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Abstract

This thesis is comprised of four articles in multiplicative number theory, a subfield
of analytic number theory that studies questions related to prime numbers and
multiplicative functions. A central principle in multiplicative number theory is
that multiplicative structures, such as the primes or the values of a multiplicative
function, should not correlate with additive structures of various types. The results
in this thesis can be interpreted as instances of this principle.

In the first article, we consider the problem of finding almost primes in almost all
short intervals, which is a natural approximation to the problem of finding primes in
short intervals. We show that almost all intervals of nearly optimal length contain a
product of exactly three primes. For products of exactly two primes, we improve a
result of Harman. The proofs are based on careful analysis of Dirichlet polynomials
related to almost primes.

The second article is about the Goldbach problem for a sparse subset of the
primes. Vinogradov famously showed that any large odd number is the sum of
three primes, so it is natural to study the same problem with the summands coming
from a subset of the primes. Improving a result of Matomäki, we show that a special
set of primes, consisting of primes representable as one plus the sum of two squares,
satisfies the ternary Goldbach problem. We also establish a number of other additive
results for this same set of primes. The proofs use sieve methods and transference
principles for additive equations in primes.

We also study the Möbius function and its autocorrelations. A famous conjecture
of Chowla asserts that products of shifts of the Möbius function should have mean
zero. In the third article, together with T. Tao we settle a logarithmic version of
this conjecture in all the cases involving an odd number of shifts. This complements
Tao’s earlier result that the two-point Chowla conjecture holds with logarithmic
weights.

Lastly, in the fourth article, we study binary correlations of multiplicative func-
tions with logarithmic weights. We prove an asymptotic formula for these corre-
lations for a wide class of multiplicative functions, extending an earlier result of
Tao. We then derive a number of applications regarding the largest prime factors
of consecutive integers, including a logarithmic version of a conjecture of Erdős
and Turán. Moreover, we prove a new estimate for character sums over reducible
quadratic polynomials.





Tiivistelmä

Tämä väitöskirja koostuu neljästä artikkelista multiplikatiivisessa lukuteoriassa,
joka on alkulukuja ja multiplikatiivisia funktioita tutkiva analyyttisen lukuteorian
haara. Keskeinen periaate multiplikatiivisessa lukuteoriassa on, että multiplikatii-
visten objektien (kuten alkulukujen tai multiplikatiivisten funktioiden arvojen) ei
pitäisi korreloida additiivisten objektien kanssa. Tämän väitöskirjan tulokset voi-
daankin tulkita kyseisen periaatteen ilmentyminä.

Ensimmäisessä artikkelissa tarkastelemme melkein alkulukujen löytämistä mel-
kein kaikilta lyhyiltä väleiltä; tämä on luonnollinen approksimaatio alkulukujen
löytämiselle lyhyiltä väleiltä. Osoitamme, että melkein kaikki välit, joiden pituus
on lähes optimaalisen lyhyt, sisältävät tasan kolmen alkuluvun tulon. Tasan kahden
alkuluvun tulojen tapauksessa parannamme Harmanin tulosta. Todistukset perus-
tuvat melkein alkulukuihin liitettyjen Dirichlet’n polynomien tarkkaan analysoin-
tiin.

Toinen artikkeli koskee Goldbach-ongelmaa eräälle harvalle osajoukolle alkulu-
kuja. Vinogradov osoitti kuuluisassa työssään, että jokainen riittävän suuri pariton
luku on kolmen alkuluvun summa, joten on luonnollista tarkastella vastaavaa ongel-
maa alkulukujen osajoukoille. Parantaen Matomäen tulosta osoitamme, että vastaus
ternääriseen Goldbach-oneglmaan on positiivinen niiden alkulukujen joukolle, jotka
voidaan esittää ykkösen ja kahden neliöluvun summana. Osoitamme myös useita
muita additiivisia tuloksia samalle alkulukujen osajoukolle. Todistukset käyttävät
seulamenetelmiä sekä ns. traansferenssiperiaatteita additiivisille yhtälöille alkulu-
kujen joukossa.

Tutkimme myös Möbiuksen funktiota ja sen autokorrelaatioita. Chowlan kuului-
sa konjektuuri väittää, että Möbiuksen funktioiden translaatioiden tuloilla pitäisi
olla keskiarvo nolla. Kolmannessa artikkelissa yhdessä T. Taon kanssa ratkaisemme
logaritmisen version tästä konjektuurista kaikissa tapauksissa, joissa translaatioi-
den määrä on pariton. Tämä täydentää Taon aikaisempaa tulosta, jonka mukaan
kahden pisteen Chowlan konjektuuri pätee logaritmisilla painoilla.

Lopuksi neljännessä artikkelissa tutkimme multiplikatiivisten funktioiden binää-
risiä korrelaatioita logaritmisilla painoilla. Todistamme asymptoottisen kaavan näille
korrelaatioille, joka pätee laajalle luokalle multiplikatiivisia funktioita ja parantaa
Taon aikaisempaa tulosta. Johdamme sitten useita sovelluksia koskien peräkkäisten
lukujen suurimpia alkutekijöitä – mukaan lukien logaritmisen version eräästä Erdősin
ja Turánin konjektuurista. Lisäksi todistamme uuden arvion karakterisummille yli
jaollisen toisen asteen polynomin arvojen.
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at Åbo Akademi for organizing a stimulating joint seminar. I also thank Alexander
Mangerel for careful reading of my thesis.

All my colleagues at the Department of Mathematics and Statistics at the Univer-
sity of Turku deserve thanks for making the work environment pleasant, productive,
and relaxed. Specifically, I thank Matti Vuorinen for all the help and friendship he
has offered me, and for the lovely dinners I have had at Matti and Sinikka’s home.
In addition, I thank my fellow number theory students, Jori Merikoski and Juho
Salmensuu, for our many interesting number-theoretic lunch discussions.

Special thanks go to all my friends for making my time as a graduate student
so fun and enjoyable. Especially, I thank Jesse Jääsaari for the many fascinating
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1. Notations and conventions

We collect here the notations used in the summary sections 2–6. The Articles [I]–[IV]
have their own notation sections.

1.1. Sets

• N – the set of positive integers {1, 2, 3, . . .}.
• Z – the set of all integers.
• ZN – the ring of integers mod N .
• P – the set of prime numbers.
• Squarefree integers – integers n ≥ 1 such that n is not divisible by p2 for

primes p.
• Pk – the set of integers with at most k prime factors, counting multiplicities.
• Ek – the set of integers with exactly k prime factors, counting multiplicities.
• D – the unit disk {z ∈ C : |z| ≤ 1}.
• 1S(n) – the indicator function of a set S, equaling 1 if n ∈ S and 0 otherwise.

1.2. Letters

• d, k, `,m, n – positive integers.
• p, p1, p2, . . . – prime numbers.
• ε – an arbitrarily small positive constant.
• W – the product of primes in [1, w] for some large w.

1.3. Arithmetic functions

• ϕ(n) – the Euler function, giving the number of integers 1 ≤ j ≤ n coprime
to n.
• Λ(n) – the von Mangoldt function, which equals log p if n = pk for some

prime p and some k ≥ 1, and equals 0 if no such p exists.
• Ω(n) – number of prime factors of n, counted with multiplicities.
• λ(n) – the Liouville function, given by λ(n) := (−1)Ω(n).
• µ(n) – the Möbius function, given by µ(n) := λ(n)1n squarefree.
• P+(n) – the largest prime factor of n, with P+(1) := 1.
• π(x) – the number of prime numbers in [1, x].
• Multiplicative function – a function g : N→ C satisfying g(mn) = g(m)g(n)

whenever m,n ∈ N are coprime.
• λ+,LIN

d , λ−,LIN
d – the upper and lower bound linear sieve weights. Given a

level D and a sifting parameter z, they are equal to 1 for d = 1 and are equal
to the Möbius function µ(d) for d ≥ 2 belonging to the sets

D+,LIN : = {p1 · · · pr ≤ D : z > pk > pk+1, p1 · · · p2k−2p
3
2k−1 ≤ D ∀k ≥ 1},

D−,LIN : = {p1 · · · pr ≤ D : z > pk > pk+1, p1 · · · p2k−1p
3
2k ≤ D ∀k ≥ 1}.

For other values of d, they are equal to 0.
• λ+,SEM

d , λ−,SEM
d – the upper and lower bound semilinear sieve weights. Given

a level D and a sifting parameter z, they are equal to 1 for d = 1 and are
equal to the Möbius function µ(d) for d ≥ 2 belonging to the sets

16
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D+,SEM : = {p1 · · · pr ≤ D : z > pk > pk+1, p1 · · · p2k−2p
2
2k−1 ≤ D ∀k ≥ 1},

D−,SEM : = {p1 · · · pr ≤ D : z > pk > pk+1, p1 · · · p2k−1p
2
2k ≤ D ∀ k ≥ 1}.

For other values of d, they are equal to 0.

1.4. Analysis

• f(x) = o(g(x)) – we have limx→∞ f(x)/g(x) = 0.
• f(x) � g(x) – we have, for some constant C, |f(x)| ≤ C|g(x)| for all large

enough x.
• f(x) � g(x) – we have f(x)� g(x) and g(x)� f(x).
• oε→0(1) – an unspecified function f(ε) tending to 0 as ε→ 0.
• Almost all – for a proposition P (n), we say that it holds for almost all n ∈ N

if |{n ≤ X : P (n) fails}| = o(X). Analogously, we say that P (n) holds for
almost all even n if |{n ≤ X : n ≡ 0 (mod 2), P (n) fails}| = o(X).
• e(α) – the additive character e2πiα.
• ‖x‖ – the distance from x ∈ R to the nearest integer.
• ∑p∈I – summation over primes in I, whenever I is an interval.

• f̂(ξ) – the discrete Fourier transform of f : ZN → C, given by

f̂(ξ) :=
1

N

∑
n∈ZN

f(n)e

(
−ξn
N

)
.

1.5. Probability theory

• P(A) – the logarithmic probability of A ⊂ [1, x], given by

P(A) :=

∑
n≤x
n∈A

1
n∑

n≤x
1
n

.

• H(X) – the entropy of a random variable X having a finite range X . This
is defined by

H(X) :=
∑
x∈X

P(X = x) log
1

P(X = x)
.

• H(X,Y) – the joint entropy of two random variables X and Y with finite
ranges X and Y , respectively. This equals the entropy of the random variable
(X,Y) that takes values in X × Y .
• H(X|Y) – the conditional entropy of X given Y;

H(X|Y) := H(X,Y)−H(Y).

• I(X,Y) – the mutual information between two random variables X and Y;

I(X,Y) = H(X) + H(Y)−H(X,Y).

17
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1.6. Miscellaneous

• (m,n) – the greatest common divisor of m and n.
• D(f, g;x) – the pretentious distance between f and g, defined in formula

(6.1).
• P(z) – the product of all the primes in [1, z).
• ‖a‖Uk(ZN ) the Uk Gowers norm of a : ZN → C, defined recursively as

‖a‖U1(ZN ) :=

∣∣∣∣ 1

N

∑
n∈ZN

f(n)

∣∣∣∣, ‖a‖Uk+1(ZN ) :=

(
1

N

∑
t∈ZN
‖a · at‖2k

Uk(ZN )

)1/2k+1

,

where at(n) := a(n+ t).
• ‖a‖Uk[N ] – the Uk Gowers norm of a : [1, N ]→ C, defined by

‖a‖Uk[N ] :=
‖1[1,N ] · a‖Uk(Z2N+1)

‖1[1,N ]‖Uk(Z2N+1)

.

18
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2. Introduction

Multiplicative number theory is an area of analytic number theory where one studies
the distributional properties of multiplicative functions, prime numbers, and other
sets possessing multiplicative structure. A fundamental principle in this area is that
multiplicative structures (such as the primes, or the values of a multiplicative func-
tion) should behave independently of additive structures (such as intervals, additive
equations, or arithmetic progressions). This gives rise to a number of conjectures,
many of which are still open.

One instance of this principle is that the primes are expected to be distributed
somewhat uniformly on very short intervals, such as [x, x+ (log x)c] with c > 1 and
x ∈ N large. Under the Riemann hypothesis, Selberg proved that for c = 2 + ε
this holds, at least for almost all such intervals. A famous conjecture of Cramér [8]
asserts that for c = 2 + ε there should be a prime on [x, x + (log x)c] for large x,
even without any exceptional intervals, but this is not known even conditional on
the Riemann hypothesis. In Article [I], we show, improving the work of Harman
[35], that almost all intervals [x, x + (log x)3.51] contain a product of exactly two
primes, and almost all intervals [x, x+ (log x)1+ε] contain a product of exactly three
primes for any ε > 0, the latter result being nearly optimal. Numbers that are the
product of exactly two or three primes can be thought of as approximations to the
primes, and they have a rigid multiplicative structure in particular. It turns out
that these almost primes (discussed in detail in Section 3) have more flexibility than
the primes, and this is what enables us to prove much stronger results about them.

Another conjecture that combines multiplicative and additive structures is the bi-
nary Goldbach conjecture, dating from 1742 and stating that every even n ≥ 4 is the
sum of two primes. This remains an important open problem. On the other hand,
the ternary version of the problem, to the effect that every odd number n ≥ 7 is
the sum of three primes, was proved by Vinogradov [108] in 1937 for all sufficiently
large integers, and by Helfgott [43] in 2013 in the remaining cases. The essence of
many problems of Goldbach-type is showing that the primes do not correlate with
“additive sets” (such as the so-called Bohr sets, defined in Section 4.2). The binary
Goldbach conjecture has been known since the 1930s to be true for almost all even
n, so a natural question to examine is whether the conjecture remains true in almost
all cases when one only uses summands coming from a specific subset of the primes.
Improving a result of Matomäki [70], we show in Article [II] that this question has
a positive answer for primes represented by the polynomial x2 + y2 + 1; this subset
of the primes has also been studied in several other contexts [49], [115], [69] and is
an example of a sparse subset of the primes (that is, it has relative density 0 within
the primes). Continuing with the theme of additive problems in the primes, we
show that the primes of the form x2 +y2 +1 also contain infinitely many three-term
arithmetic progressions, and that the numbers αp, where α is a fixed irrational and

19
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p runs through such primes, are “well-distributed” modulo 1.

Turning our attention from primes to multiplicative functions, we also study the
Liouville function, λ(n), whose value is determined by the parity of the number of
prime factors of n. Chowla [7] posed in the 1960s the famous conjecture that the
Liouville function should behave independently along strings of consecutive integers,
taking any sequence of +1s and−1s with equal probability. More precisely, Chowla’s
conjecture can be written as the statement that

1

x

∑
n≤x

λ(n+ h1) · · ·λ(n+ hk) = o(1)

for any fixed k ≥ 1 and distinct h1, . . . , hk ∈ N. Thus, for example, the probability
that the Liouville function takes value +1 at both n and n + 1 should be 1

4
, the

product of the individual probabilities of the events λ(n) = 1 and λ(n + 1) =
1 (which have probability 1

2
). During the last few years, there has been a lot

of research activity surrounding Chowla’s conjecture, and several approximations
to the conjecture have been proved (see Section 5 for descriptions of them). In
particular, Tao [98] showed in 2015 that the two-point case of Chowla’s conjecture
holds with logarithmic weights, in the sense that

1

log x

∑
n≤x

λ(n+ h1)λ(n+ h2)

n
= o(1)

for any distinct h1, h2 ∈ N. In Article [III], jointly with Tao, we consider the higher
order cases and show that for odd values of k the k-point Chowla conjecture holds
with logarithmic weights. Our proof uses combinatorial tools, such as the theory of
Gowers norms, and is independent of and simpler than our earlier proof of the same
result in [100].

The Liouville function is an archetypal example of a multiplicative function, so it
is natural to believe that also shifts of more general multiplicative functions are
independent of each other under suitable assumptions. This was made precise by
Elliott [11] in the 1990s; he conjectured that one has the discorrelation estimate

1

x

∑
n≤x

g1(n+ h1) · · · gk(n+ hk) = o(1),

whenever g1, . . . , gk are multiplicative functions that take values in the unit disc,
h1, . . . , hk ∈ N are distinct shifts, and one of the functions gj is non-pretentious in
a suitable sense (we elaborate on this in Section 6). In 2015, Tao [98] proved that
Elliott’s conjecture holds for k = 2 with logarithmic weights, in the sense that

1

log x

∑
n≤x

g1(n+ h1)g2(n+ h2)

n
= o(1)

20
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under the same assumptions. In Article [IV], we show that Tao’s result on the
two-point logarithmic Elliott conjecture can be extended to a wider class of real-
valued multiplicative functions (with a main term in the asymptotic). This wider
class turns out to contain many functions of interest, such as indicator functions
related to smooth numbers (see Section 6 for details). Making use of this, we prove
a logarithmic version of a conjecture of Erdős and Turán [94] on the largest prime
factors of n and n + 1 . We also show that certain other sets constructed from
multiplicative functions behave independently at n and n+ 1, as one would expect
from the heuristic discussed above.

The structure of this thesis is as follows. In Sections 3, 4, 5 and 6, we introduce
the topics of the articles [I], [II], [III] and [IV], respectively, and give a wealth of
references to the literature on these and related questions. This is followed by the
original publications in the same order. The preprint versions of these publications
can also be found on the arXiv.org preprint server.

21
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3. Almost primes in very short intervals

In article [I], we study the problem of finding almost primes in almost all short
intervals. Since almost primes (defined subsequently) are an approximation to prime
numbers, we begin with an overview of conjectures and results on primes in short
intervals.

3.1. Heuristics and conjectures for primes in short intervals

The prime number theorem, a cornerstone in classical analytic number theory, states
that the number of primes π(x) up to x satisfies the asymptotic relation

π(x) = (1 + o(1))
x

log x
.

Interpreted probabilistically, this means that an integer n ≤ x chosen uniformly
at random is prime with probability (1 + o(1))/(log x). Based on this, H. Cramér
[8] introduced in the 1930s the heuristic model that the indicator function 1P(n) of
primes should behave for n ≤ x like a random variable Xn ∈ {0, 1} that equals 1
with probability 1/ log x. Moreover, he made the strong assumption that the Xn

are jointly independent of each other; this property of course does not hold for the
primes as such (since both n and n + 1 cannot be prime for n ≥ 3), but it serves
as a good approximation in various problems1. Cramér then deduced from basic
probability theory that if the Xn are as above, then the sum

∑
x−λ log x≤k<x Xk is

Bernoulli distributed with mean λ, and further that the Bernoulli distribution is
very closely approximated by the Poisson distribution with the same mean λ (in
the regime where λ > 0 is fixed and x → ∞). Thus, if the model of the primes as
the random variables Xn is adequate, the primes follow the Poisson distribution in
short intervals, in the sense that

1

x
|{n ≤ x : π(n+ λ log x)− π(n) = k}| = (1 + o(1))e−λ

λk

k!
(3.1)

for any fixed λ > 0 and k ∈ N. There is strong evidence in support of (3.1),
as Gallagher [20] showed that it would follow from a certain uniform version of
the widely believed Hardy–Littlewood prime tuples conjecture (for the non-uniform
version, see Subsection 5.1). From (3.1) one can deduce many further (yet unproved)
properties of the primes in short intervals; in particular, letting λ grow slowly with
x and taking k = 0, (3.1) would imply that, for any function ψ(x)→∞ as x→∞,
we have

π(x+ ψ(x) log x)− π(x) ≥ 1(3.2)

for almost all x ∈ N. By a more careful analysis of the tails of the Poisson distribu-
tion, one could similarly infer the stronger statement

π(x+ ψ(x) log x)− π(x) = (1 +O(ε))ψ(x)(3.3)

1There are more elaborate versions of Cramér’s model that take into account local obstructions;
see [23].
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for almost all x ∈ N, for any for any fixed ε > 0 and any given function ψ(x)→∞
with ψ(x) ≤ x (and with the implied constant in the O(·) notation being absolute).
Moreover, under the assumption that (3.1) holds uniformly for λ ≤ C log x with
C ≥ 1, the right-hand side of (3.1) is � 1/x, so one ends up with the following
conjecture2.

3.1. Conjecture (Cramér’s conjecture). There exists a constant C > 0 such that
the interval [x, x+ C(log x)2] contains a prime for all large enough x.

