is pretentious. Hence, we can
prove the following.

Odd order cases of logarithmic Chowla conjecture

Let k be odd, and let h1, . . . , hk ∈ Z be distinct integers.
Then

1

log x

∑
n≤x

λ(n + h1) · · ·λ(n + hk)

n
= o(1).

Previously the k = 2 case was proved by Tao. The even order
cases k ≥ 4 remain open.
Using Kátai’s orthogonality criterion, one can show that even
order Chowlas imply odd order Chowlas. Hence it is natural
that we could prove only the odd order cases.
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Applications

The odd order cases of log-Chowla allow us to prove some new
results about sign patterns of the Liouville and Möbius functions.

Sign patterns of Liouville and Möbius functions

The Liouville function λ attains all 8 sign patterns of length
3 with expected log-density and all 16 sign patterns of length
4 with positive density.
The Möbius function µ attains all 65 possible sign patterns
of length 4 with expected log-density.

For the Möbus function, there cannot be 4 consecutive
nonzero values; hence only 34 − 24 = 65 possible patterns.
Earlier, Matomäki, Radziwi l l and Tao showed that sign
patterns of length 3 occur for λ with positive density, and
same for sign patterns of length 2 for µ. Tao later proved the
correct log-density of sign patterns of length 2 for λ and µ.
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Structural theorem

Structural theorem for correlations (Tao, T., 2017)

Let g1, . . . , gk : N→ D be arbitrary 1-bounded multiplicative
functions and h1, . . . , hk ∈ Z, and let l̃im be a generalized
limit. Then the correlation sequence

f (a) := l̃im
x→∞

1

log x

∑
n≤x

g1(n + ah1) · · · gk(n + ahk)

n

is almost periodic, meaning that f can be approximated uni-
formly with periodic functions fi .

By l̃im, we mean a linear functional extending the usual lim,
making all bounded sequences convergent.
Generalized limits are a way to talk about asymptotics of
arbitrary sequences. Their construction uses Hahn-Banach.
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A new dichotomy

In Elliott’s original conjecture there was the dichotomy

gj pretentious vs. gj non-pretentious.

In our result, however, there is a different dichotomy:

g1 · · · gk invariant vs. g1 · · · gk non-invariant.

We say that a function G (n) is invariant if G (pn) ≈ χ(p)G (n)
for most primes p (more precisely, G weakly pretends to be χ).

The two distinctions are somewhat different:
If one takes 2k copies of Liouville’s function, they are
non-pretentious, but still invariant (λ2k = 1).

If one takes the functions nit1 , · · · , nitk with t1 + · · ·+ tk 6= 0,
they are non-invariant, but still pretentious.
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Proof ingredients

The proof starts with the averaging over small primes and
entropy decrement ideas introduced by Tao for the case of
two-point correlations.

The proof continues by appealing to some tools from ergodic
theory. Previously ergodic theory has successfully been
applied to problems related to the Chowla and Elliott
conjectures (e.g. by Frantzikinakis).

Also nilsequences have a major role in the proof. Nilsequences
are the characters of higher order Fourier analysis and include,
but are more general than, polynomial phases n 7→ e(αnk).
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Nilsequences

It is natural that nilsequences appear in work on higher order
correlations, since they have long been known to be crucial for
bounding certain ”bilinear correlations” for multiplicative
functions, such as

1

x2

∑
h≤x

∑
n≤x

λ(n)λ(n + h) · · ·λ(n + (k − 1)h) = o(1).

The result above was established by Green-Tao and
Green-Tao-Ziegler, and is closely related to linear equations in
primes, which pioneered the use of nilsequences in number theory.
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Averaging over small primes

Let

f (a) := l̃im
x→∞

1

log x

∑
n≤x

g1(n + ah1) · · · gk(n + ahk)

n
.

For any prime p, by multiplicativity we have
gj(p(n + ahj)) = gj(n + ahj)gj(p) whenever p - n. Therefore,
averaging over the primes p ∼ P, we get

f (a) =
logP

P

∑
p∼P

g1(p) · · · gk(p)
log x

∑
n≤x

g1(n + aph1) · · · gk(n + aphk)

n
1p|n + o(1).