It seems that Cramér’s conjecture is out of reach even under the Riemann hypothe-
sis. Nevertheless, Selberg [91] showed that the Riemann hypothesis implies a version
of Cramér’s conjecture for almost all x.

3.2. Theorem (Selberg). Assume the Riemann hypothesis. Then, for any function
ψ(x) tending to infinity as x→∞, almost all intervals [x, x+ψ(x)(log x)2] contain
a prime.

When it comes to the existence of primes in all short intervals, the best statement
known under the Riemann hypothesis is that [x, x+ x1/2 log x] contains a prime for
all large x; see [90]. This remains very far from intervals of polylogarithmic length.
Let us mention in passing that Cramér’s model also gives probabilistic evidence for
the Riemann hypothesis; namely, if one redefines the random variables Xn slightly
to take the value 1 with probability 1/ log n, then one can use basic properties of
random walks to show that for any fixed ε > 0 we have∑

n≤x
Xn −

∫ x

2

dt

log t
� x1/2+ε

with probability 1, and the corresponding statement for 1P(n) in place of Xn is
well-known to be equivalent to the Riemann hypothesis.

The above indicates that results (whether conditional or unconditional) one can
prove about primes in almost all intervals tend to be considerably stronger than
what can be proved about primes in all short intervals. One fact that complicates
the study of primes in all short intervals is that there are actually some short
intervals where the primes notably deviate from their typical behavior. Namely,
Maier [67] showed in 1985 in a seminal work that, given any C > 0, there is a
constant η(C) > 0 such that for an infinite sequence of x ∈ N we have

π(x+ (log x)C)− π(x) > (1 + η(C))(log x)C−1,

and an analogous statement holds with the inequality reversed and 1−η(C) in place
of 1 + η(C). This is however not in contradiction with the Cramér model, as that
model only predicts how the primes should behave on typical intervals, instead of

2The above heuristic in fact suggests that C = 1 in Conjecture 3.1. There is however some reason
to doubt this choice of C, since a more refined version of the Cramér heuristic due to Granville
[23], which takes into account the local distribution of primes, predicts that C ≥ 2e−γ = 1.12 . . ..
It is nevertheless generally believed that there is a constant C such that Conjecture 3.1 is true.
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all intervals (at least if λ is fixed in (3.1)). In particular, the asymptotic (3.3) is
believed to be true on almost all intervals, and in [I] we prove some analogues of
(3.2) for the counting function of almost primes, with ψ(x) a very slowly growing
function, such as ψ(x) = (log x)ε.

3.2. Primes in all short intervals

The problem of detecting primes in short intervals has attracted wide interest in
analytic number theory over several decades; see for instance [38], [116], [48, Chapter
12] for treatises on this topic. There are still many open conjectures in this topic,
including the Cramér conjecture (Conjecture 3.1) mentioned above. A much more
approachable problem than Conjecture 3.1 is that of finding a real number θ ∈ (0, 1)
as small as possible such that every interval [x, x+xθ] with x large enough contains
a prime number. It is expected that any θ > 0 is admissible, as would follow from
Conjecture 3.1. The first result in this direction is Hoheisel’s result [46] from 1930,
with θ = 1 − δ for some small δ > 0 (he had δ = 1

33000
). The exponent θ was

improved several times during the following decades by various authors, by using
results on the theory of the Riemann zeta function and in particular zero density
estimates for it. In 1972, Huxley [47] proved that any θ > 7

12
is admissible, and this

was slightly improved to θ = 7
12

by Heath-Brown [40]. All of the above mentioned
results in fact provide an asymptotic of the form

π(x+ xθ)− π(x) = (1 + o(1))
xθ

log x
,(3.4)

where π(x) is the number of primes up to x; furthermore, when it comes to asymp-
totics of the type (3.4), the result θ = 7

12
is still the best one known.

Subsequent authors have considered the problem of obtaining lower bounds of the
correct order of magnitude for the number of primes in an interval, meaning esti-
mates of the form

π(x+ xθ)− π(x)� xθ

log x
.(3.5)

To achieve such bounds, one can utilize sieve methods in addition to zero density
estimates for the Riemann zeta function to obtain stronger results than for the
problem (3.4). Such improvements were achieved for instance in [51], [42], [86], [53],
[2], and the best result to date is that of Baker, Harman and Pintz [3], who reached
θ = 0.525.

The exponent θ = 1
2

certainly appears to be the limit of all known methods; as we
mentioned, even under the Riemann hypothesis it is only known that (3.4) is true
for all θ > 1

2
. For the same conclusion θ > 1

2
, it would suffice to assume the density
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hypothesis3, which is implied by the Riemann hypothesis. In conclusion, conjectures
related to the Riemann zeta function do not seem to enable getting information on
primes in all intervals of polylogarithmic length (unlike Conjecture 3.1).

3.3. Primes in almost all short intervals

Since known results on the problem of primes in all short intervals remain far from
what is being conjectured, it is worthwhile to consider the problem of primes in
almost all short intervals. Naturally, we say that almost all intervals [x, x + y(x)]
contain a prime if

|{n ≤ X : [n, n+ y(n)] ∩ P = ∅}| = o(X).(3.6)

Several authors have obtained much better results for (3.6) than for the problem of
finding primes in all short intervals. Regarding asymptotics for primes in almost all
short intervals, the best result is Huxley’s [47] with y(x) = xθ and θ > 1

6
in (3.6).

When one gives up asymptotics, one can again obtain much better results, as was
done in [36], [112], [54], and most recently by Jia in [55] with θ > 1

20
.

The natural barrier for the known methods is θ > 0; in particular, one is still far
from reaching unconditionally intervals that are as short as in Conjecture 3.1. In
analogy with the case of all short intervals, y(x) = xθ for all θ > 0 in (3.6) would
follow from the density hypothesis (and thus also from the Riemann hypothesis),
but has not been attained without resorting to such conjectures.

Nevertheless, if one assumes the full strength of the Riemann hypothesis, then
Selberg’s result (Theorem 3.2) nearly establishes Conjecture 3.1 in almost all cases.
Since Gallagher [20] proved that the Poisson distribution property (3.1) of the primes
holds under a uniform version of the Hardy–Littlewood prime tuples conjecture, by
the discussion of Subsection 3.1 even the optimally short intervals [x, x+ψ(x) log x]
contain a prime almost always under the uniform Hardy–Littlewood conjecture.
Heath-Brown [39] showed that the same result can be obtained by assuming the
Riemann hypothesis and a suitable uniform version of the pair correlation conjec-
ture for the zeroes of the Riemann zeta function. Needless to say, proving any of
these hypotheses seems to be out of reach for all known methods.

If we seek unconditional results in almost all short intervals that are of similar length
as in Theorem 3.2, we must relax the notion of primes somewhat. This leads to the
study of almost primes in short intervals.

3This hypothesis states that if σ ∈ [ 12 , 1] and N(σ, T ) is the number of zeros of the Riemann zeta

function in the rectangle [σ, 1]× [−T, T ] of the complex plane, then N(σ, T )� T 2(1−σ)+ε for any
fixed ε > 0.
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3.4. Almost primes in almost all short intervals

We define two classes of almost primes, the Ek numbers

Ek = {n ∈ N : Ω(n) = k}
and the Pk numbers

Pk = {n ∈ N : Ω(n) ≤ k},
where Ω(n) is the number of prime factors of n, counted with multiplicities. Then
we trivially have the relations P ⊂ Pk, Ek ⊂ Pk, and P = E1 = P1 \ {1}. Many
of the questions of interest for the set P of primes have also been investigated for
these sets of almost primes, often with significantly better unconditional results. For
works that study analogues of classical questions on the primes for the Ek numbers
see [21], [35], and for Pk numbers see [5], [81].

There are several reasons why the sets Ek and Pk can be viewed as good approxi-
mations4 to the set P. An obvious reason is of course that the Ek and Pk numbers
have only a bounded number of prime factors. In addition, if we denote by πk(x)
and π∗k(x) the counting functions of Ek and Pk numbers up to x, respectively, then
it is a classical result of Landau (see [102, Section II.6.1]) that we have

πk(x) = (1 + o(1))π∗k(x) = (1 + o(1))
x

log x
· (log log x)k−1

(k − 1)!
(3.7)

for fixed k, so the sets Ek and Pk have nearly the same density 1/(log x) on [1, x]
as P has. In article [I] and in many earlier works, one actually considers numbers
p1 · · · pk ≤ x with the constraint Pi ≤ pi ≤ P c

i for i ≤ k−1 for some suitably chosen
Pi ≤ x and c > 1, and it is not difficult to show that such numbers have cardinality
�c x

log x
up to x, just like the primes.

Another reason for the abundance of results on Pk numbers in analytic number the-
ory is that they are exactly the kind of numbers detected by sieve methods. Indeed,
sieve methods typically produce numbers n ≤ x with no prime factors p ≤ xc for
some c < 1

2
, which then means that n ∈ Pd1/ce−1. Here we see however an important

contrast between the Ek and Pk numbers, namely that the Ek numbers (just like
the primes) cannot be produced using only classical combinatorial sieves. Indeed,
the notorious parity problem in sieve theory, first discovered by Selberg (and dis-
cussed for example in [19, Chapter 16]), states that classical combinatorial sieves
cannot distinguish numbers with an odd and even number of prime factors from
each other. As Ek numbers have exactly k prime factors, they cannot be distin-
guished from Ek+1 numbers in such a manner (and so in particular, primes and
P2 numbers cannot be distinguished). Due to this, many results are significantly
weaker for Ek numbers than for Pk numbers, and the Ek numbers are a much closer

4Of course, the sets P and Ek are disjoint for k > 1, but so are for instance P and {2p : p ∈ P},
yet they have essentially the same distributional properties.
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approximation to the primes, since the sets P and Ek are both subject to the parity
problem. In problems involving Ek numbers in short intervals one therefore wants
to make use of the theory of Dirichlet polynomials (and in particular, the theory
of the Riemann zeta function), and the advantage compared to primes is that Ek
numbers offer more variables to work with in these Dirichlet polynomial bounds, a
substantial benefit in proving various estimates.

Concerning Pk numbers, there are very satisfactory short interval results. Notably,
Friedlander and Iwaniec [19, Chapters 6 and 11] proved that, for any function ψ(x)
tending to infinity with x, almost all intervals [x, x+ψ(x) log x] contain a P4 number.
They also hinted how to obtain the same result for P3 numbers. Mikawa proved in
turn that almost all intervals [x, x+(log x)5+ε] contain a P2 number. As both proofs
are based on classical sieve methods, they are not applicable to the corresponding
question for Ek numbers.

It is nevertheless the case that considerably stronger short interval results have
been obtained for the Ek numbers than for the primes. Motohashi [83] proved that,
for any ε > 0, almost all intervals [x, x + xε] contain an E2 number5. Soon after
that, Wolke [114] improved this to almost all intervals [x, x+(log x)c] for some large
constant c (he had c = 5·106). This was the first result for E2 numbers that involved
intervals of merely polylogarithmic length, as in Conjecture 3.1 and Theorem 3.2.
Harman [35] then gave a reasonable value of c, namely c = 7 + ε for any ε > 0.
In Article [I], we improve the exponent 7 + ε for E2 numbers to 3.51 and obtain a
nearly optimal result for E3 numbers.

3.3. Theorem (Article [I]). (a) Almost all intervals [x, x + (log x)1+ε] contain an
E3 number, for any fixed ε > 0.
(b) Almost all intervals [x, x+ (log x)3.51] contain an E2 number.

The result for E3 numbers is close to optimal, since by (3.7) there exists a posi-
tive proportion of intervals [x, x+ (log x)(log log x)−2] with no E3 numbers in them.
When it comes to E2 numbers, significantly improving the exponent 3.51 appears
difficult, since even under the density hypothesis the method used in [I] would only
improve the exponent to 3 + ε (for this, see [I, Remark 10]).

As a matter of fact, we prove the following quantitative version of Theorem 3.3,
where the prime factors of the E3 and E2 numbers that we detect are of specific
sizes.

3.4. Theorem (Article [I]). Let ε > 0 be small but fixed. Let X ≥ 1 be large enough.

Define the parameters P1 = (log logX)6+10
√
ε, P2 = (logX)ε

−2
and P ′1 = (logX)2.51.

5In the works [83], [114], [35], the numbers under consideration are E2 numbers, although the
wording “P2 numbers” is used there for lack of better terminology.
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Then, for P1 logX ≤ h ≤ X we have

1

X

∫ 2X

X

∣∣∣∣1h ∑
x≤p1p2p3≤x+h

p1∈[P1,P
1+ε
1 ]

p2∈[P2,P
1+ε
2 ]

1− 1

X

∑
X≤p1p2p3≤2X

p1∈[P1,P
1+ε
1 ]

p2∈[P2,P
1+ε
2 ]

1

∣∣∣∣2 dx = o

(
1

(logX)2

)
,(3.8)

and for P ′1 logX ≤ h′ ≤ X

1

h′

∑
x≤p1p2≤x+h′

p1∈[P ′1,(P
′
1)1+ε]

1 ≥ δ

X

∑
X≤p1p2≤2X
p1∈[P ′1,(P

′
1)1+ε]

1(3.9)

for some small absolute constant δ > 0 and almost all x ∈ [X, 2X].

By the prime number theorem and a simple application of Chebyshev’s inequality,
one can show that Theorem 3.4 indeed implies Theorem 3.3. We remark that in
[I] we also find Ek numbers on intervals whose lengths approach log x as k grows.
More precisely, almost all intervals [x, x+(log x)(logk−1 x)Ck ] contain an Ek number
for some constant Ck > 0. Subsequently, Goudout [22] considered Ek numbers in
almost all short intervals [x, x+ hk(x)] uniformly in the k aspect. He gave optimal
results for k � log log x and nearly optimal results for 5 ≤ k ≤ log log x.

3.5. Proof ideas for products of three primes

As in many previous works on primes and almost primes in short intervals, we re-
duce proving (3.8), and hence Theorem 3.3(a), to the study of Dirichlet polynomials.

More precisely, we use Perron’s formula and a Parseval-type inequality (which uti-
lizes the mean square present in (3.8)) to essentially reduce (3.8) to the correspond-
ing bound for Dirichlet polynomials:

∫ X/h

X0.01

|F (1 + it)|2 dt = o

(
1

(logX)2

)
, where F (s) :=

∑
X≤p1p2p3≤2X

p1∈[P1,P
1+ε
1 ]

p2∈[P2,P
1+ε
2 ]

(p1p2p3)−s;

(3.10)

strictly speaking, we also need to consider the integral over other intervals than
[X0.01, X/h], but this turns out to be the most difficult regime. See [I, Lemma
1, formula (4)] for a more precise version of (3.10). Reducing a problem about
short intervals to Dirichlet polynomials is advantageous, because the sum F (s) now
runs over a long interval and we can make use of various pointwise, mean value and
large values estimates for Dirichlet polynomials to estimate the mean square of F (s).

To effectively estimate these Dirichlet polynomials, we incorporate the method that
Matomäki and Radziwi l l [74] developed in 2015 for analyzing multiplicative func-
tions in very short intervals to the setting of almost primes in almost all short
intervals. Matomäki and Radziwi l l proved, as a special case of their breakthrough
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on multiplicative functions, that the Möbius function µ(n) has mean o(1) on almost
all intervals [x, x+ψ(x)], for any ψ(x) tending to infinity with x. This result suggests
that their method in [74] might imply something about primes or almost primes in
almost all short intervals, as well. However, for the case of primes the method is not
amenable, as a vital element of the proof is a combinatorial factorization identity
available for multiplicative functions (the Ramaré identity, [74, Formula (9)]). For
the primes there certainly is no analogous identity6. The indicator function of those
Ek numbers that we will consider, on the other hand, does have a useful factoriza-
tion, owing to the constraints for their prime factors in Theorem 3.4. Using this,
(3.10) roughly speaking takes the factorized form

∫ X/h

X0.01

|P1(1 + it)P2(1 + it)P3(1 + it)|2 dt = o

(
1

(logX)2

)
, Pj(s) :=

∑
Pj≤p≤P 1+ε

j

p−s

(3.11)

and P3 := X/P1P2 and the sum P3(s) is over a dyadic interval. Above we have sep-
arated the contribution of each of the variables pi and can estimate the polynomials
corresponding to different variables in different ways.

An estimate of the shape (3.11) is our goal in the proof of Theorem 3.3(a), but a
number of aspects of the Matomäki–Radziwi l l method require modifications when
working with Ek numbers; in particular, one needs to obtain logarithmic savings in
places where o(1) savings would suffice for multiplicative functions (for instance, in
[I, Lemma 4]). This is due to the fact that the Ek numbers are a sparse set, of density
roughly 1/(log x) up to x. Additionally, there is a part of the proof ([I, Proposition
3]), where we need a product of three Dirichlet polynomials of “significant length”,
in order to apply a L2 − L∞ bound to the mean square of their product (if we had
only one or two polynomials, we could not afford to apply a pointwise bound to
one of them; this is reminiscent of the differences in difficulty between binary and
ternary problems in applications of the circle method; see [107, Chapter 3]). We
do obtain three Dirichlet polynomials when dealing with E3 numbers, but two of
them are of minuscule length7 (reflecting the fact that we want to minimize the
length of the intervals on which we detect E3 numbers). We go around this issue by
applying Heath-Brown’s identity [52, Chapter 13] to decompose one of the “long”
Dirichlet polynomials into a product of either two “zeta sums” or three “prime-
factored polynomials” (for these concepts, see [I, Section 1.2, Section 2.5]). We
then employ a result of Watt [111] (which generalizes the fourth moment bound of
the Riemann zeta function) to deal with mean squares of the resulting zeta sums,

6It is the case that the indicator function of the primes can be “factorized” into a Dirichlet convolu-
tion, by means of Vaughan’s or Heath-Brown’s identities [52, Chapter 13], but these factorizations
are not nearly flexible enough.
7The lengths of the Dirichlet polynomials involved will be roughly (log log x)6, (log x)ε

−2

and

x(log x)−ε
−2

, the first two of which are too short for pointwise bounds.
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whereas the mean square of the product of three prime-factored polynomials can
be dealt with the mentioned L2−L∞ approach. These are the main ingredients we
use for the E3 part of Theorem 3.3.

3.6. Proof ideas for products of two primes

For obtaining good results about E2 numbers, we make use of all the above-mentioned
ideas, as well as some additional ones. One could readily apply the strategy we used
for E3 numbers to obtain the exponent 5 + ε for E2 numbers (see [I, Section 4.1]; in
the case of the exponent 5 + ε, we would even get an asymptotic formula on almost
all short intervals for the number of E2 numbers with prime factors in certain ranges,
as in the E3 case). The fact that we have only two variables to work with in the case
of E2 numbers appears to make improving the exponent hard. However, we can ap-
ply the principle of Harman’s sieve to gain more flexibility. Firstly, we can increase
the number of variables by applying the Buchstab identity, a number-theoretic form
of the inclusion-exclusion identity. This identity allows us to decompose

Sh(x) : =
∑

x≤p1p2≤x+h
P ′1≤p1≤(P ′1)1+ε

1,

for any choice of 1 ≤ w <
√
x, as

Sh(x) =
∑

x≤p1n≤x+h
P ′1≤p1≤(P ′1)1+ε

(n,P(w))=1
n>1

1−
∑

x≤p1q1n≤x+h
P ′1≤p1≤(P ′1)1+ε

w≤q1<
√
x

(n,P(q1))=1
n>1

1

=
∑

x≤p1n≤x+h
P ′1≤p1≤(P ′1)1+ε

(n,P(w))=1
n>1

1−
∑

x≤p1q1n≤x+h
P ′1≤p1≤(P ′1)1+ε

w≤q1<
√
x

(n,P(w))=1
n>1

1 +
∑

x≤p1q1q2n≤x+h
P ′1≤p1≤(P ′1)1+ε

w≤q2<q1<
√
x

(n,P(q2))=1
n>1

1

:= Σ1(h)− Σ2(h) + Σ3(h).

We take here w = Xη(X) for a suitable function η(X) tending to 0. (In particular,
w is small enough for the fundamental lemma of sieve theory [19, Chapter 6] to be
applicable). As we will see later, the first two sums Σ1(h),Σ2(h) are asymptotically
equal to their dyadic counterparts h

X
Σ1(X) and h

X
Σ2(X), respectively, for almost all

x ∈ [X, 2X]. For the sum Σ3(h), however, we are not able to prove an asymptotic
unless we impose some additional conditions on the sizes of the variables qi. Let
Σ
′
3(h) be the part of Σ3(h) that we can evaluate asymptotically (to be asymptotic

to the normalized dyadic version of the same sum), and let Σ′′3(h) ≥ 0 be the rest
(the part that we can evaluate is expressed precisely in [I, Subsection 6.3] as the
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sums Σ
(1)
3 (h) and Σ

(2)
3 (h)). Then, for almost all x ∈ [X, 2X], we get

1

h
Sh(x) =

1

h
(Σ1(h)− Σ2(h) + Σ3(h))

=
1

X
Σ1(X)− 1

X
Σ2(X) +

1

h
Σ′3(h) +

1

h
Σ′′3(h) + o

(
1

logX

)
≥ 1

X
(Σ1(X)− Σ2(X) + Σ′3(X)) + o

(
1

logX

)
=

1

X
SX(X)− 1

X
Σ′′3(X) + o

(
1

logX

)
.

Hence, proving (3.9) has been reduced to establishing the mentioned asymptotics for
Σ1(h),Σ2(h) and Σ′3(h), and additionally to showing that Σ′′3(X) ≤ (1− 2δ)SX(X)
for some fixed δ > 0. Clearly, the part Σ′3(h) of Σ3(h) that we can evaluate must
be large enough for this upper bound to hold. It turns out that if we look for E2

numbers on intervals of length [x, x+ (log x)c], then we should take P ′1 = (log x)c−1

in the definitions of Sh(x) and Σi(h), and the smaller P ′1 is, the harder Σ3(h) is
to estimate. We can give by the prime number theorem an asymptotic for Σ′′3(X)
(since the sum is over a dyadic interval) in terms of multidimensional “Buchstab
integrals” [38, Chapter 3], [I, Section 6.3.3], and we compute that if c = 3.51 above,
the sum Σ′′3(X) is indeed smaller than the main term SX(X). We are thus left with
showing asymptotics for Σ1(h),Σ2(h),Σ′3(h)

The proofs of the asymptotics of the sums Σ1(h),Σ2(h) and Σ′3(h) follow the same
strategy as in the E3 case, but make use of some additional inputs. We reduce the
problem to the setting of Dirichlet polynomials, so that the aim is to prove that
(3.10) holds for the Dirichlet polynomials F (s) that correspond to Σ1(h),Σ2(h) and
Σ′3(h). By applying a simple sieve to Σ1(h) and Σ2(h), they become type I sums
(meaning a sum having a long, unrestricted integer variable), and therefore we can
employ Watt’s mean value theorem as in the E3 case to handle them.

The sum Σ′3(h), in turn, is a type II sum (it has several variables of substantial
length, but these variables come with weights), and is more difficult to estimate.
However, we have restricted the sizes of the variables in a suitable manner in this
sum, making asymptotic evaluation possible. We utilize the ideas from the E3 case
together with the theory of exponent pairs [I, Section 5.1] and better large values
theorems for Dirichlet polynomials [I, Lemma 7] to obtain the bound (3.10) for the
Dirichlet polynomial corresponding to Σ′3(h), and this then implies that Σ′3(h) has
the desired asymptotic.

We have now outlined the main strategy for proving Theorem 3.3; the details can
be found in [I].
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4. The Goldbach problem for primes of a special form

4.1. The Goldbach conjectures

The Goldbach conjectures, proposed by Goldbach in a letter to Euler in 1742, are
some of the most influential and well-known problems in analytic number theory.
The ternary Goldbach conjecture asserts that every odd integer n ≥ 7 is the sum
of three primes. The binary Goldbach conjecture in turn claims that every even
integer n ≥ 4 can be written as the sum of two primes; this is still unsolved.
The binary Goldbach conjecture is evidently stronger than the ternary one, since
if n = p1+p2 is a sum of two primes, then n+3 = p1+p2+3 is a sum of three primes.

The ternary conjecture was settled in all but finitely many cases by Vinogradov
[108] in 1937 in a work that redefined the Hardy–Littlewood circle method.

4.1. Theorem (Vinogradov). Every large enough odd integer n can be written as
n = p1 + p2 + p3 with p1, p2, p3 ∈ P.

For a modern proof of Theorem 4.1, see [107, Chapter 3]. It took until 2013 before
Theorem 4.1 was extended to all n ≥ 7; this was achieved by Helfgott [43], by
introducing new ideas both on the analytic and numerical sides. Although the
binary analogue of Vinogradov’s result has resisted all attempts to a full resolution,
shortly after Vinogradov’s proof it was shown independently by Chudakov, van der
Corput and Estermann that we have the following approximation (see [107, Chapter
3]).

4.2. Theorem (Almost all cases of binary Goldbach). Almost all even integers n
can be expressed as n = p1 + p2, where p1, p2 ∈ P.

Here and in what follows, by “almost all” we mean that the number of exceptional
even integers n ≤ N is o(N).

Given that one has such an approximation to the binary Goldbach conjecture, one
may contemplate a number of refinements, such as strengthening the bound for the
number of exceptions

E(X) := |{n ≤ X : n ≡ 0 (mod 2), n not a sum of two primes}|.
This question was considered most notably by Montgomery and Vaughan [82], who
obtained E(X) � X1−δ for some fixed δ > 0. The bound was improved by Chen
and Pan [6], Li [64] and Lu [66], among others, the last of whom holds the record
δ = 0.121. In a somewhat different direction, one can try to minimize θ > 0 such
that every interval [X,X + Xθ] with X large contains a sum of two primes. This
was investigated in [84], [85], [63], among others, and in Jia’s work [56], where the
best known result θ = 7

108
+ ε was obtained.

In Article [II], we had a different generalization of Theorems 4.1 and 4.2 in mind,
namely a version of the problem where only a specific subset of the primes are
allowed as summands.
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4.2. The Goldbach problem for subsets of the primes

When looking for a problem which is more challenging than the ternary Goldbach
problem, but (hopefully) more manageable than the binary Goldbach problem, the
following problem naturally arises.

4.3. Problem (Ternary Goldbach for subsets of the primes). Let P ⊂ P be a given
interesting subset of the primes. Is it the case that all large enough odd n can be
represented as n = p1 + p2 + p3 with p1, p2, p3 ∈ P?

Whether Problem 4.3 has a positive or negative answer crucially depends on the
distribution of the set P in arithmetic progressions and more general Bohr sets.
These are sets of the form ⋃

i≤m
{n ∈ N : ‖αin‖ ≤ ηi}(4.1)

with αi ∈ R, ηi ∈ (0, 1). If we take αi ∈ Q, we see that arithmetic progressions are
a special case of Bohr sets. Now, if for example P = {p ∈ P : p ≡ 1 (mod 3)}, then
only integers of the form n ≡ 0 (mod 3) can be represented as a sum of three primes
from P . Similarly, if P = {p ∈ P : ‖

√
2p‖ < 1

10
}, then every n representable as a

sum of three primes from P satisfies ‖
√

2n‖ < 3
10

, a property that fails for a positive
proportion of odd n. In light of these examples where the answer to Problem 4.3 is
negative, we would like the set P studied in Problem 4.3 to contain a fair proportion
of elements from each Bohr set of the form (4.1).

It is only in recent years that interesting subcases of Problem 4.3 have been solved.
In 2014, Shao [92] showed that Problem 4.3 has an affirmative answer for any subset
P ⊂ P of relative lower density8 greater than 5

8
. Perhaps surprisingly, this is optimal

when taking only the density into consideration: the subset

P := {p ∈ P : p ≡ 1, 2, 4, 7, 13 (mod 15)}

has density 5
8

and, by simple modular arithmetic, sums of three of its elements are
never ≡ 14 (mod 15). Matomäki and Shao [77] considered Problem 4.3 for signifi-
cantly sparser but specific subsets of the primes. Their subsets of interest are the
Chen primes and the bounded gap primes9. Chen primes are primes p such that
p + 2 has at most two prime factors; the infinitude of such primes was proved by
Chen [5] in 1973. The bounded gap primes are primes p such that the interval
[p, p + C] contains at least two primes for some large, fixed C, and their infinitude
was proved in the celebrated work of Zhang [117] in 2013 and in a more general
form by Maynard [80] and Tao (unpublished) in 2014.

8We define the relative lower density of B ⊂ A with respect to A as lim inf
N→∞

|B ∩ [1, N ]|
|A ∩ [1, N ]| .

9The latter set does not have a standardized name.
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Problem 4.3 should be compared to the problem of locating three-term arithmetic
progressions in the set P , which also involves studying a linear equation in the
primes.

4.4. Problem (Three-term arithmetic progressions in subsets of the primes). Let
P ⊂ P be a given interesting subset of the primes. Is it the case that P contains
infinitely many solutions to p1 + p3 = 2p2 with p1, p2, p3 ∈ P distinct?

As with Problem 4.3, a number of special cases of Problem 4.4 have been solved.
Concerning this, Green [25] proved Roth’s theorem for the primes10, stating that
any subset of the primes of positive relative upper density11 contains infinitely many
non-constant three-term arithmetic progressions. This was famously generalized to
k-term arithmetic progressions by Green and Tao [27]. In another work, Green and
Tao [26] showed that the Chen primes satisfy Roth’s theorem.

The approach that Green and Green–Tao developed for this type of problems is
called a transference principle, as it allows one to transfer information (such as
Roth’s theorem) from dense subsets of the integers to sparse ones (such as the
primes) under suitable conditions. Intuitively speaking, the principle says that if
A ⊂ [1, N ] is a set with |A| = δN and δ = δ(N) > 0, then A contains many three-
term arithmetic progressions, provided that the normalized indicator δ−11A(n) has
a pseudorandom majorant (that is, a majorizing function ν(n) that has mean � 1
and has small Fourier coefficients) and that δ−11A(n) is “Fourier bounded” (that is,
its Fourier transform has small Lr norm for r > 2). This version of the transference
principle is specific to the translation-invariant linear equation x+z = 2y, and does
as such not apply to the setting of Problem 4.3. Indeed, the set {p ∈ P : ‖

√
2p‖ <

1
10
} is an example of a set that contains an abundance of arithmetic progressions

(since it is a positive relative density set of the primes) but, as mentioned earlier,
has no solutions to n = p1 + p2 + p3 for many odd n. Therefore, to deal with
Problem 4.3, one needs a different version of the transference principle, which takes
into account the distribution of P in Bohr sets (an example of which is the fractional
part set above); we shall discuss this later in this section.

4.3. Statements of results

In Article [II], we study Problem 4.3 for the specific subset

P := {p ∈ P : p = x2 + y2 + 1, x, y ∈ Z},
consisting of primes representable as values of the polynomial x2 + y2 + 1. There
are a number of reasons why the set P is interesting. Firstly, it is perhaps the
simplest non-trivial example of a sparse subset of the primes consisting of the val-
ues of a multivariate polynomial. When it comes to single-variable polynomials,

10The theorem is named so, since Roth [88] proved that positive upper density subsets of the
integers contain infinitely many non-trivial three-term arithmetic progressions.

11The relative upper density of a set A ⊂ B with respect to B ⊂ N is lim sup
N→∞

|B ∩ [1, N ]|
|A ∩ [1, N ]| .
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only degree one polynomials have been proved to produce infinitely many primes
(by Dirichlet’s theorem, under a coprimality condition), so one should turn to mul-
tivariate polynomials for interesting unconditional results. Concerning irreducible
binary quadratic forms ax2 + bxy+ cy2, which are some of the simplest multivariate
polynomials, the Chebotarev density theorem can be used to characterize when such
a form represents infinitely many primes. When the form does represent infinitely
many primes, Chebotarev’s theorem implies that the relative density of such primes
is 1

2
. Therefore, binary quadratic forms do not produce sparse subsets of the primes.

We mention that there are also some interesting higher degree multivariate polyno-
mials that are known to represent infinitely many primes. Friedlander and Iwaniec
[18] showed that the polynomial x2 + y4 takes infinitely many prime values, Heath-
Brown [41] showed that x3 + 2y3 has the same property, and Maynard [79] showed
this property for an infinite class of more general polynomials called norm forms.
The sets of primes corresponding to these polynomials have cardinalities� X1−δ up
to X for some δ > 0, so they are certainly sparse subsets of the primes. Since primes
represented by these polynomials have not been studied in arithmetic progressions
to large moduli, the Goldbach problem appears formidable for them.

The set P of primes represented by x2+y2+1 is also a sparse subset of the primes; an
application of Selberg’s sieve provides the bound |P ∩ [1, N ]| � N(logN)−

3
2 (to see

this, note that if m ∈P ∩ [N
2
, N ], then (m,

∏
p≤z p) = (m−1

k2
,
∏

p≤z,p≡3 (mod 4) p) = 1

for z = N0.01 and for some k ∈ N). It is known that P is infinite, a result first
shown by Linnik [65] in 1960, using his dispersion method. Later, a sieve-theoretic
proof of this was given by Iwaniec [50], making use of the linear and semilinear
sieves. Iwaniec’s proof also established the matching lower bound |P ∩ [1, N ]| �
N(logN)−

3
2 . Subsequently, various properties of the set P have been investigated;

in particular, it has been studied over short intervals [115], [69], and variants of the
Goldbach problem have been studied for this set. In 2008, Matomäki [70] showed
that almost all even n 6≡ 2 (mod 6) can be expressed as n = p + q with p ∈ P
and q ∈ P a generic prime. Next, Tolev [104] gave an asymptotic formula for the
representations of such n as n = p + q with p ∈ P, q ∈ P, again for almost all n.
In another work [105], he considered the corresponding ternary Goldbach problem
and showed that every large enough odd n can be written as n = p + q + r with
p, q ∈P and r ∈ P. We strengthen these results by solving Problem 4.3 for the set
P.

4.5. Theorem (Article [II]). Every large enough odd n can be represented as n =
p1 + p2 + p3 with p1, p2, p3 ∈P.

We also improve Matomäki’s result [70] by settling almost all cases of the binary
Goldbach problem for P.

4.6. Theorem (Article [II]). Almost all even integers n 6≡ 5, 8 (mod 9) can be
represented as n = p1 + p2 with p1, p2 ∈P.
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Note that the condition n 6≡ 5, 8 (mod 9) is necessary, since in the complementary
case the fact that p ≡ 1, 2, 5 or 8 (mod 9) for primes p = x2 + y2 + 1 6= 3 shows
that p1 or p2 equals 3 in the representation n = p1 + p2, in which case we could only
represent � N(logN)−1 integers up to N .

We also investigate Problem 4.4 in Article [II], again for the specific set P. We are
able to resolve this problem and, more generally, to prove Roth’s theorem for P.

4.7. Theorem (Article [II]). The set P contains infinitely many non-trivial three-
term arithmetic progressions. More generally, any subset of

P∗ := {p ∈ P : p = x2 + y2 + 1, x, y coprime}

having positive relative upper density contains infinitely many non-trivial three-term
arithmetic progressions.

We remark that subsequently Sun and Pan [95] generalized this result by proving
that the set P contains arbitrarily long arithmetic progressions.

One more topic considered in Article [II] is the distribution of irrational multiples
of primes belonging to the subset P. For the whole set of primes, such results take
the form:

For all α ∈ R \Q, β ∈ R we have ‖αp+ β‖ < p−θ for infinitely many p ∈ P,
(4.2)

where θ is a constant whose value we are attempting to maximize. The first result
in this direction was that of Vinogradov [109] with θ = 1

5
− ε. This was improved

several times, notably by Vaughan [106] to θ = 1
4
− ε, by Harman [37] to θ = 3

10
,

and by Jia [57] to θ = 9
28

. In the special case β = 0, the record is Matomäki’s result

[72] with θ = 1
3
− ε.

The problem (4.2) has also been studied for Chen primes in [71], [93], Piatetski-
Shapiro primes in [32], and Gaussian primes in [1]. Here we obtain the first result
concerning (4.2) for the subset P of the primes.

4.8. Theorem (Article [II]). Let ε > 0. For any α ∈ R \Q and β ∈ R, we have

‖αp+ β‖ < p−
1
80

+ε

for infinitely many p ∈P.

This establishes that the elements of P are somewhat uniformly distributed in Bohr
sets. We remark that the exponent 1

80
in Theorem 4.8 could be improved by a more

careful analysis in [II, Sections 8-9]; we however confined ourselves to showing that
one can get some positive, explicit exponent.
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4.4. Method of proof

Our proofs of Theorems 4.5 and 4.6 do not apply the classical circle method, but
rather a transference principle for ternary equations. Let us first describe why the
traditional circle method approach is not applicable to the set P.

The starting point of Vinogradov’s proof of Theorem 4.1, and many subsequent
developments of the circle method, is the reduction of the problem to analyzing
exponential sums via the identity

|{(p1, p2, p3) ∈ P3 : N = p1 + p2 + p3}| =
∫ 1

0

S(α)3e(−Nα) dα, S(α) :=
∑
p≤N

e(αp).

This identity is seen to hold by expanding out S(α)3 and applying the orthogonality
identity

1n=0 =

∫ 1

0

e(nα) dα.

One then examines separately the major arc case α ∈ M, where α is close to a
rational number with small denominator, and the opposite minor arc case α ∈
m := [0, 1] \M. For α ∈ M, the sum S(α) is often “large”, and one can evaluate
it asymptotically by the Siegel–Walfisz theorem. For α ∈ m, in turn, one expects
S(α) to be “small”, and this can be proved with the help of Vaughan’s identity,
which transforms sums over primes to bilinear sums. We refer to [107, Chapter 3]
for details of the method.

If we applied the same strategy to Theorem 4.5, we would run into trouble, since
we do not have a good understanding of

SP(α) :=
∑
p≤N
p∈P

e(αp),

neither in the major arc nor in the minor arc case. In the major arcs, the problem
is that we only have upper and lower bounds for |P ∩ [1, N ]| that are off by a
constant factor, and hence we have no asymptotic even for SP(0). In the minor
arc case, the difficulty is that no analogue of Vaughan’s identity is known for the
indicator function 1P(n). For these reasons, the classical circle method is not the
right line of attack for Theorem 4.5. We mention though that if one studies the
ternary Goldbach problem with two of the three prime variables coming from the
subset P, then the circle method coupled with sieve methods is applicable; see [70],
[105].

The proofs of Theorems 4.5 and 4.6 are instead based on a transference type princi-
ple of Matomäki and Shao [77, Theorem 2.3]. Roughly speaking, the principle says
that if N is large and a set A ⊂ [1, N ] with |A| = δN obeys, for some fixed δ0 > 0
(and small enough η = η(δ0)) the properties
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(i) (well-distribution in Bohr sets) |A ∩ (B − t)| ≥ δ0|A||B|/N for t ∈ [N/4, N/2]
and all Bohr sets12 B with |B| ≥ ηN ;

(ii) (Fourier boundedness)
∑

ξ∈ZN |δ−11̂A(ξ)| 52 ≤ δ−1
0 ;

(iii) (Non-sparseness) |A ∩ [0.1N, 0.4N ]| ≥ δ0 · δN ,

then there exist a1, a2, a3 ∈ A such that N = a1 + a2 + a3. The actual formulation
of the transference-type principle is somewhat more involved; we refer to [77, The-
orem 2.3] for the details. The principle can also be generalized to work for almost
all cases of binary problems; see [II, Proposition 2.1] for this. We also note that
Matomäki, Maynard and Shao [73] developed a different transference-type principle
for Goldbach-type problems; this version allowed them to improve the exponent for
the Goldbach problem with almost equal variables [73, Theorem 1.1].

We will apply the transference principle essentially to

A := {n ≤ N : Wn+ b ∈P}(4.3)

with

δ �
(

W

ϕ(W )

) 3
2

(logN)−
3
2 ,

where (b,W ) = 1 and W =
∏

p≤w p for some large, fixed w. This “W -trick” of re-
stricting to primes in a residue class is necessary to guarantee the well-distribution
of A in arithmetic progressions (which are a special case of Bohr sets).

Intuitively, condition (i) of the transference principle guarantees that A contains a
fair proportion of each Bohr set (which, as we indicated in Subsection 4.2, is neces-
sary); condition (ii) is related to the existence of a pseudorandom majorant13; and
condition (iii) says that A is not too concentrated on certain subintervals.