Here we used the fact that the average is a logarithmic one.

We have now two variables p and n to work with, whereas earlier we
only had n.

The factor 1p|n is troublesome, but using the entropy decrement

argument, we can replace it with its expected value 1
p for most P.
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Averaging over small primes

We iterate the argument of averaging over primes. Then we end up
with an average over semiprimes

f (a) =
log P log Q

PQ

∑
p∼P

∑
q∼Q

G(p)G(q)

pq log x

∑
n≤x

g1(n + apqh1) · · · gk (n + apqhk )

n
+ o(1),

for most scales P and Q, where the numbers
G (p) := g1(p) · · · gk(p) could be called structural constants (they
express whether the product g1 · · · gk is invariant or not).

This can be rewritten as an approximate functional equation for f :

f (a) =
logP logQ

PQ

∑
p∼P

1

p

∑
q∼Q

1

q
G(p)G(q)f (apq) + o(1).

for most P,Q.
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Application of ergodic theory

Another way to approach the correlation sequence f (a) is via
ergodic theory.

Applying the Furstenberg correspondence principle, we can find
some abstract measure space (X , µ), a measure-preserving
transformation T : X → X , and functions G1, . . . ,Gk : X → D such
that

f (a) =

∫
X

G1(T ah1x) · · ·Gk(T ahk x)dµ.

There are strong tools for analyzing such multiple correlation
sequences, and a deep theorem of Leibman tells that∫

X

G1(T ah1x) · · ·Gk(T ahk x)dµ = f1(a) + f2(a),

where f1 is a nilsequence (generalization of a polynomial phase
n 7→ e(αnk)) and f2 converges to zero in uniform density:
limN→∞ supM

1
M

∑
N≤n≤N+M |f (n)| = 0.
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Combining the two approaches

Now the correlations satisfy an approximate functional equation

f (a) =
logP logQ

PQ

∑
p∼P

1

p

∑
q∼Q

1

q
G(p)G(q)f (apq) + o(1),

for most P,Q, and on the other hand f (a) = f1(a) + f2(a), where f1
is a nilsequence and f2 converges to zero in uniform density.

Using ergodic theory arguments, similar to those of Le, f2 has
negligible contribution.

Then for some nilsequence f1 we have

f (a) =
logP logQ

PQ

∑
p∼P

1

p

∑
q∼Q

1

q
G(p)G(q)f1(apq) + o(1). (2)

The right-hand side is a bilinear sum, and nilsequences have
negligible bilinear sums, unless they are periodic (cf. n 7→ e(αn),
which has small bilinear sums, unless α is a rational number).

Thus f1 is periodic, so by (2) f is a uniform limit of periodic
sequences, proving our structural theorem.
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Weak logarithmic Elliott conjecture

We then turn to the weak logarithmic Elliott conjecture.

By the structure theorem and the approximate functional equation,

fi (an) =
logP

P

∑
p∼P

G (p)

p
fi (apn) + o(1),

for most P, where fi (n + Di ) = fi (n) and the fi converge uniformly
to f .

Multiplying both sides with a Dirichlet character χ(n) and taking
averages over a ≤ Di , we get

1

Di

∑
a≤Di

fi (an)χ(n) =
logP

P

∑
p∼P

G (p)χ(p)

p

1

Di

∑
a≤Di

fi (apn)χ(pn).
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Weak logarithmic Elliott conjecture

Crucially, by periodicity, the functions n 7→ fi (an)χ(n) and
n 7→ fi (apn)χ(pn) have the same mean value for large p.
Also, since G (n) = g1(n) · · · gk(n) was assumed strongly
non-pretentious, we have

logP

P

∑
p∼P

G (p)χ(p)

p
� 1

for many P. This can only happen if

1

Di

∑
a≤Di

fi (an)χ(n) = 0.

Now the sequences fi (an) are orthogonal to all Dirichlet
characters, but are periodic, so they must be identically zero.
Thus the correlation sequence f , which is the limit of fi , is
identically zero, proving our main theorem.
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Thank you!
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