The main task in the proofs of Theorems 4.5 and 4.6 is then verifying the conditions
(i)–(iii) of the transference principle for the specific set A given by (4.3). Condition
(iii) is the simplest to check and follows with minor modifications from Iwaniec’s
proof of the infinitude of P. Condition (ii), the Fourier boundedness condition,
is closely related to the restriction theory of the primes, a topic studied by Green
[25] and Green–Tao [26]. To obtain (ii), we roughly speaking want to construct a
function β : N → R≥0 that enjoys the majorization property δ−11A(n) ≤ Cβ(n),
has mean value � 1 (so that β is essentially a probability measure on [1, N ]), and
has a Fourier expansion that is of “low enough complexity”. In other words, β is a
pseudorandom majorant for 1A in a suitable sense. Then, under these conditions,

12We defined Bohr sets in formula (4.1).
13In [II, Section 4], we show that the existence of a suitable pseudorandom majorant implies (ii),
and then we construct such a majorant.
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[26, Proposition 4.2] implies a restriction estimate(∑
ξ∈ZN

∣∣∣∣∣ 1

N

∑
n≤N

anβ(n)e

(
−ξn
N

)∣∣∣∣∣
r)1/r

≤ Cr

(
1

N

∑
n≤N
|an|2β(n)

)1/2

for all complex numbers an and fixed r > 2. Taking

an =

{
δ−11A(n)
β(n)

, β(n) 6= 0

0, β(n) = 0,

(so that |an| � 1) we deduce, in particular, that

∑
ξ∈ZN
|δ−11̂A(ξ)| 52 �

(
1

N

∑
n≤N

β(n)

)5/4

� 1.

Naturally, we still need to prove that such a pseudorandom majorant β exists. It
turns out that the Selberg upper bound sieve does the job, and to see this we closely
follow a paper of Ramaré and Ruzsa [87].

The majority of the proofs of Theorems 4.5 and 4.6 is then devoted to proving
condition (i), well-distribution in Bohr sets. In other words, we wish to analyze
sums of the form ∑

n≤N
n∈P

1B(n),

where B is a Bohr set (or a smoothed version thereof). By applying a weighted
form of the linear and semilinear sieves (as developed in [II, Section 6], following
Iwaniec’s work in [49]), we reduce the problem to showing that the count of primes
in Bohr sets has a good enough level of distribution. More precisely, we want to
find levels of distribution ρ1, ρ2 ∈ (0, 1) as large as possible, such that the following
holds. For a set L ⊂ N of “bilinear type” (in the sense that it consists of integers
having a certain type of factorization), we have∑

d≤Nρ1

λ+,LIN
d

∑
`≤N0.9

`∈L

( ∑
N≤n≤2N
n=`p+1

n≡0 (mod d)

1B(n)− 1

ϕ(d)

∑
N≤n≤2N

1B(n)

` log n
`

)
� N

(logN)100
,(4.4)

and ∑
d≤Nρ2

λ−,SEM
d

( ∑
N≤p≤2N

p≡1 (mod d)

1B(p)− 1

ϕ(d)

∑
N≤p≤2N

1B(p)

)
� N

(logN)100
,(4.5)

where B is a Bohr set (or a smoothed version of it), λ+,LIN
d are the upper bound

linear sieve weights with level D1 = Nρ1 and sifting parameter z1 = N1/5 and λ−,SEM
d
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are the lower bound semilinear sieve weights with level D2 = Nρ2 and sifting pa-
rameter z2 = N1/3−ε (see Section 1 for a precise definition of sieve weights and [II,
Hypothesis 6.4] for the exact, slightly more complicated statements of interest).

By expanding 1B(p) as a finite Fourier series (and a small error), we then need
to bound the Bombieri–Vinogradov type averages (4.4) and (4.5) with an additive
character e(αp) in place of 1B(p). In the case of the linear sieve weights (which
have the well-factorability property defined in [19, Chapter 12]), we manage to
obtain the good value ρ1 = 1

2
− ε for the level of distribution by following [71].

The semilinear sieve weights, however, are not well-factorable, and the level of
distribution ρ2 = 1

3
− ε obtained for general weights in [103, Lemma 1] is not

good enough for our purposes. We therefore prove a combinatorial factorization
of semilinear sieve weights [II, Lemma 9.2] by following the principle of Harman’s

sieve [38, Chapter 3], and this enables us to show that the weights λ−,SEM
d have

“enough flexibility” in their factorizations as Dirichlet convolutions. This amount
of flexibility allows us to achieve the better level of distribution ρ2 = 3

7
− ε, which

is good enough for our needs. The details of the proof can be found in [II].
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5. On the logarithmic Chowla conjecture

5.1. Chowla’s conjecture

The Liouville function, a fundamentally important function in multiplicative number
theory, is defined as λ(n) := (−1)Ω(n), where Ω(n) is the number of prime factors
of the integer n counted with multiplicities. This function is closely related to
the more well-known Möbius function, given by µ(n) := (−1)Ω(n) · 1n squarefree; in
particular, they are both multiplicative functions having value −1 at the primes.
The distribution of the Liouville function (or equally well of the Möbius function)
appears highly random (like a series of coin flips) and in particular, consecutive
values of the Liouville function should be asymptotically independent of each other.
This was formalized by Chowla [7] in 1965 as the following assertion.

5.1. Conjecture (Chowla’s conjecture). For any k ≥ 1 and any distinct shifts
h1, . . . , hk ∈ N, we have

1

x

∑
n≤x

λ(n+ h1) · · ·λ(n+ hk) = o(1).(5.1)

The conjecture can be interpreted as stating that shifted products of the Liouville
function have mean 0. Alternatively, the conjecture can be stated in the following
equivalent form from which it is clearer that it is a statement about the independence
of simultaneous values of the Liouville function.

5.2. Conjecture (Chowla’s conjecture, sign pattern formulation). For any k ≥ 1,
any signs ε1, . . . , εk ∈ {−1,+1}, and any distinct shifts h1, . . . , hk ∈ N, we have

lim
x→∞

1

x
|{n ≤ x : λ(n+ h1) = ε1, . . . , λ(n+ hk) = εk}| = 2−k.

To see that Conjectures 5.1 and 5.2 are indeed equivalent, one can simply substitute
λ(n+ hi) = εi(2 · 1λ(n+hi)=εi − 1) into (5.1) and expand the product.

We remark that Conjecture 5.1 could be generalized to the assertion that

1

x

∑
n≤x

λ(a1n+ h1) · · ·λ(akn+ hk) = o(1),(5.2)

whenever the non-degeneracy condition aihj 6= ajhi for 1 ≤ i < j ≤ k is fulfilled.
One could also formulate Conjecture 5.1 with the Möbius function in place of the
Liouville function; one can show by elementary sieve theory that such a conjecture
would still follow from (5.2). Conjecture 5.2, however, takes a more complicated
form for the Möbius function, as for example the events µ(n) = 1, µ(n + 1) = 1,
µ(n+ 2) = 1 and µ(n+ 3) = 1 are not independent (at most three of them can hold
simultaneously, since one of the values is 0).

Conjectures 5.1 and 5.2 resemble the famous Hardy-Littlewood prime tuples con-
jecture [34], and they can be thought of as simpler analogues of it.
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5.3. Conjecture (Hardy-Littlewood prime tuples conjecture). Let h1, . . . , hk ∈ N
be distinct integers. Then the von Mangoldt function Λ(n) has the correlation
asymptotics

1

x

∑
n≤x

Λ(n+ h1) · · ·Λ(n+ hk) = S(h1, . . . , hk) + o(1),

with S(h1, . . . , hk) an effectively computable constant satisfying S(h1, . . . , hk) > 0
if and only if the polynomial (n+ h1) · · · (n+ hk) has no fixed prime divisor.

A connection between the Chowla and Hardy-Littlewood conjectures is hinted by
the identity

Λ(n) =
∑
d|n

µ(d) log
n

d
,

which binds together the Möbius and von Mangoldt functions. Nevertheless, one
would need a strong error term of the form O((log x)−A) on the right-hand side of
(5.2) to be able to have a rigorous implication from Conjecture 5.1 to Conjecture
5.3. None of the current progress on Chowla’s conjecture (for k ≥ 2) has produced
such good error terms.

In its original form, Chowla’s conjecture is open for all k ≥ 2. The simplest k = 1
case

1

x

∑
n≤x

λ(n) = o(1)

can be shown to be equivalent to the prime number theorem and, more generally,

1

x

∑
n≤x

λ(an+ h) = o(1)

is equivalent to the prime number theorem in arithmetic progressions.

Despite this lack of progress on the original conjecture, starting from 2015 there
has been major progress on different variants of Chowla’s conjecture. Matomäki
and Radziwi l l [74] proved, while showing cancellation in very short averages of
multiplicative functions, that, for any h ∈ N,

lim sup
x→∞

∣∣∣∣∣1x∑
n≤x

λ(n)λ(n+ h)

∣∣∣∣∣ ≤ 1− δ(h)

for some δ(h) > 0. This was the first nontrivial progress towards the two-point
Chowla conjecture (for the odd order cases, the analogous result was proved by
Elliott [11]). Soon after this result, Matomäki, Radziwi l l and Tao [75] showed that

42



43

Chowla’s conjecture (as well as the more general Elliott’s conjecture, discussed in
Chapter 6) holds on average over the shifts, in the sense that

1

H(x)k

∑
h1,...,hk≤H(x)

∣∣∣∣∣1x∑
n≤x

λ(n+ h1) · · ·λ(n+ hk)

∣∣∣∣∣ = o(1)(5.3)

for any H(x) ≤ x tending to infinity with x. If one could take H(x) bounded, one
would of course obtain Chowla’s conjecture. The result (5.3) was generalized by
Frantzikinakis [15] to averages where the shifts are given by independent multivari-
ate polynomials.

Another interesting approximation to Chowla’s conjecture is obtained by adding
weights to the conjecture. The logarithmic weights 1

n
are a fruitful choice, since

they have the property that ∑
x/2≤n≤x

1
n∑

n≤x
1
n

= o(1),

or in other words that the measure of the interval [x
2
, x] is small. We will see the

usefulness of this in Subsection 5.3

In this direction, Tao [98] made a breakthrough by settling the two-point case of
Chowla’s conjecture with logarithmic weights.

5.4. Theorem (Tao). For any distinct h1, h2 ∈ N, we have

1

log x

∑
n≤x

λ(n+ h1)λ(n+ h2)

n
= o(1).(5.4)

In fact, Tao proved an analogous approximation to Elliott’s conjecture (see Section
6) from which (5.4) follows as a special case.

In light of the result (5.4), it is natural to study in detail the logarithmic variant of
Chowla’s conjecture.

5.5. Conjecture (The logarithmic Chowla conjecture). For any k ≥ 1 and any
distinct shifts h1, . . . , hk ∈ N, we have

1

log x

∑
n≤x

λ(n+ h1) · · ·λ(n+ hk)

n
= o(1).

Tao’s result [98] is the k = 2 case of this. In [100] and [III], Tao and the author
settled Conjecture 5.5 for all odd k. Therefore, the cases k = 1, 2, 3, 5, 7, 9 . . . of the
conjecture are now known, whereas the even cases k ≥ 4 remain open.
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5.6. Theorem (Tao-T., [100], [III]). Let k ≥ 1 be odd and a1, . . . , ak, h1, . . . , hk ∈ N.
Then we have

1

log x

∑
n≤x

λ(a1n+ h1) · · ·λ(akn+ hk)

n
= o(1).(5.5)

There is no need to assume a non-degeneracy condition on ai and hi here, since such
a condition makes a difference only for even k.

Our first proof of Theorem 5.6 in [100] utilized deep results of Leibman [62] and Le
[61] from ergodic theory, as well as the theory of nilsequences. On the other hand,
the proof in [100] gave a general structural theorem for correlations of multiplicative
functions, of which Theorem 5.6 is a special case.

The second proof, which we present in [III], proceeds along rather different lines,
since after applying the so-called entropy decrement argument from [98, Section 3],
we do not employ ergodic theory machinery, but use combinatorial results instead.
The proof via this method turns out to be both shorter and simpler; in the proof
given in [100], the case of the Liouville function was not significantly easier than the
case of arbitrary multiplicative functions. Using this combinatorial proof, it would
in addition be possible to obtain quantitative error bounds for the right hand side
of (5.5); however, these error terms were not analyzed in [III], due to the fact that
the error bounds would be very weak14.

Since Chowla’s conjecture can be stated as a claim about the sign patterns of the
Liouville function, it is natural that Theorem 5.6 also implies something about sign
patterns. We showed in [100] that Theorem 5.6, together with the two-point result
and some additional considerations, gives the following.

5.7. Theorem (Tao-T., [100], [III]). Let ε1, ε2, ε3, ε4 ∈ {−1,+1}4. Then we have

lim
x→∞

1

x
|{n ≤ x : λ(n+ 1) = ε1, λ(n+ 2) = ε2, λ(n+ 3) = ε3}| =

1

8

and

lim inf
x→∞

1

x
|{n ≤ x : λ(n+ 1) = ε1, λ(n+ 2) = ε2, λ(n+ 3) = ε3, λ(n+ 4) = ε4}| > 0.

We also proved the analogous results for the Möbius function15. These improve the
result of Matomäki, Radziwi l l and Tao [76] on sign patterns of length 3, as well as
Tao’s result on sign patterns in [98, Corollary 1.7].

14For the k = 2 case of (5.5), Tao’s method [98] gives an error term of the form O((log log log x)−c)
for some c > 0. For k ≥ 3, we expect even worse error terms.
15In the case of µ(n), we of course need to exclude from the four-point result those sign patterns
(ε1, ε2, ε3, ε4) ∈ {−1, 0,+1}4 which cannot occur for trivial reasons, and in the three point result
the density of the set is some function of εi ∈ {−1, 0,+1} instead of 1

8 .
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5.2. Connections to other conjectures

Chowla’s conjecture can be viewed as one instance of the Möbius randomness law
from [52, p. 338], a heuristic stating that the Möbius function (or the Liouville
function) should behave randomly. Another manifestation of this heuristic is a con-
jecture of Sarnak [89], which states that µ(n) does not correlate with any bounded
sequence of “low complexity”. The complexity of a sequence a : N → C is mea-
sured in terms of its topological entropy, which is the infimum of all σ > 0 such
that sets of the form {a(n), a(n + 1), . . . , a(n + k − 1)} ⊂ Ck can be covered with
≤ exp((σ + o(1))k) balls of any fixed radius. With this definition, Sarnak’s conjec-
ture takes the form below.

5.8. Conjecture (Sarnak). Let a : N → C be a bounded sequence of topological
entropy 0. Then we have

1

x

∑
n≤x

µ(n)a(n) = o(1).

Sarnak’s conjecture has been extensively studied in the ergodic theory literature,
and many important special cases have been verified; see [14] for a survey. In the
ergodic theory literature, one usually assumes in Conjecture 5.8 the (equivalent)
condition for the sequence a that it can be written as a(n) = F (T nX) for (X,T ) a
topological dynamical system of zero topological entropy and F : X → C continuous.
Here we will not work with the dynamical systems definition, and instead refer to
[89] for its details.

It was already observed by Sarnak that his conjecture would follow from Chowla’s
conjecture. In [99], Tao strengthened the connection between the two conjec-
tures by showing that their logarithmic forms are equivalent (that is, Conjecture
5.5 is equivalent to Conjecture 5.8 with (1/(log x))

∑
n≤x µ(n)a(n)/n in place of

(1/x)
∑

n≤x µ(n)a(n)). He also showed that both of these conjectures are equivalent
to the yet unproved “logarithmic local Gowers uniformity of the Liouville func-
tion”, which can be thought of as a short exponential sum estimate for the Liouville
function and contains as the simplest case the Matomäki-Radziwi l l theorem [74].
Further works that lie at the intersection of the Sarnak and Chowla conjectures
include [10] and [17]. In the latter, Frantzikinakis and Host verify many new cases
of the logarithmic Sarnak conjecture, and as a byproduct obtain also a “minor arc”
Chowla-type result

1

log x

∑
n≤x

λ(n+ h1) · · ·λ(n+ hk)
e(αn)

n
= o(1)

for any k ≥ 1 and any fixed irrational α. In Article [III], however, we do not
make progress on Sarnak’s conjecture, since it is the even order cases of Chowla’s
conjecture that are needed in the proof that Chowla’s conjecture implies Sarnak’s.
It seems therefore that the even order cases lie deeper, and indeed in [100, Remark
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1.7] we observed that the 2k-point case of the logarithmic Chowla conjecture (with
dilations as in (5.2)) implies the (k + 1)-point case.

5.3. Proof ideas

The proof of the odd order cases of the logarithmic Chowla conjecture in [III] starts
with the averaging over small primes and entropy decrement arguments devised in
[98] to deal with the two-point case of the conjecture. The averaging argument
enables us to replace a correlation average over n with a double average over n and
p for p belonging to some small scale, thus offering more flexibility. More precisely,
if we define

fx(a) :=
1

log x

∑
n≤x

λ(n+ a) · · ·λ(n+ ak)

n

(assuming for simplicity that a1 = · · · = ak = 1 and hj = j in Theorem 5.6), then
the multiplicativity property λ(pn) = −λ(n) for all primes p allows us to write

fx(1) = − 1

log x

∑
p≤n′≤px

λ(n′ + p) · · ·λ(n′ + pk)

n′
p1p|n′ + o(1)(5.6)

for any prime p and for odd k (for even k we would have a + sign). Taking averages
over p, we get the identity

fx(1) = −m
2m

∑
2m≤p<2m+1

1

log x

∑
p≤n′≤px

λ(n′ + p) · · ·λ(n′ + pk)

n′
p1p|n′ +O(ε)

for ε−1 ≤ m ≤ log log x. Since logarithmic averages are slowly varying, we can
replace the average over p ≤ n′ ≤ px with an average over n ≤ x (this is the benefit
of logarithmic averaging). Thus we have

fx(1) = −m
2m

∑
2m≤p<2m+1

1

log x

∑
n≤x

λ(n+ p) · · ·λ(n+ pk)

n
p1p|n +O(ε).(5.7)

for ε−1 ≤ m ≤ log log x.

We wish to replace the factor p1p|n′ with its average value 1 + O(ε) in order to
get a bilinear sum over n′ and p, for which there are many tools available. This is
enabled by Tao’s entropy decrement argument [98] (with refinements in [96], [100],
[III]), which draws ideas from probability and information theory to show that this
replacement can be done for “almost all” scales m in (5.7).

We elaborate on this part of the argument. Firstly, by using the approximate
translation invariance of averages, (5.7) becomes

fx(1) = − 1

log x

∑
n≤x

m

22m

∑
2m≤p<2m+1

∑
j≤2m

λ(n+ j + p) · · ·λ(n+ j + pk)

n
p1p|n+j +O(ε)

(5.8)
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which is a more convenient form to work with. The task is then to show that, for
most choices of the scale m, the sign pattern Xm(n) := (λ(n), λ(n + 1), . . . , λ(n +
2m+2 − 1)) and the divisibility conditions Ym(n) := (n mod p)2m≤p<2m+1 behave
essentially independently (with respect to the logarithmic probability on [1, x]).

In the language of information theory, we thus want to show that if Xm and Ym

are interpreted as random variables, the entropy16 H(Ym) is essentially the same as
the conditional entropy H(Ym|Xm) (the two entropies are equal if Ym and Xm are
independent, so a small difference between them amounts to near independence).
In other words, we want the mutual information

I(Xm,Ym) := H(Ym)−H(Ym|Xm)(5.9)

to be small for most m; more precisely, it should be of size ε10 · 2m/m, whereas the
trivial upper bound is ≤ H(Ym) � 2m. As mentioned above, mutual information
reflects how close two random variables are to being independent (in particular, the
information is maximal when one of the two random variables is a deterministic
function of the other).

By applying inequalities from information theory, and an insightful pigeonholing
argument, Tao showed in [98] that one can indeed bound (5.9) by ≤ ε10 · 2m/m, not
for all scales m, but for infinitely many m. In [III, Section 3], we need a refinement
of this, to the effect that ifM(x, ε) is the set of scales m ≤ log log x for which (5.9)
is > ε102m/m, then ∑

m∈M(x,ε)

1

m
� ε−20,

say. In paricular, the set of suitable scales has logarithmic density 1. We refer to
[96], [III, Proposition 4.3] for the details17.

After applying the entropy decrement argument, we know that we can replace in
(5.7) the factor p1p|n with 1 +O(ε) for all m ≤ log log x outside a set whose sum of
reciprocals over [1, log log x] is� ε−20. In particular, we can average logarithmically
over different scales m to reach

fx(1) = − 1

log2H2 − log2H1

∑
H1≤p≤H2

1

p

1

log x

∑
n≤x

λ(n+ p) · · ·λ(n+ kp)

n
+O(ε)

(5.10)

for Hj = Hj(x) tending to infinity slowly enough and H1(x) growing slowly enough
in terms of H2(x). Here log2 x is the second iterate of log x.

16For the definitions of entropy and other related notions from information theory, see Section 1.
17For technical reasons, those works deal with a more general notion of information, namely
conditional mutual information.
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We can apply the same argument again to the right-hand side of (5.10), finding

fx(1) = +
1

log2H2 − log2H1

∑
H1≤p1≤H2

1

p1

1

log2H4 − log2H3

∑
H3≤p2≤H4

1

p2

1

log x

∑
n≤x

λ(n+ p1p2) · · ·λ(n+ kp1p2)

n
+O(ε),

(5.11)

where H1 < H2 < H3 < H4 and Hj(x) grows slowly enough in terms of Hj+1(x),
and H4(x) tends to infinity slowly. Crucially, we have a + sign in (5.11) and a −
sign in (5.10); this allows us to break the symmetry of the correlations.

We can easily replace the averages over primes with averages over the integers
weighted by the von Mangoldt function Λ(d), so (5.10) (with H1 and H2 replaced
with H3 and H4) and (5.11) take the forms

fx(1) = − 1

log2H4 − log2H3

∑
H3≤d≤H4

Λ(d)

d log d

1

log x

∑
n≤x

λ(n+ d) · · ·λ(n+ kd)

n
+O(ε)

(5.12)

and

fx(1) = +
1

log2H2 − log2H1

∑
H1≤d1≤H2

Λ(d1)

d1 log d1

1

log2H4 − log2H3

∑
H3≤d2≤H4

Λ(d2)

d2 log d2

1

log x

∑
n≤x

λ(n+ d1d2) · · ·λ(n+ kd1d2)

n
+O(ε),

(5.13)

respectively.

We now encounter multilinear averages of the form

1

N2

∑
d≤N

∑
n≤N

θ(d)f1(n+ d) · · · fk(n+ kd),(5.14)

where f1, . . . , fk : N → C are some functions with |fi| ≤ 1 and θ : N → C is some
other function (in this case a normalized version of Λ(d)). The expression (5.14)
thus counts patterns of the form (d, n+ d, . . . , n+ kd) with weights. Such averages
have been widely studied both in the additive combinatorics and the ergodic theory
literature (see for instance [101, Chapter 11]), and by a version of the so-called
generalized von Neumann theorem [III, Lemma 5.2], it turns out that one has the
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bound18 ∣∣∣∣∣ 1

N2

∑
d≤N

∑
n≤N

θ(d)f1(n+ d) · · · fk(n+ kd)

∣∣∣∣∣ ≤ Ck‖θ‖Uk[N ] + o(1),

where ‖θ‖Uk[N ] is the Uk Gowers norm of θ on [1, N ] (see [101, Chapter 11]). Thus,
analyzing (5.12) and (5.13) has been reduced to understanding the Gowers norm of
Λ(Wn+ b)− 1, where W =

∏
p≤w p, (b,W ) = 1, and w is a large constant.

It is known that the W -tricked von Mangoldt function has negligible Gowers norms;
this was proved by Green, Tao and Ziegler in a series of breakthroughs [28],[29],[30],
[31]. Therefore, we can remove the von Mangoldt function weight both in the
average (5.12) and the average (5.13), after splitting the sums into residue classes
(mod W ). This leads, after some considerations, to

fx(1) =
W

ϕ(W )

1

log2H4 − log2H3

∑
H3≤d≤H4
(d,W )=1

1

d log d log x

∑
n≤x

λ(n+ d) · · ·λ(n+ dk)

n
+O(ε)

= −fx(1) +O(ε).

(5.15)

Importantly, fx(1) appears with different signs in (5.15), so fx(1) = O(ε), after
which we can send ε→ 0. This concludes the sketch of the proof; for the full proof,
see [III].

18As is shown for example in [101, Chapter 11], the weighted arithmetic progression patterns
(n+ d, . . . , n+ kd) are controlled by the Uk−1 Gowers norm, but the pattern (d, n+ d, . . . , n+ kd)
in (5.14) has “complexity” one higher, and should thus be controlled by the Uk Gowers norm.
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6. Binary correlations of multiplicative functions and applications

Article [IV] is concerned with binary correlations of multiplicative functions with
logarithmic averaging. Before stating the results of that article, we review what is
known and conjectured on correlations of multiplicative functions.

6.1. Correlations of multiplicative functions

A function g : N→ C is called multiplicative if it satisfies g(mn) = g(m)g(n) when-
ever m,n ∈ N are coprime. In what follows, we will restrict attention to 1-bounded
multiplicative functions, that is, multiplicative functions taking values in the unit
disk D := {z ∈ C : |z| ≤ 1}, since much less is known about the behavior of
unbounded multiplicative functions.

A fundamental notion in multiplicative number theory is the pretentious distance
D(f, g;x) between two multiplicative functions f, g : N→ D, introduced by Granville
and Soundararajan [24]. This quantity is defined as

D(f, g;x) :=

(∑
p≤x

1− Re(f(p)g(p))

p

)1/2

,(6.1)

and it is a pseudometric19 and, heuristically, if f and g “behave similarly” (when
it comes to their mean values or correlations), then the distance between them is
“small”.

The Dirichlet characters χ(n) and the Archimedean characters nit are important
classes of 1-bounded multiplicative functions, and although their complexity is rel-
atively low in the sense that χ(n) is periodic and nit is slowly varying, one usually
wants to exclude these functions when studying mean values or correlations of mul-
tiplicative functions, as these two classes of functions exhibit different behavior from
other functions in this context. One thus classifies 1-bounded multiplicative func-
tions as either
(i) pretentious, in the sense that D(g, χ(n)nit;∞) <∞ for some Dirichlet character
χ and some t ∈ R,
or
(ii) non-pretentious, in the sense that D(g, χ(n)nit;∞) = ∞ for all Dirichlet char-
acters χ and all t ∈ R.

By the zero-free region for the Dirichlet L-functions, the Liouville function λ(n)
from Section 5 is non-pretentious, whereas any multiplicative function f : N → D
with f(p) 6= 1 for only finitely many primes p is an example of a pretentious function
(one can take χ ≡ 1, t = 0 in (i)).

19This means that it satisfies the axioms of a metric, excluding the property that d(x, y) = 0 ⇒
x = y.
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The mean values

1

x

∑
n≤x

g(n)(6.2)

of multiplicative functions are connected to many topics of interest in multiplicative
number theory, including the prime number theorem and its generalizations, sieve
methods, and probabilistic number theory. The asymptotics of these mean values
are described by a theorem of Halász [33] from the 1960s (generalizing a theorem of
Wirsing [113] from the real-valued case), and the result demonstrates the need for
distinguishing pretentious and non-pretentious functions from each other.

6.1. Theorem (Halász). Let g : N → D be a 1-bounded multiplicative function.
Then
(i) If there exists t ∈ R such that D(g, nit;∞) <∞, we have

1

x

∑
n≤x

g(n) = (1 + o(1))
xit

1 + it

∏
p

(
1− 1

p

)(
1 +

g(p)

p1+it
+

g(p2)

p2(1+it)
+ · · ·

)
.

(ii)If no such t exists, we have

1

x

∑
n≤x

g(n) = o(1).

For a proof of the theorem, see [102, Section III.4]. Among other things, Theorem
6.1 implies that if g : N → [−1, 1] is real-valued, then the mean value of g always
exists (that is, (6.2) converges as x→∞).

We wish to understand the much more general correlation averages of bounded
multiplicative functions g1, . . . , gk : N→ D, defined as

1

x

∑
n≤x

g1(n+ h1) · · · gk(n+ hk),(6.3)

where h1, . . . , hk ∈ N are fixed, distinct integers. These correlations have a number
of applications; most notably, in the case of the Liouville function showing that
the correlations are small reduce to the celebrated Chowla conjecture, discussed in
Section 5 and in particular, gives information on the sign patterns of the Liouville
function, studied in [76], [98], [100], [17]. In a very different and surprising direction,
Tao [97] used his breakthrough on two-point correlations to settle the Erdős discrep-
ancy problem [13] in combinatorics. There are further applications to discrepancy
of multiplicative functions in [58], rigidity theorems for multiplicative functions in
[60], and to distribution laws of additive functions in [12]. In article [IV], we give
further applications, discussed in Subsection 6.2.

The central conjecture pertaining to (6.3) is that of Elliott [11], [12] from the 1990s.
His conjecture states that, in the case where at least one of g1, . . . , gk : N → D is
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non-pretentious, distinct shifts of the functions gj should behave independently of
each other.

6.2. Conjecture (Elliott). Let k ≥ 1 and let g1, . . . , gk : N → D be 1-bounded
multiplicative functions and h1, . . . , hk ∈ N distinct shifts. Then we have

1

x

∑
n≤x

g1(n+ h1) · · · gk(n+ hk) = o(1)(6.4)

unless for all 1 ≤ j ≤ k there exists a Dirichlet character χj such that

lim inf
x→∞

inf
|t|≤x

D(gj, χj(n)nit;x) <∞.

The formulation above takes into account the observation in [75, Appendix B] that
the original conjecture in [11], [12] has to be slightly modified in the complex-valued
case. As in the case of Halász’s theorem (Theorem 6.1), the property (6.4) often
fails in the pretentious case; for example

1

x

∑
n≤x

nit(n+ 1)−it = 1 + o(1) and
1

x

∑
n≤x

χ3(n)χ3(n+ 1) = −1

3
+ o(1),

where χ3 is the real non-principal Dirichlet character modulo 3. On the other hand,
a theorem of Klurman [58, Theorem 1.3] gives a formula for (6.3) in the case where
g1, . . . , gk are fixed pretentious functions.

In the form presented above, Conjecture 6.2 is open for all k ≥ 2, whereas the
k = 1 case follows from Theorem 6.1. However, several variants of (6.4) have been
established in the last few years. In particular, Matomäki, Radziwi l l and Tao [75]
showed that Elliott’s conjecture holds on average over the shifts h1, . . . , hk. Tao [98]
made another breakthrough by proving the binary case k = 2 of Elliott’s conjecture
with logarithmic averaging.

6.3. Theorem (Tao). Let g1, g2 : N→ D be 1-bounded multiplicative functions and
h1 6= h2 natural numbers. Then we have

1

log x

∑
n≤x

g1(n+ h1)g2(n+ h2)

n
= o(1)

unless for both j ∈ {1, 2} there exists a Dirichlet character χj such that

lim inf
x→∞

inf
|t|≤x

D(gj, χj(n)nit;x) <∞.

For many purposes, this logarithmic averaging is acceptable; see [97], [58], [60] for
some applications. In [100] we generalized Theorem 6.3 to the higher order cases
k ≥ 3, under an additional non-pretentiousness assumption on the product of the
functions involved.
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6.4. Theorem (Tao-T., [100]). Let k ≥ 1 and let g1, . . . , gk : N → D be 1-bounded
multiplicative functions and h1, . . . , hk ∈ N natural numbers. Then we have

1

log x

∑
n≤x

g1(n+ h1) · · · gk(n+ hk)

n
= o(1)

unless there exists a Dirichlet character χ for which the product g1 · · · gk weakly
pretends to be χ, in the sense that D(g1 · · · gk, χ;x)2 = o(log log x).

We applied this result to settle the odd order cases of the logarithmically averaged
Chowla conjecture; see Section 5.

Let us also mention a different line of study to Elliott’s conjecture, namely two-
dimensional variants of it. The two-dimensional version of Elliott’s conjecture states
that

1

x2

∑
d≤x

∑
n≤x

g1(n+ dh1) · · · gk(n+ dhk) = o(1),

given the assumptions of Conjecture 6.2. This was proved by Frantzikinakis and
Host in [16], and further works on two-dimensional correlations include those of
Matthiesen [78] and Klurman–Mangerel [59].

6.2. The result and its applications

In Article [IV], we generalize Tao’s result on the binary logarithmic Elliott conjec-
ture, but in a different direction than in [100], where higher order correlations were
considered. Namely, we show that for a large class of real-valued multiplicative
functions g1, g2 : N → [−1, 1] we can give an asymptotic formula for their correla-
tion (and typically the asymptotic formula has a nonzero main term). The class of
functions we consider is defined as follows.

6.5. Definition (Uniformity assumption). Let x ≥ 1, 1 ≤ Q ≤ x and η > 0. For a
function g : N→ D, denote g ∈ U(x,Q, η) if we have the estimate∣∣∣∣1x ∑

x≤n≤2x
n≡a (mod q)

g(n)− 1

qx

∑
x≤n≤2x

g(n)

∣∣∣∣ ≤ η

q
for all 1 ≤ a ≤ q ≤ Q.

From Halász’s theorem we see (as was observed in [IV, Remark 1.3]) that if g : N→
D is non-pretentious in the sense that inf |t|≤xD(g, χ(n)nit;x) ≥ ε−10 for all Dirichlet
characters χ of modulus ≤ ε−10 (and with ε > 0 small), then g ∈ U(x, ε−1, ε) for
x ≥ x0(ε). This means that the class of functions in Definition 6.5 is larger than the
class of real-valued functions considered in Conjecture 6.2 or in [98]. Very impor-
tantly, Definition 6.5 allows the multiplicative function g to depend on the summa-
tion length x, as will be the case in our applications. One can for example show that
if α ∈ (0, 1) is given, then the indicator of smooth numbers20 g(n) := 1n is xα−smooth

is a multiplicative function satisfying g ∈ U(x, ε−1, ε) for x ≥ x0(ε, α), although g

20We say that n is y–smooth (also called y-friable) if n has no prime factor larger than y.
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pretends to be 1 on the interval [1, x].

The main result in [IV] then states that if g1, g2 : N→ [−1, 1] are two multiplicative
functions, possibly depending on x, and g1 is uniformly distributed at scale x in the
sense of Definition 6.5, then the shifts of g1 and g2 are independent of each other.

6.6. Theorem (Article [IV]). Let a small real number ε > 0, a fixed integer shift

h 6= 0, and a function ω : R≥1 → R≥1 with 1 ≤ ω(X) ≤ log(3X) and ω(X)
X→∞−−−→∞

be given. Let x ≥ x0(ε, h, ω). Then, for any multiplicative functions g1, g2 : N →
[−1, 1] with g1 ∈ U(x, ε−1, ε), we have

1

logω(x)

∑
x

ω(x)
≤n≤x

g1(n)g2(n+ h)

n
=

(
1

x

∑
x≤n≤2x

g1(n)

)(
1

x

∑
x≤n≤2x

g2(n)

)
+ oε→0(1).

(6.5)

Here oε→0(1) denotes some function that tends uniformly to 0 as ε→ 0. Note also
that even if h < 0 in Theorem 6.6, g2(n + h) is still well-defined, as the function
x0(·) above can be chosen to be large enough, so that x

ω(x)
> h for x ≥ x0(ε, h, ω).

As mentioned, Theorem 6.6 contains the real-valued case of Tao’s result [98] and
shows that g1 and g2 are discorrelated in the sense that the correlation of g1 and g2

is the product of their mean values. In the complex-valued case, Theorem 6.6 does
not hold as such, as is seen by taking g1 and g2 to be suitable Archimedean charac-
ters (such as g1(n) = g2(n) = nit with t 6= 0). It would nevertheless be possible to
generalize it to the case where g1 and g2 take values in roots of unity of a fixed order.

Theorem 6.6 could also be generalized to the case of functions that are uniformly dis-
tributed only in coprime residue classes, instead of all residue classes as in Definition
6.5. However, this would significantly complicate the main term on the right-hand
side of (6.5) and make it dependent on the shift h (as is seen by considering the
simple example g1(n) = g2(n) = 1n≡1 (mod 2)). Therefore, we do not pursue this
generalization.

The utility of Theorem 6.6 lies in its uniformity over the choice of the functions
g1, g2. For example, the theorem can be applied to the interesting cases
(i) g(n) = 1n is xα−smooth

and
(ii) g(n) = χQ(n) where χQ is a real non-principal character (mod Q) with Q =
Q(x) ≤ x4−ε cube-free21 (so Q can be very large in terms of x).
In the case of (i), the result of [98] is clearly not applicable, and also in case (ii), for

21We say that n is cube-free if p3 - n for all primes p.
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all we know, it could be that22 D(χQ, 1;x) � 1, in which case [98] does not apply.
The range Q ≤ x4−ε in (ii) is the same as in a celebrated estimate of Burgess [4], a
special case of which implies that∑

n≤x
χQ(n) = o(x),(6.6)

uniformly for Q ≤ x4−ε cube-free. We note that (6.6) is not enough to exclude the
(unlikely) scenario that χQ(p) = 1 for all p ≤ xε.

We mentioned earlier the result of Klurman [58, Theorem 1.3] that gives an asymp-
totic formula for the correlations (6.3) in the case where all the functions g1, . . . , gk
are fixed and pretentious. Nevertheless, this asymptotic cannot be applied to (i) or
(ii), since both of these two functions depend on x in a very essential way, whereas
in [58] it is necessary that the functions are (almost) independent of x (in fact, the
asymptotic formula in [58, Theorem 1.3] does not predict the correct asymptotic for
the autocorrelations of the functions in (i) or (ii)).

As the examples (i) and (ii) indicate, Theorem 6.6 should yield new results on
consecutive smooth (friable) numbers and quadratic residues. We confirm this in
[IV]. Define the function P+(n) that outputs the largest prime factor of n ∈ N, with
the convention that P+(1) = 1. Then n is y–smooth if and only if P+(n) ≤ y. The
distribution of smooth numbers is well-understood (see [45] for a survey), but much
more elusive is the simultaneous distribution of two or more consecutive smooth
numbers. Related to this, Erdős and Turán [94] posed the following problem.

6.7. Conjecture. The asymptotic density23 of the set

{n ∈ N : P+(n) < P+(n+ 1)}
exists and equals 1

2
.

By applying Theorem 6.6 to the indicator function of xα–smooth numbers for various
α, and doing some additional deductions, we were able to prove a logarithmic variant
of this conjecture.

6.8. Theorem (Article [IV]). The logarithmic density24 of the set

{n ∈ N : P+(n) < P+(n+ 1)}
exists and equals 1

2
.

22It is a well-known conjecture, due to Vinogradov, that, for any ε > 0 and any Q ≥ Q0(ε), there
is a quadratic nonresidue modulo Q on [1, Qε]. But this is open, and if it fails, then χQ pretends
to be 1 on [1, Q].
23We define the asymptotic density of A ⊂ N as limx→∞ 1

x

∑
n≤x,n∈A 1, whenever the limit exists.

The upper and lower asymptotic densities are defined analogously with lim sup and lim inf.
24We define the logarithmic density of A ⊂ N as limx→∞ 1

log x

∑
n≤x,n∈A

1
n , whenever the limit

exists. The upper and lower logarithmic densities are defined analogously with lim sup and lim inf.
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We mention in passing that we also proved in [IV] some generalizations of Theorem
6.8, including a logarithmic version of a conjecture of Erdős and Pomerance ([IV,
Theorem 1.12]).

We can also say something about asymptotic densities of sets related to two consec-
utive smooth numbers. In this case, we are not able to determine the precise value
of the density, but we can at least show that the lower density is positive.

6.9. Theorem (Article [IV]). Let a, b, c, d ∈ (0, 1) be real numbers with a < b and
c < d. Then the set

{n ∈ N : na < P+(n) < nb, nc < P+(n+ 1) < nd}
has positive asymptotic lower density.

This theorem implies a result of Hildebrand [44], which is the special case (a, b) =
(c, d) (Hildebrand also considers more general “stable sets”, in addition to sets
of smooth numbers). Our theorem also reproves a recent result of Wang [110,
Théorème 2] on the truncated largest prime factor P+

y (n) := max{p ≤ y : p | n}
at two consecutive integers. This result states that, if a ∈ (0, 1) is fixed, then
P+
xa(n) < P+

xa(n+ 1) for a positive lower density of integers n ≤ x.

Another source for applications of Theorem 6.6 is the collection of real non-principal
Dirichlet characters whose modulus Q(x) grows moderately fast in terms of x. A
fundamental result of Burgess [4] from 1963 says, among other things, that if χQ is
a non-principal Dirichlet character of cube-free25 modulus Q = Q(x), and ε > 0 is
fixed, then ∑

n≤x
χQ(n) = o(x),(6.7)

uniformly for Q ≤ x4−ε. The range of Q here is still the best one known up to the
ε in the exponent.

By employing the Burgess bound (6.7), we can show that if χQ is as above with
Q ≤ x4−ε cube-free, then the uniformity assumption χQ ∈ U(x, η−1, η) holds for
x ≥ x0(η, ε); see [IV, Section 4]. Therefore, Theorem 6.6 implies a result on the
sums of χQ along reducible quadratics n(n+ h).

6.10. Theorem (Article [IV]). Let a small number ε > 0, a fixed integer h 6= 0, and
a function 1 ≤ ω(X) ≤ log(3X) tending to infinity be given. For x ≥ x0(ε, h, ω),

let Q = Q(x) ≤ x4−ε be a cube-free natural number with Q(x)
x→∞−−−→ ∞. Then, the

real primitive Dirichlet character χQ modulo Q satisfies

1

logω(x)

∑
x

ω(x)
≤n≤x

χQ(n(n+ h))

n
= o(1).(6.8)

25We say that Q is cube-free if it is not divisible by the cube of any prime.
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Moreover, if Q is as before and QNR denotes quadratic nonresidue26, we have

1

log x

∑
n≤x

n, n+1 QNR (mod Q)

1

n
=

1

4

∏
p|Q

(
1− 2

p

)
+ o(1)(6.9)

and

1

x
|{n ≤ x : n and n+ 1 QNR (mod Q)}| �

∏
p|Q

(
1− 2

p

)
.(6.10)

We remark that the well-known Weil bound [52, Theorem 11.23] for character sums
would give, for prime values of Q, the estimate (6.8) only in the smaller range

Q = o( x2

log x
).

Lastly, we employ Theorem 6.6 to study the number of large prime factors of
consecutive integers. For y ≥ 1, define the truncated count of prime factors as
ω>y(n) := |{p > y : p | n}|. It is natural to conjecture that the numbers of large
prime factors (say > nε) of n and n+ 1 are independent. Choosing in Theorem 6.6
multiplicative functions of the form zω>xa (n) with z ∈ [−1, 1], and using a generating
function argument, we show that this independence property indeed holds, at least
in the logarithmic sense.

6.11. Theorem (Article [IV]). Let a, b ∈ (0, 1) be real numbers and 0 ≤ k < 1
a
,

0 ≤ ` < 1
b

integers. Then, if δ(·) stands for logarithmic density, we have

δ({n ∈ N : ω>na(n) = k, ω>nb(n+ 1) = `})
= δ({n ∈ N : ω>na(n) = k}) · δ({n ∈ N : ω>nb(n) = `}).

Moreover, the set {n ∈ N : ω>na(n) = k, ω>nb(n+ 1) = `} has positive asymptotic
lower density.

Theorem 6.11 in a sense complements the result of Daboussi–Sárközy [9] and Man-
gerel [68], which states that if ω<y(n) = |{p < y : p | n}| is the count of the small
prime factors of n, then we have the independence of small primes property

1

x

∑
n≤x

(−1)ω<xε (n)(−1)ω<xε (n+1) = oε→0(1).(6.11)

In comparison, Theorem 6.11 implies among other things the independence of large
primes property

1

log x

∑
n≤x

(−1)ω>xε (n)(−1)ω>xε (n+1)

n
= oε→0(1).(6.12)

The methods used to prove (6.11) and (6.12) are however completely different, the
proof of (6.11) being based on sieve theory.

26We say that n is a quadratic nonresidue (mod Q) if χQ(n) = −1.
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6.3. Proof sketch for the main result

The proof of Theorem 6.6 makes use of the ideas Tao [98] developed for his proof of
Theorem 6.3; these are an averaging over small primes argument and the entropy
decrement argument, also discussed in Section 5.

The averaging over small primes works as follows. Suppose for simplicity that
g1, g2 are completely multiplicative and take only values ±1. Then, for any prime
p ≤ logω(x), we have

1

logω(x)

∑
x

ω(x)
≤n≤x

g1(n)g2(n+ h)

n
=

g1g2(p)

logω(x)

∑
x

ω(x)
≤n≤x

g1(pn)g2(pn+ ph)

n

=
g1g2(p)

logω(x)

∑
x

ω(x)
≤n′≤x

g1(n′)g2(n′ + ph)

n′
p1p|n′ +O(ε)

(6.13)

where we wrote n′ = pn and used the fact that the average is a logarithmic one.
We can then sum (6.13) over p to conclude that

1

logω(x)

∑
x

ω(x)
≤n≤x

g1(n)g2(n+ h)

n

=
m

2m

∑
2m≤p<2m+1

g1(p)g2(p)
1

logω(x)

∑
x

ω(x)
≤n′≤x

g1(n′)g2(n′ + ph)

n′
p1p|n′ +O(ε),

(6.14)

where ε−1 ≤ m ≤ log logω(x). By the entropy decrement argument, developed by
Tao in [98] and based on inequalities from information theory, we can replace p1p|n′
with its average value 1 + O(ε) for some suitable, large m = m(ε). The advantage
gained is that now (6.14) becomes a bilinear average

m

2m

∑
2m≤p<2m+1

g1(p)g2(p)
1

logω(x)

∑
x

ω(x)
≤n≤x

g1(n)g2(n+ ph)

n
+ o(1),

where n and p have been decoupled. This enables us to apply the circle method.
In the same spirit as in [98], the circle method gives the anticipated asymptotic for
this sum, provided that we prove the short exponential sum bound27

sup
α∈R

1

x

∫ 2x

x

∣∣∣∣∣ 1

H

∑
y≤n≤y+H

(g1(n)− δ1)e(nα)

∣∣∣∣∣ dy = oε→0(1),(6.15)

where δ1 is the mean value of g1 on [x, 2x] and H � 2(1+O(ε))m with m = m(ε) large.
This estimate deviates from what was used in [98], since there (6.15) was used in
the non-pretentious case covered by a result of Matomäki, Radziwi l l and Tao [75,

27In reality, we need to consider the integral of the exponential sum over more general intervals
[y, 2y] with x

ω(x) ≤ y ≤ x.
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Theorem 1.7]. The case where g1 is uniformly distributed in the sense of Definition
6.5 is not addressed in [75], but can be dealt with using the tools employed there.

The proof of (6.15) naturally splits into the major arc case, where α is close to
a rational number with small denominator, and the opposite minor arc case. In
the minor arc case, we can ignore the constant term δ1 in (6.15) and then follow
the argument in [75, Section 3], as that is based solely on the multiplicativity and
boundedness of g1.

In the major arc case, in contrast, we plainly need to use the uniform distribution
property of g1, as the result fails for example for Dirichlet characters, which are not
equidistributed. If α is on a major arc, then e(nα) is essentially periodic, so we
may make it essentially constant by splitting n into residue classes. Then we end
up with the need to prove that

1

x

∫ 2x

x

∣∣∣∣ 1

H

∑
y≤n≤y+H

n≡b (mod q)

g1(n)− 1

qH

∑
y≤n≤y+H

g1(n)

∣∣∣∣ dy =
oε→0(1)

q
(6.16)

uniformly for 1 ≤ b ≤ q ≤ ε−1. Here we used the fact that δ1 is the mean of g1 also
in arithmetic progressions of modulus ≤ ε−1.

The estimate (6.16) follows for q = 1 from the Matomäki–Radziwi l l theorem [74]
(since g1 is real-valued), and it turns out that for q > 1, by expanding 1n≡b (mod q) in
terms of characters, we can use the complex-valued case of that theorem from [75,
Appendix A] together with some pretentious distance estimates. This then leads to
the desired conclusion (6.16). For the proof in its entirety, we refer to [IV].
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consecutive integers. Int. Math. Res. Not. IMRN, 2011(7):1439–1450, 2011.
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Abstract

Let Ek be the set of positive integers having exactly k prime factors. We show that almost
all intervals [x, x + log1+ε x] contain E3 numbers, and almost all intervals [x, x + log3.51 x]
contain E2 numbers. By this we mean that there are only o(X) integers 1 � x � X for which
the mentioned intervals do not contain such numbers. The result for E3 numbers is optimal
up to the ε in the exponent. The theorem on E2 numbers improves a result of Harman, which
had the exponent 7+ε in place of 3.51. We also consider general Ek numbers, and find them
on intervals whose lengths approach log x as k → ∞.

1. Introduction

When studying Ek numbers (products of exactly k primes), it is natural to ask, how short
intervals include such numbers almost always. Since Wolke’s work [21], the essential ques-
tion has been minimising the number c such that almost all intervals [x, x + logc x] contain
an Ek number, meaning that all but o(X) such intervals with integer x ∈ [1, X ] contain such
a number. Wolke showed in 1979 that the value c = 5 · 106 is admissible for E2 numbers.
This was improved to c = 7 + ε for E2 numbers by Harman [9] in 1982. Wolke’s and Har-
man’s methods are based on reducing the problem to estimates for sums over the zeros of
the Riemann zeta function, and on the fact that the density hypothesis is known to hold in
a non-trivial strip (namely Jutila’s [14] region σ � 11/14 in Harman’s argument1). To the
author’s knowledge, Harman’s exponent for E2 numbers was the best one known also for
Ek numbers with k � 3.

If one considers Pk numbers, which are products of no more than k primes, one can
obtain improvements. Mikawa [16] showed in 1989 that for any function ψ(x) tending to
infinity, the interval [x, x + ψ(x) log5 x] contains a P2 number almost always. Furthermore,
Friedlander and Iwaniec [4, chapters 6 and 11] proved that for any such function ψ(x) the
interval [x, x+ψ(x) log x] contains a P4 number almost always. They also hint how to prove
the same result for P3 numbers. There is however a crucial difference between Ek and Pk

numbers, since the Ek numbers are subject to the famous parity problem, and hence cannot
be dealt with using only classical combinatorial sieves, which are the basis of the arguments
on Pk numbers. Therefore, the Ek numbers are also a much closer analogue of primes than
the Pk numbers.

1 In fact, introducing into Harman’s argument the widest known density hypothesis region σ � 25/32,
due to Bourgain [2], would give c = 6.86.
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One would naturally expect almost all intervals [x, x + ψ(x) log x] to have also prime
numbers in them, and this would follow from the heuristic that the proportion of x for which
[x, x +λ log x] contains exactly m primes for fixed m and λ > 0 should be given by the Pois-
son distribution (λm/m!)e−λ. Such results are however far beyond the current knowledge, as
the shortest intervals, almost all of which are known to contain primes, are [x, x + x

1
20 +ε] by

a result of Jia [13]. However, the results of Goldston–Pintz–Yıldırım [6],[7] on short gaps
between primes tell that for any λ > 0 there is a positive proportion of integers x � X
for which [x, x + λ log x] contains a prime, but it is not known whether this proportion ap-
proaches 1 as λ increases. A recent result of Freiberg [3], in turn, gives exactly m primes
on an interval [x, x + λ log x] for at least X 1−o(1) integers x � X . Concerning conditional
results, Gallagher [5] showed that the Poisson distribution of primes in short intervals would
follow from a certain uniform form of the Hardy–Littlewood prime k-tuple conjecture. Un-
der the Riemann hypothesis, it was shown by Selberg [18] in 1943 that almost all intervals
[x, x+ψ(x) log2 x] contain primes. For E2 numbers, under the density hypothesis, Harman’s
argument from [9] would give the exponent c = 3 + ε.

In this paper, we establish the exponent c = 1 + ε for E3 numbers and the exponent
c = 3.51 for E2 numbers. Our results for E2, E3 and Ek numbers are stated as follows.

THEOREM 1. Almost all intervals [x, x+(log log x)6+ε log x] contain a product of exactly
three distinct primes.

THEOREM 2. For any integer k � 4, there exists Ck > 0 such that almost all intervals
[x, x + (logk−1 x)Ck log x] contain a product of exactly k distinct primes. Here log� is the �th
iterated logarithm.

THEOREM 3. Almost all intervals [x, x + log3.51 x] with x � X contain a product of
exactly two distinct primes.

Theorems 1 and 2 are direct consequences of the following theorem.

THEOREM 4. Let X be large enough, k � 3 a fixed integer, and ε > 0 small
enough but fixed. Define the numbers P1, ..., Pk−1 by setting Pk−1 = (log X)ε−2

, Pk−2 =
(log log X)6+10

√
ε and Pj = (log Pj+1)

ε−1
for 1 � j � k − 3. For P1 log X � h � X, we

have ∣∣∣∣∣∣∣∣
1

h

∑
x�p1···pk�x+h

Pi �pi �P1+ε
i , i�k−1

1 − 1

X

∑
X�p1···pk�2X

Pi �pi �P1+ε
i , i�k−1

1

∣∣∣∣∣∣∣∣
�

1

(log X)(logk X)
(1·1)

for almost all x � X.

In the theorem above, the average over the dyadic interval is � 1/log X
by the prime number theorem, so Theorems 1 and 2 indeed follow from
Theorem 4. Similarly, Theorem 3 is a direct consequence of the following.

THEOREM 5. Let X be large enough, P1 = loga X with a = 2.51, ε > 0 fixed, and
P1 log X � h � X. We have

1

h

∑
x�p1 p2�x+h
P1�p1<P1+ε

1

1 �
1

X

∑
X�p1 p2�2X
P1�p1�P1+ε

1

1 (1·2)

for almost all x � X.
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Remark 1. Since h � P1 log X , we have the dependence c = a + 1 between the exponent
a in Theorem 5 and the smallest exponent c for which we can show that the interval [x, x +
logc x] contains an E2 number almost always.

Remark 2. Note that Theorems 4 and 5 tell us that there are � h/log X Ek numbers in
almost all intervals [x, x + h], where h and k are as in one of the theorems. However, we
are not quite able to find Ek numbers on intervals [x, x + ψ(x) log x] with ψ tending to
infinity arbitrarily slowly, unlike in the result of Friedlander and Iwaniec on Pk numbers. In
addition, our bound for the number of exceptional values is at best � x/logε x and often
weaker, while the methods used in [10], [13] and [20] for primes in almost all short intervals
have a tendency to give the bound � x/logA x for any A > 0, when they work. The limit of
our method for E2 numbers is the exponent 3+ε, as will be seen later, so proving for example
unconditionally the analogue of Selberg’s result for E2 numbers would require some further
ideas.

To prove our results, we adapt the ideas of the paper [15] of Matomäki and Radziwiłł on
multiplicative functions in short intervals to considering almost primes in short intervals.
In that paper, a groundbreaking result is that for any multiplicative function, with values
in [−1, 1], its average over [x, x + h] is almost always asymptotically equal to its dyadic
average over [x, 2x], with h = h(x) � x any function tending to infinity. The error terms
obtained there for general multiplicative functions are not quite good enough for our pur-
poses. Nevertheless, using similar techniques, and replacing the multiplicative function with
the indicator function of the numbers p1 · · · pk , with pi primes from carefully chosen in-
tervals, allows us to find Ek numbers on intervals [x, x + h], with h/log x growing very
slowly. In this setting, we can apply various mean, large and pointwise value results for Di-
richlet polynomials, some of which work specifically with primes or the zeta function, but
not with general multiplicative functions (such as Watt’s theorem on the twisted moment of
the Riemann zeta function, a large values theorem from [15] for Dirichlet polynomials sup-
ported on primes, and Vinogradov’s zero-free region). In many places in the argument, we
cannot afford to lose even factors of logε x , so we need to factorise Dirichlet polynomials in
a manner that is nearly nearly lossless, and use an improved form of the mean value theorem
for Dirichlet polynomials. To deal with some of the arising Dirichlet polynomials, we also
need some sieve methods, similar to those that have been successfully applied to finding
primes in short intervals for example in [10], [13] and [20]. In the case of E2 numbers, in
addition to these methods, we benefit from the theory of exponent pairs and Jutila’s large
values theorem.

The structure of the proofs of Theorems 4 and 5 is the following. We will first present the
lemmas necessary for proving Theorem 4, and hence Theorems 1 and 2. Besides employing
these lemmas to prove Theorem 4, we notice that they are already sufficient for finding
products of exactly two primes in almost all intervals [x, x + log5+ε x], which is as good as
Mikawa’s result for P2 numbers up to ε in the exponent (one could also get c slightly below
5 using exponent pairs, which are just one of the additional ideas required for Theorem 5).
The rest of the paper is then concerned with reducing the exponent 5+ε to 3.51 for products
of two primes, and this requires some further ingredients, as well as all the lemmas that were
needed for products of three or more primes.
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1·1. Notation

The symbols p, q, pi and qi are reserved for primes, and d, k, �, m and n are always pos-
itive integers. We often use the same capital letter for a Dirichlet polynomial and its length.
We call zeta sums partial sums of ζ(s) or ζ ′(s) of the form

∑
n∼N n−s or

∑
n∼N (log n)n−s .

The function ν(·) counts the number of distinct prime divisors of a number, μ(·) is the
Möbius function, 	(·) is the von Mangoldt function, and dr (m) is the number of solutions to
a1 · · · ar = m in positive integers. The function ω(·) is Buchstab’s function (see Harman’s
book [10, chapter 1]), defined as ω(u) = 1/u for 1 � u � 2 and via the differential equation
(d/du)(uω(u)) = ω(u − 1) for u > 2, imposing the requirement that ω be continuous on
[1, ∞). We make the convention that ω(u) = 0 for u < 1. In addition, let P(z) = ∏

p<z p,
and let S(A, P, z) count the numbers in A coprime to P(z).

The quantity ε > 0 is always small enough but fixed. The symbols C1, C2, ... denote
unspecified, positive, absolute constants. By writing n ∼ X in a summation, we mean X �
n < 2X . The expression 1S is the indicator function of the set S, so that 1S(n) = 1 if n ∈ S
and 1S(n) = 0 otherwise. We use the usual Landau and Vinogradov asymptotic notation
o(·), O(·) and �,�. The notation X 	 Y is shorthand for X � Y � X .

2. Preliminary lemmas

2·1. Reduction to mean values of Dirichlet polynomials

We present several lemmas that are required for proving both Theorems 4 and 5. Later on,
we give some additional lemmas that are needed only for proving Theorem 5.

The plan of the proofs of Theorems 4 and 5, and hence of Theorems 1, 2 and 3, is to
transform the problem of comparing almost primes in short and long intervals to finding
cancellation in the mean square of the corresponding Dirichlet polynomial. The polynomial
can be factorised after it is divided into short intervals, and different methods can be applied
to different factors. This approach is utilised in many earlier works on primes and almost
primes in short intervals; see e.g. [10], [15]. We then apply several mean, large and pointwise
value theorems, which are presented in Subsection 2·3, to find the desired cancellation in the
Dirichlet polynomial.

The following Parseval-type lemma allows us to reduce the problem of finding almost
primes in short intervals to finding cancellation in a Dirichlet polynomial.

LEMMA 1. Let

Sh(x) = 1

h

∑
x�n�x+h

an,

where an are complex numbers, and let 2 � h1 � h2 � X
T 3

0
with T0 � 1. Also let F(s) =∑

n∼X an/ns. Then

1

X

∫ 2X

X

∣∣∣∣ 1

h1
Sh1(x) − 1

h2
Sh2(x)

∣∣∣∣
2

dx �
1

T0
+

∫ X
h1

T0

|F(1 + i t)|2dt

+ max
T � X

h1

X

T h1

∫ 2T

T
|F(1 + i t)|2dt. (2·3)

Proof. This is lemma 14 in the paper [15] (except that we do not specify the value of T0).
A related bound can be found for example in [10, chapter 9].
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We choose T0 = X 0.01, and h2 = X/T 3
0 in Lemma 1, and the average function Sh(x) is

given by the short average in (1·1) or (1·2). Now, defining

F(s) =
∑

p1···pk∼X
Pi �pi �P1+ε

i ,i�k−1

(p1 · · · pk)
−s,

where Pi are as in Theorem 4 or 5, proving Theorems 4 and 5 is reduced to showing that∫ T

T0

|F(1 + i t)|2dt = o

((
T h

X
+ 1

)
· 1

(log2 X)(logk X)2

)
, (2·4)

for T0 = X 0.01 and h � P1 log X . Indeed, substituting this to Lemma 1 shows that

1

X

∫ 2X

X

∣∣∣∣1

h
Sh(x) − 1

h2
Sh2(x)

∣∣∣∣
2

dx = o

(
1

(log2 X)(logk X)2

)
,

where h2 = X/T 3
0 . It actually suffices to prove (2·4) for T � X , since otherwise the mean

value theorem (Lemma 3) gives a good enough bound for the last term in (2·3).
Note that for T � X the trivial bound for the integral in (2·4), coming from the mean

value theorem, is � (log X)−1. Thus our task is to save slightly more than one additional
logarithm in this integral (for T � X/h, at least).

Once the required estimates for Dirichlet polynomials have been established, we can apply
the prime number theorem in short intervals with Vinogradov’s error term (see [12, chapter
10]) to see that

1

h2
Sh2(x) − 1

X
SX (X) � exp(−(log X)

3
5 −ε),

for h2 = x0.97, x ∼ X , and hence deduce Theorems 4 and 5 (and consequently 1, 2 and 3).
For example, we compute

1

h2

∑
x�p1 p2 p3�x+h2

P1�p1�P1+ε
1

P2�p2�P1+ε
2

1 = 1

h2

∑
P1�p1�P1+ε

1

P2�p2�P1+ε
2

(
π

(
x + h2

p1 p2

)
− π

(
x

p1 p2

))

= 1

h2

∑
P1�p1�P1+ε

1

P2�p2�P1+ε
2

h2

p1 p2 log x
p1 p2

+ O
(

exp(−(log x)
3
5 − ε

2 )
)

=
∑

P1�p1�P1+ε
1

P2�p2�P1+ε
2

1

p1 p2 log X
p1 p2

+ O(exp(−(log X)
3
5 −ε)),

and the same asymptotics hold for the dyadic sum. Sometimes we end up comparing the
sums (1/h2)Sh2(x) and (1/x)S2(x) with an not quite equal to the coefficients of F(s), but
equal to the indicator function of the numbers p1 p2n with p1 and p2 from the intervals
[P1, P1+ε

1 ] and [P2, P1+ε
2 ], respectively, and n having no prime factors smaller than p2. There

may also be a simple cross-conditions on p1 and p2, but comparing the sums still causes no
difficulty.
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Thus, in the rest of the paper we can concentrate on bounding Dirichlet polynomials.
Although there is a close analogy in the formulations of Theorems 4 and 5, estimating the
polynomial arising from the latter is more difficult, and will require several additional ideas.

2·2. Factorisations for Dirichlet polynomials

In bounding Dirichlet polynomials, factorisations play an important role. We encounter
situations where the only cross-condition on the variables in the polynomial is that their
product belongs to a certain range, so the variables can be separated by diving them into
short ranges and estimating the mean values of the resulting polynomials. The factorisation
is provided by the following lemma, which also takes into account the improved mean value
theorem (Lemma 4).

LEMMA 2. Let S ⊂ [−T, T ] be measurable and

F(s) =
∑

mn∼X
M�m�M ′

ambn

(mn)s

for some M ′ > M � 2 and for some complex numbers am, bn. Let H � 1 be such that
H log M and H log M ′ are integers. Denote

Av,H (s) =
∑

e
v
H �m<e

v+1
H

am

ms
, Bv,H (s) =

∑
n∼Xe− v

H

bn

ns
.

Then ∫
S

|F(1 + i t)|2dt � |I |2
∫
S

|Av0,H (1 + i t)Bv0,H (1 + i t)|2dt

+ T
∑

n∈[Xe− 1
H ,Xe

1
H ] or

n∈[2X,2Xe
1
H ]

|cn|2 + T
∑

1�h� 2X
T

∑
m−n=h

m,n∈[Xe− 1
H ,Xe

1
H ] or

m,n∈[2X,2Xe
1
H ]

|cm ||cn|,

with

cn = 1

n

∑
n=k�

M�k�M ′

|akb�|,

I = [H log M, H log M ′) and v0 ∈ I a suitable integer.

Remark 3. In applications we have M ′ � 2M , so the conditions that H log M and
H log M ′ be integers can be ignored, since we can always afford to vary H and M ′ by
the necessary amount.

Remark 4. When proving Theorem 4, we cannot afford to lose any powers of logarithm
in some factorisations, and indeed the second term in the lemma crucially has the factor T
instead of the factor X occurring in the mean value theorem, and in the first term we will
lose a factor of size � H 2 log2(M ′/M), which in practice is minuscule.

Proof. This resembles [15, lemma 12] by Matomäki and Radziwiłł (where, in addition
to factorisation in short intervals, a Ramaré-type identity is used). We split F(s) into short
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intervals, obtaining

F(s) =
∑

v∈I�Z

∑
e

v
H �m<e

v+1
H

am

ms

∑
Xe

− v+1
H �n<2Xe

− v
H

mn∼X

bn

ns
.

Observe that Xe− v+1
H � n < Xe− v

H can hold above only for mn ∈ [Xe− 1
H , Xe

1
H ]. Further-

more, we always have mn ∈ [Xe− 1
H , 2Xe

1
H ]. This allows us to write

F(s) =
∑

v∈I�Z

Av,H (s)Bv,H (s) +
∑

k∈[Xe
− 1

H ,Xe
1
H ] or

k∈[2X,2Xe
1
H ]

dk

ks
(2·5)

with

|dk | �
∑
k=mn

|ambn|.

Now the claim of the lemma follows by taking mean squares on both sides of (2·5) on the line
R(s) = 1, applying the improved mean value theorem (Lemma 4), and taking the maximum
in the sum over I .

2·3. Bounds for Dirichlet polynomials

We need several mean, large and pointwise value results on Dirichlet polynomials. The
following lemma is one of the basic tools.

LEMMA 3 (Mean value theorem for Dirichlet polynomials). Let N � 1 and F(s) =∑
n∼N

an

ns , where an are any complex numbers. Then∫ T

−T
|F(i t)|2dt � (N + T )

∑
n∼N

|an|2.

Proof. See for example Iwaniec and Kowalski’s book [12, chapter 9].

If the coefficients an are supported on the primes or almost primes and are of size 	 1/n,
the sum

∑
n∼N |an|2 is essentially 1/N log N . However, in some places in the proofs of

Theorems 1, 2 and 3, it is vital to save one more logarithm in such a situation. This is
enabled by an improved mean value theorem.

LEMMA 4 (Improved mean value theorem). Let N and F(s) be as above. We have∫ T

−T
|F(i t)|2dt � T

∑
n∼N

|an|2 + T
∑

1�h� N
T

∑
m−n=h
m,n∼N

|am ||an|. (2·6)

Remark 5. The number of solutions to m − n = h, with m and n primes and m, n ∼ N ,
is � (N 2/log2 N · h/ϕ(h)) (with ϕ Euler’s totient function), which follows easily from
Brun’s sieve, for example. If T � N/h, h � log N and an is supported on the primes, the
first sum in (2·6) turns out not to be problematic, so we indeed save essentially one addi-
tional logarithm with this lemma. We remark that if we have polynomials of length N � T ,
Lemma 4 reduces to the basic mean value theorem.
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Proof. This follows from [12, chapter 7, lemma 7·1], taking Y = 10T there.

We also put into use a discrete mean value theorem, which is particularly useful when we
take the mean square over a rather small set of points.

LEMMA 5 (Halász–Montgomery inequality). Let N and F(s) be as before. Let T ⊂
[−T, T ] be well-spaced, meaning that t, u ∈ T and t � u imply |t − u| � 1. Then∑

t∈T
|F(i t)|2 � (N + |T |T 1

2 )(log T )
∑
n∼N

|an|2.

Proof. For a proof, see Iwaniec and Kowalski’s book [12, chapter 9].

In addition to mean value theorems, we need some large values theorems. We come across
some very short Dirichlet polynomials, say of length � T o(1), and we make use of the fact
that the coefficients of these polynomials are supported on the primes.

LEMMA 6. Let P � 1, V > 0 and

F(s) =
∑
p∼P

ap

ps

with |ap| � 1. Let T ⊂ [−T, T ] be a well-spaced set of points such that |F(1 + i t)| � V
for each t ∈ T . Then we have

|T | � T 2 log V −1

log P V −2 exp

(
(1 + o(1))

log T

log P
log log T

)
.

Remark 6. We may also apply this lemma to polynomials not supported on primes,
provided that P � X ε for some ε > 0. In this case, the lemma is essentially the mean
value theorem applied to a suitable moment of the polynomial.

Proof. This is [15, lemma 8]. There a factor of 2 occurs instead of 1 + o(1) in the last
exponential, but the exact same proof works with the factor 1 + o(1).

For proving Theorem 5, we also need a large values theorem designed for long polyno-
mials. The reason for presenting it along with the lemmas for Theorem 4 is that combining
it with the other lemmas already gives the exponent c = 5 + ε for E2 numbers. The large
values result is a theorem of Jutila that improves on the better known Huxley’s large values
theorem.

LEMMA 7 (Jutila’s large values theorem). Let F(s) = ∑
n∼N an/ns with |an| � dr (n) for

some fixed r. Let T ⊂ [−T, T ] be a well-spaced set such that |F(1 + i t)| � V for t ∈ T ,
and let k be any positive integer. We have

|T | �
(

V −2 + T

N 2
V −6+ 2

k + V −8k T

N 2k

)
(N T )o(1).

Proof. The proof can be found in Jutila’s paper [14]. We apply formula (1.4) there to
F(s)�, and have G = ∑

n∼N |an|2/n2 � (N T )o(1)N−1 in the notation of that paper.

In some cases in the proof of Theorem 4, there will be polynomials supported on primes
or almost primes for which the best we can do is apply a pointwise bound. These bounds
follow in the end from Vinogradov’s zero-free region.
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LEMMA 8. Let

P(s) =
∑

n1···nk∼N

g1(n1) · · · gk(nk)(n1 · · · nk)
−s,

where k � 1 is a fixed integer and each gi is either the Möbius function, the characteristic
function of the primes, the identity function, or the logarithm function. We have

|P(1 + i t)| � exp
(
−(log N )

1
10

)
when exp((log N )

1
3 ) � |t | � N A log log N for any fixed A > 0.

Proof. For k = 1, the claim follows directly from Perron’s formula and Vinogradov’s
zero-free region, so let k � 2. We may assume that n1, ..., nk belong to some dyadic intervals
I1, ..., Ik such that Ik = [a, b] with a � N

1
k , b � N . Now∑

n1∈I1,...,nk−1∈Ik−1

g(n1) · · · g(nk−1)(n1 · · · nk−1)
−1−i t

∑
nk ∈Ik

nk ∼ N
n1 ···nk−1

g(nk)n
−1−i t
k

� (log N )O(1)
∑

n1∈I1,...,nk−1∈Ik−1

(n1 · · · nk−1)
−1 · exp

(
− log N

1
k

(log t)
2
3 +ε

)

� exp
(
−(log N )

1
10

)
,

as wanted.

2·4. Moments of Dirichlet polynomials

We need Watt’s result on the twisted fourth moment of zeta sums (see Subsection 1·1 for
the definition of zeta sums). This bound comes into play when we estimate the mean square
of a product of Dirichlet polynomials where one of the polynomials is a long zeta sum.

LEMMA 9 (Watt). Let T � T0 � T ε, T 1+o(1) � M, N � 1. Define the Dirichlet polyno-
mials N (s) = ∑

n∼N n−s or N (s) = ∑
n∼N (log n)n−s and M(s) = ∑

m∼M am/ms with am

any complex numbers. We have∫ T

T0

|N (1 + i t)|4|M(1 + i t)|2dt �
(

T

M N 2
(1 + M2T − 1

2 ) + 1

T 3
0

)
T o(1) max

m∼M
|am |2.

Proof. An easy partial summation argument shows that we may assume N (s) =∑
n∼N n−s . The lemma will be reduced to Watt’s original twisted moment result [19], where

N (s) is replaced with ζ(s). It is well–known that |N (1 + i t)| � 1/t for N � t � 1 (see [12,
chapter 8]), so ∫ N

T0

|N (1 + i t)|4|M(1 + i t)|2dt � max
m∼M

|am |2
∫ T

T0

1

t4
dt · T o(1)

�
T o(1)

T 3
0

max
m∼M

|am |2.

Now it suffices to consider the integrals over dyadic intervals [U, 2U ] with N � U � T .

These are bounded as in [1, lemma 2] (using Watt’s result and simple considerations), since
translating the results there from the line R(s) = 1/2 to the line R(s) = 1 is an easy matter
(and the bound in [1] should be multiplied by maxm∼M |am |2, as we do not assume |am | � 1).
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2·5. Sieve estimates

There are occasions in the proofs of Theorems 4 and 5 where our Dirichlet polynomials
are too long, and we need a device for splitting them into shorter ones. This is enabled
by Heath–Brown’s identity and the decomposition resulting from it, which tells that either
our Dirichlet polynomial can be replaced with a product of many polynomials, which is
desirable, or it can be replaced with products of zeta sums, in which case we can make use
of Watt’s theorem.

Definition 1. A Dirichlet polynomial M(s) = ∑
m∼M am/ms with |an| � dr (n) for fixed

r is called prime-factored if, for each A > 0, we have |M(1 + i t)| � A(log M)−A for
exp((log M)

1
3 ) � t � M A log log M .

LEMMA 10 (Heath–Brown’s decomposition). Let an integer k � 1 and a real number
δ > 0 be fixed, and let T � 2. Define P(s) = ∑

P�p<P ′ p−s with P � T δ, P ′ ∈ [P +
P/log T , 2P]. There exist Dirichlet polynomials G1(s), ..., GL(s) and a constant C > 0
such that

|P(1 + i t)| � (logC X)(|G1(1 + i t)| + · · · + |GL(1 + i t)|) for all t ∈ [−T, T ],
with L � logC X, each G j (s) being of the form

G j (s) =
∏
i�J j

Mi(s), Jj � 2k,

with Mi(s) prime-factored Dirichlet polynomials (which depend on j), whose lengths satisfy
M1 · · · MJ = X 1+o(1), Mi � exp (log P/log log P). Additionally, each Mi (s) with Mi > X

1
k

is a zeta sum.

Proof. For a similar bound, see Harman’s book [10, chapter 7]. It suffices to prove an
analogous result for the polynomial

∑
P�n<P ′ 	(n)n−s and use summation by parts. We

take f (n) = n−1−i t 1[P,P ′](n) in the general Heath–Brown identity [11] for
∑

n�N f (n)	(n),
splitting each resulting variables into dyadic intervals, and separating the variables with
Perron’s formula. The summation condition in Heath–Brown’s identity guarantees that of the
arising polynomials only the zeta sums can have length > X

1
k . If there are any polynomials

of length � exp(log P/log log P), these can simply be estimated trivially. The fact that the
remaining polynomials of length � exp(log P/log log P) are prime-factored follows from
the fact that they have as their coefficients one of the sequences (1), (log n) and (μ(n)), so
that Lemma 8 gives a pointwise saving of � A(log P)−A.

There is one more lemma that we need on the coefficients of Dirichlet polynomials arising
from almost primes. We need to bound the following quantities that are related to the quant-
ities occurring in the improved mean value theorem for Dirichlet polynomials.

Definition 2. For any sequence (an) of complex numbers, set X1 =
exp(log X/(log log X)4) and

S1(X, (an)) = max
X

X1
�Y�4X

1�H�log10 X

H
∑

Y�n�Y+ Y
H

|an|2
n

,

S2(X, (an)) = max
X

X1
�Y�4X

1�H�log10 X

H
∑

1�h� X
T

∑
Y�n�Y+ Y

H

|an||an+h|
n

.
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We get bounds of size essentially 1/log X and X/T log2 X for S1(X, (an)) and
S2(X, (an)), respectively, under the assumptions of the next lemma.

LEMMA 11. Let Zr � · · · � Z1 � 1 for a fixed r with Zr � exp(log X/(log log X)3),
Zr � z � 4X, and

Q = {
n � 4X : n = p1 · · · pr m, pi ∈ [Zi , Z 2

i ], (m,P(z)) = 1)
}
.

Let |an| � 1Q(n), and let S1(X, (an)) and S2(X, (an)) be as defined above. Then

S1(X, (an)) �
1

log z
and S2(X, (an)) �

1

log2 z
· X

T
.

Remark 7. Notice that we could also take as the set Q the set

Q′ = {
n � 4X : n = p1 · · · pr m, pi ∈ [Zi , Z 2

i ], (m,P(pr )) = 1
}

or the set

Q′′ = {
n � 4X : n = p1 · · · pr , pi ∈ [Zi , Z 2

i ]
}
.

Indeed, the sizes of Q′ and Q′′ can be bounded by sizes of sets of the form given in the lemma
(with the parameter z = Zr or z = X

1
r−1 ). This observation will be used subsequently.

Proof. Let S(A, P, z) count the numbers in A having no prime factors below z, and let �

be the product of all primes in
⋃r

i=1[Zi , Z 2
i ] � [1, z]. Brun’s sieve yields

S1(X, (an)) � max
X

X1
�Y�4X

1�H�log10 X

H

Y
·
∣∣∣∣
[

Y, Y + Y

H

]
� Q

∣∣∣∣
� max

X
X1

�Y�4X

1�H�log10 X

H

Y
·
∣∣∣∣
{

n ∈
[

Y, Y + Y

H

]
:
(

n,
P(z)

�

)
= 1

}∣∣∣∣
� max

X
X1

�Y�4X

1�H�log10 X

H

Y
·
(

Y

H log z
+ z

1
2

)

�
1

log z
,

since z
1
2 � (4X)

1
2 � Y

H log2 z
.

Furthermore, Brun’s sieve also yields

S2(X, (an)) � max
X1�Y�4X

1�H�log10 X

H

Y

∑
1�h� X

T

∣∣∣∣
{

n ∈
[

Y, Y + Y

H

]
:
(

n(n + h),
P(z)

�

)
= 1

}∣∣∣∣
� max

X1�Y�4X

1�H�log10 X

H

Y
·

∑
1�h� X

T

h

ϕ(h)

(
Y

H log2 z
+ z

1
2

)

�
1

log2 z
· X

T
,

by the elementary bound
∑

m�M m/ϕ(m) � M . This proves the statement.
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3. Mean squares of Dirichlet polynomials

With all the necessary lemmas available, we are ready to present the propositions that
quickly lead to Theorem 4 and are also necessary in proving Theorem 5.

PROPOSITION 1. Let X � 1, T � T0 = X 0.01, 0 � α1 � 1 and 1 � P � Xo(1), where P
is a function of X. Define

K (s) =
∑
n∼ X

P

an

ns
and P(s) =

∑
p∼P

bp

ps
,

where an and bp are arbitrary complex numbers. Denoting

T1 = {t ∈ [T0, T ] : |P(1 + i t)| � P−α1}
we have∫

T1

|K (1 + i t)P(1 + i t)|2dt �
T

X
· P1−2α1

(
S1

(
X

P
, (an)

)
+ S2

(
X

P
, (an)

))
.

Proof. The improved mean value theorem (Lemma 4) and definition of T1 give∫
T1

|K (1 + i t)P(1 + i t)|2dt � P−2α1

∫
T1

|K (1 + i t)|2dt

� P−2α1

⎛
⎜⎜⎝T

∑
k∼ X

P

|ak |2 + T
∑

1�h� X
PT

∑
k,k′∼ X

P
k−k′=h

|ak ||ak ′ |

⎞
⎟⎟⎠

� P−2α1

(
T P

X
S1

(
X

P
, (an)

)
+ T P

X
S2

(
X

P
, (an)

))

= T

X
· P1−2α1

(
S1

(
X

P
, (an)

)
+ S2

(
X

P
, (an)

))
,

which was the claim.

PROPOSITION 2. Let X � 1, T � T0 = X 0.01 and 1 � P � Xo(1). Also let 0 � α1, α2 �
1 and let the Dirichlet polynomials K (s) and M(s) with K = X/M � X ε be

K (s) =
∑
n∼K

an

ns
and M(s) =

∑
m∼M

cm

ms
,

where |cm | � dr (m) for fixed r, and |an| = 1S(n) for some set S whose elements have at
most r prime factors from [P, 2P] and have no prime factors in [1, X 0.01] \ ⋃r

i=1[Zi , Z 2
i ]

for some Zi � 1. Write

P(s) =
∑
p∼P

bp

ps
with |bp| � 1 and

T = {t ∈ [T0, T ] : |P(1 + i t)| � P−α1 and |M(1 + i t)| � M−α2}.
We have∫

T
|K (1 + i t)M(1 + i t)|2dt � M−2α2 P (2+10ε)α1� · (�!)1+o(1) ·

(
T

X
· 1

log X
+ 1

log2 X

)
,

where � = �log X
K /log P�.
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Remark 8. For products of three primes, our variables are picked so that the bound given
by this proposition saves X ε over the trivial bound. However, for products of k � 4 primes,
our savings are much more modest, and the factor (T/X) · (1/log X) + 1/log2 X becomes
necessary.

Proof. This result is inspired by [15, lemma 13]. Using the fact that |M(1 + i t)|2 �
M−2α2(Pα1 |P(1 + i t)|)2� for t ∈ T and splitting polynomials into shorter ones, we have∫

T
|K (1 + i t)M(1 + i t)|2dt � M−2α2 P2α1�

∫
T

|K (1 + i t)P(1 + i t)�|2dt

� M−2α2 P2α1��2

∫
T

|A(1 + i t)|2dt, (3·7)

where

A(s) =
∑
n∼Y

An

ns

for some K P� � Y � 2K (2P)� (so X � Y � 2� P X ), the coefficients An satisfying

|An| �
∑

n=p1···p�m
pi ∼P
m∼K

|am |.

By the improved mean value theorem (Lemma 4), we see that (3·7) is bounded by

� M−2α2 P2α1��2

⎛
⎝T

∑
n∼Y

∣∣∣∣ An

n

∣∣∣∣
2

+ T
∑

1�h� Y
T

∑
m−n=h

|Am ||An|
mn

⎞
⎠ .

Note that An � 0 implies that n has at most � + r prime factors from [P, 2P] and that n is
coprime to

� =
∏

p�X0.01

p�
⋃r

i=1[Zi ,Z2
i ]�[P,2P]

p.

Consequently, |An| � (� + r)!, and so

∑
n∼Y

∣∣∣∣ An

n

∣∣∣∣
2

� 1

Y
· (� + r)!

∑
n∼Y

|An|
n

�
1

Y
(�!)1+o(1)

∑
m∼K

|am |
m

∑
p1,...,p�∼P

1

p1 · · · p�

� (�!)1+o(1) · 1

Y

∑
m∼K

(m,�)=1

|am |
m

� (�!)1+o(1) · 1

X log X
,

where the last step comes from Brun’s sieve and the facts that Y � X and K � X ε.
To deal with the second sum arising from the improved mean value theorem, notice that

by Brun’s sieve the number of n � y with (n(kn + h), �) = 1 is � (y/log2 y)(hk/ϕ(hk))

with an absolute implied constant. Since ϕ(ab) � ϕ(a)ϕ(b) and k/ϕ(k) � 2� when k has �
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prime factors, we have∑
1�h� Y

T

∑
n∼Y

|An||An+h|
n(n + h)

� 1

Y 2
· (� + r)!

∑
1�h� Y

T

∑
p1,...,p�∼P

∑
(m,�)=1

(p1···p�m+h,�)=1
m� 2Y

p1 ···p�

1

�
1

Y 2
· (�!)1+o(1)

∑
1�h� Y

T

∑
p1,...,p�∼P

Y

p1 · · · p� log2 Y
p1···p�

p1 · · · p�h

ϕ(p1 · · · p�h)

�
1

Y log2 Y
(�!)1+o(1)

∑
1�h� Y

T

h

ϕ(h)

∑
p1,...,p�∼P

1

p1 · · · p�

�
1

T
(�!)1+o(1) 1

log2 X
,

as desired.

PROPOSITION 3. Let X 1+o(1) � T � T0 = X 0.01 and 0 � α1 � 1. Furthermore, let

P(s) =
∑
p∼P

ap

ps
, and M(s) =

∑
M�q�M ′

1

qs
,

with |ap| � 1, M ′ ∈ [M + M
log P , 2M], log X � P � Xo(1) and P M = X 1+o(1), and let

U = {t ∈ [T0, T ] : |P(1 + i t)| � P−α1}.
Then, for � = 
ε(log X/log P)�,∫

U
|P(1 + i t)M(1 + i t)|2dt

� (P2α1−1 log2 X)(1+o(1))� Xo(1) + (log X)−100

(
1 + |U ′|T 1

2

X
2
3 −o(1)

)
,

for some well-spaced set U ′ ⊂ U .

Proof. Heath–Brown’s decomposition (Lemma 10) with k = 3 allows us to write, for
some C > 0,

|M(1 + i t)| � (logC X)(|G1(1 + i t)| + · · · + |GL(1 + i t)|),
with L � logC X . Here each G j (s) is either of the form

G j (s) = M1(s)M2(s)M3(s), M1 M2 M3 = X 1+o(1),

M1 � M2 � M3, M3 � exp

(
log X

2 log log X

)
with Mi(s) prime-factored polynomials, or of the form

G j (s) = N1(s)N2(s), N1 N2 = X 1+o(1), N1 � N2,

with Ni(s) zeta sums (it is possible that N2(s) is the constant polynomial 1−s). It suffices to
bound the contributions of the zeta sums and the prime-factored polynomials separately.
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We look at the zeta sums first. We split the integration domain into dyadic intervals
[T1, 2T1] with T0 � T1 � T . Keeping in mind that N1 � X

1
2 −o(1), P� = X ε+o(1), and

|P(1 + i t)Pα1 |2� � 1 for t ∈ U , Cauchy–Schwarz and Watt’s theorem (Lemma 9) yield∫
U�[T1,2T1]

|P(1 + i t)N1(1 + i t)N2(1 + i t)|2dt

� P2α1�

∫
U�[T1,2T1]

|N1(1 + i t)N2(1 + i t)P(1 + i t)�|2dt

� P2α1�

(∫ 2T

T1

|N1(1 + i t)|4|P(1 + i t)|4�dt

) 1
2

·
(∫ 2T1

T1

|N2(1 + i t)|4dt

) 1
2

� P2α1� Xo(1)

((
T1 + T

1
2

1 P4�

N 2
1 P2�

+ 1

T 3
1

)
(2�)!2

) 1
2

·
(

T1 + N 2
2

N 2
2

) 1
2

� P (2α1−1)� Xo(1) · (�!)2+o(1) + P2α1� Xo(1)(�!)2+o(1)

T0

� (P2α1−1 log2 X)(1+o(1))� Xo(1) + X−ε.

Combining the contributions of the dyadic intervals simply multiplies this bound by log X .
To bound the contribution of the prime-factored polynomials, we first observe that∫

U
|P(1 + i t)M(1 + i t)|2dt �

∑
t∈U ′

|P(1 + i t)M(1 + i t)|2,

for some well-spaced U ′ ⊂ U . We make use of the Halász–Montgomery inequality
(Lemma 5), and of the prime-factored property applied to the polynomial M3 with length
M3 ∈ [exp(log X/2 log log X), X

1
3 +o(1)], finding that∑

t∈U ′
|P(1 + i t)M1(1 + i t)M2(1 + i t)M3(1 + i t)|2

� (log X)−100−D
∑
t∈U ′

|P(1 + i t)M1(1 + i t)M2(1 + i t)|2

� (log X)−100−2C

(
1 + T

1
2 |U ′|

X
2
3 −o(1)

)
,

where D is so large that D − 2C − 1 exceeds the power of logarithm arising from the
mean square of the coefficients of the divisor-bounded polynomial P(s)M1(s)M2(s). Now
the statement is proved.

4. Proof of theorem 4

The following proposition yields Theorem 4 (and hence Theorems 1 and 2) immediately,
in view of the remarks of Subsection 2·1

PROPOSITION 4. Let k � 3 be a fixed integer, ε > 0 be small enough and T0 = X 0.01, as
before. Define

F(s) =
∑

p1···pk∼X
Pi �pi �P1+ε

i
i�k−1

(p1 · · · pk)
−s,
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where Pi are as in theorem 4. Then, for T � T0, we have∫ T

T0

|F(1 + i t)|2dt �
(

T P1 log X

X
+ 1

)
· 1

(log2 X)(logk X)3
. (4·8)

Proof. We make use of the ideas introduced in the paper [15] by Matomäki and Radziwiłł.
Trivially, we may assume T � X 1+o(1). Let H = (logk X)3,

Qv,H (s) =
∑

e
v
H �p<e

v+1
H

p−s

and, for each j = 1, ..., k,

Fv,H, j (s) =
∑

p1···p j−1 p j+1···pk∼Xe− v
H

Pi �pi �P1+ε
i , i�j, i�k−1

(p1 · · · p j−1 p j+1 · · · pk)
−s .

Define α1, ..., αk−1 by α j = 10 jε for j � k − 2, and αk−1 = 1/12 − ε, with ε so small that
αk−2 � √

ε/10. We split the domain of integration as [T0, T ] = T1 � T2 � · · · � Tk−1 � T .
We write t ∈ T1 if

|Qv,H (1 + i t)| � e− α1v

H ,

for all v ∈ I1 = [H log P1, (1+ε)H log P1]. We define recursively t ∈ T j for j = 2, ..., k−1
if t �

⋃
j ′� j−1 T j ′ but

|Qv,H (1 + i t)| � e− α j v

H ,

for all v ∈ I j = [H log Pj , (1 + ε)H log Pj ]. Finally, we write

T = [T0, T ] \
k−1⋃
j=1

T j .

Lemma 2, with the notation of Subsection 2·5, yields∫
S

|F(1 + i t)|2dt � H 2(log2 Pj )

∫
S

|Qv j ,H (1 + i t)Fv j ,H, j (1 + i t)|2dt

+ T

H X
(S1(X, (cn)) + S2(X, (cn))), (4·9)

for some v j ∈ I j , and any S ⊂ [T0, T ]. The coefficients cn in the definitions of S1 and S2

are naturally the convolution of the absolute values of the coefficients of the polynomials
Qv j ,H (s) and Fv j ,H, j (s). By Lemma 11 and the remark related to it, the last two terms above
contribute

�
T

X
· 1

H log X
+ 1

H log2 X

�
(

T P1 log X

X
+ 1

)
· 1

H log2 X
.

We choose S = T1, ..., Tk−1, T in (4·9). Summarizing, it suffices to estimate for each
j = 1, ..., k − 1 the quantity

Bj := H 2(log2 Pj )

∫
T j

|Qv j ,H (1 + i t)Fv j ,H, j (1 + i t)|2dt,
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where v j ∈ [H log Pj , (1 + ε)H log Pj ] is chosen so that the integral is maximal, and addi-
tionally the quantity

B := H 2(log2 X)

∫
T

|Qvk ,H (1 + i t)Fvk ,H,k(1 + i t)|2dt,

where vk ∈ [H log X/(P1 · · · Pk−1)
1+ε, H log 2X/P1 · · · Pk−1] is also picked so that the in-

tegral is maximised.
The integral over T1 is bounded with the help of Proposition 1. We take K (s) = Fv1,H,1(s)

and P(s) = Qv1,H (s). Now Lemma 11 and Proposition 1 result in

B1 � H 2(log2 P1)P1+ε−2α1
1

T

X

(
1

log X
+ X

P1T
· 1

log2 X

)

�
(

T P1 log X

X
+ 1

)
· P10ε−2α1

1

log2 X
,

and this is an admissible bound, since α1 = 10ε and P1 � (logk X)ε−1
.

For the integral over T j with 2 � j � k − 1 we use Proposition 2, with K (s) =
Fv j ,H, j (s), M(s) = Qv j ,H (s) and P(s) = Qv j−1,H (s), and for � = �log Pj/log Pj−1� de-
duce

Bj � H 2(log2 Pj )P
−2α j

j · P
(2+10ε)α j−1�

j−1

· (�!)1+o(1) ·
(

T

X log X
+ 1

log2 X

)

� P10
j−1 P

2(α j−1−α j )+10ε+(1+ε)
log log Pj
log Pj−1

j

(
T P1 log X

X
+ 1

)
1

log2 X
. (4·10)

For 2 � j � k−2, we have log log Pj/log Pj−1 � 2ε and α j −α j−1 = 10ε, so the definitions
of Pj−1 and Pj result in

Bj �
(

T P1 log X

X
+ 1

)
1

log2 X
(logk X)−3,

as wanted. For j = k − 1, we have αk−2 � √
ε/10, αk−1 = 1/12 − ε and Pk−1 = (log X)ε−2

,
so taking j = k − 1 in the above computation gives

Bk−1 � P
− 1

6 + 1
4

√
ε+ 1+ε

6+10
√

ε

k−1 � P−ε
k−1 � (log X)−ε−1

,

and therefore the case of Tk−1 has been dealt with.
Finally, the integral over T is estimated using Proposition 3 with P(s) = Qvk−1,H (s) and

M(s) = Qvk ,H (s). Denoting � = 
ε(log X/log Pk−1)� and separating by Perron’s formula
the variable pk−1 from the rest of the variables in Fvk ,H,k(s) (and bounding the polynomial
corresponding to the variables p1, ..., pk−2 by � 1), we see that

B � H 2(log4 X)

∫
T

|Qvk−1,H (1 + i t)Qvk ,H (1 + i t)|2dt

� H 2(log4 X)(P
− 5

6 +2ε

k−1 log2 X)(1+o(1))� Xo(1) + (log X)−95

(
1 + |T ′|T 1

2

X
2
3 −o(1)

)
,

for some well-spaced set T ′ ⊂ T . Since Pk−1 = (log X)ε−2
, the first term is � X− ε

3 . In
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addition, Lemma 6 allows us to bound the size of T ′ by

|T ′| � T 2αk−1 P2
k−1 X (ε2+o(1)) � X

1
6 − ε

2 ,

because αk−1 = 1/12 − ε. Therefore, the integral over T is � (log X)−95. In conclusion, we
deduced the bound

B1 + · · · + Bk−1 + B �
(

T P1 log X

X
+ 1

)
· 1

H log2 X
,

which finishes the proof of this proposition and of Theorem 4.

4·1. A corollary on products of two primes

As a byproduct of the methods above, we arrive at the exponent c = 5 + ε for products of
two primes, which already replicates Mikawa’s exponent for P2 numbers2. Similarly as for
products of three or more primes, it suffices to prove∫ T

T0

|F(1 + i t)|2dt = o

((
T P1 log X

X
+ 1

)
· 1

(log X)2+ε

)
,

where

F(s) =
∑

p1 p2∼X
P1�p1<P1+ε

1

(p1 p2)
−s

and P1 = loga X with a = 4 + ε. We may again suppose T � X 1+o(1).
We can redefine the set T1 in the proof of Proposition 4 with the new values P1 = loga X ,

H = (log X)3ε, keeping the value α1 = 10ε, and we see again from Proposition 1 that
the mean square of F(1 + i t) over T1 is suitably small. For applying Propositions 2 and
3, we need more polynomials than the two that correspond to the variables p1 and p2

in (1·2). Indeed, Heath–Brown’s decomposition (Lemma 10) enables splitting the polyno-
mial corresponding to p2 as (log X)O(1) sums of the form |M1(s)M2(s)| + |N1(s)N2(s)|,
where M1(s) and M2(s) are prime-factored Dirichlet polynomials with M1 M2 = X 1+o(1),
exp (log X/2 log log X) � M1 � X

1
3 +o(1) and N1(s) and N2(s) zeta sums with N1 N2 =

X 1+o(1). The contribution of the zeta sums over the complement of T1 can be managed easily
with Watt’s theorem, similarly as in the proof of Proposition 3.

To estimate the contribution of the prime-factored polynomials Mi(s), we redefine the set
T2 as {t ∈ [T0, T ] : |M1(1 + i t)| � M−α2

1 } \ T1, and Proposition 2 (with P(s) corresponding
to p1 and K (s) = M1(s)M2(s)) produces a valid bound3 in the T2 case, as long as a �
1/2(α2 − α1) + 100ε. We take α2 = 1/8 − ε, which turns out to be the best choice here.

Finally, when considering the integral over the complement of T1 � T2, instead of
Proposition 3, we apply the simple inequality∫

T
|M1(1 + i t)M2(1 + i t)|2dt � (log X)−100

(
1 + |T ′|T 1

2

M2

)
,

for some well-spaced T ′ ⊂ T , with T ⊂ [T0, T ] arbitrary. This inequality follows just from

2 Adding to the argument a small refinement from Subsection 5·1, as well as Proposition 5, which is
rather similar to Proposition 3, would already give c somewhat smaller than 5.

3 This bound for a arises by inserting Pj−1 = loga X and Pj = X1+o(1) into formula (4·10).



Almost primes in almost all short intervals 265

the prime-factored property of M1(s) combined with the Halász–Montgomery inequality
(Lemma 5). Now, denoting M1 = X ν+o(1), we need to have |T ′| � X

1
2 −ν−ε2

whenever

T ′ ⊂ {t ∈ [T0, T ] : |M1(1 + i t)| � M−α2
1 }

is well spaced. Jutila’s large values theorem (Lemma 7) applied with F(s) = M1(s)�, V =
M

−( 1
8 −ε)�

1 and k = 2, � ∈ {2, 3} tells that

|T ′| �
{

Xmax{ ν
2 , − 11

4 ν+1, 1−4ν}−2ε2

Xmax{ 3
4 ν, − 33

8 ν+1, 1−6ν}−2ε2
.

We know that ν � 1/3 + o(1), and for 2
7 � ν � 1

3 the first bound is � X
1
2 −ν−ε2

, while for
4/25 � ν � 2/7 the second bound is small enough.

In the case ν � 4/25, we may simply appeal to Lemma 6 to bound |T ′| (with V = M−α2
1 ),

and get

|T ′| � T 2α2 X 2να2+o(1) � X 0.29+100ε � X
1
2 −ν−ε,

for α2 = 1
8 − ε. This proves that α2 = 1/8− ε was permissible, leading to a = 1/2α2 +C1ε,

so the admissible exponent becomes c = a + 1 � 5 + 2C1ε (and ε > 0 was arbitrary). The
rest of the paper therefore deals with improving the value c = 5 + ε to c = 3.51, which will
require several further ideas, along with the ones already introduced.

5. Lemmas for theorem 5

5·1. Exponent pairs

In the proof of Theorem 5, several zeta sums arise, and in some instances it is useful to
have a smallish, pointwise power saving in these sums. This is given by the theory of expo-
nent pairs. We could compute a long list of exponent pairs and choose the optimal estimate
depending on the length of the zeta sum, but it turns out that using a single suitable exponent
pair improves the exponent c for E2 numbers by approximately 0.02, while having more of
them would have very little additional advantage, and would complicate the calculations.
Therefore, instead of formulating the general definition of exponent pairs (found in [17,
chapter 3]), we write down the estimate coming from this specific pair.

LEMMA 12. Let

σ(ν) = − min

{
1 − ν

126
− ν

21
, 0

}
.

Then we have ∑
n∈I

n−1−i t � t−σ(ν)+o(1),

for each I = [N1, N2] with tν � N1 � N2 � tν+o(1).

Proof. This follows immediately from the fact that (1/126, 20/21) is an exponent pair.
For the proof of this, see Montgomery’s book [17, chapter 3].

5·2. Lemmas on sieve weights

For finding products of two primes on short intervals, we need some lemmas concerning
sieve weights. In the cases of sums �1(h) and �2(h) in Subsection 6·2, there will be too few
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variables for finding cancellation in the mean square of the corresponding Dirichlet poly-
nomials. However, introducing sieve weights to these sums, we get an additional variable
which is summed over all integers in a certain range, and separating that variable gives a
long zeta sum (because there are few variables), and Watt’s theorem can be applied to this
sum. Also in the case of these sums, we need to make use of an additional saving of a logar-
ithm in the mean value theorem. However, here the coefficients are not supported on almost
primes but are closely related to the Dirichlet convolution λn ∗ 1, where λn are the sieve
weights. The sieve weights λn can be taken to be those of Brun’s pure sieve. Specifically, we
take

λ+
d =

{
μ(d), ν(d) � R, d | P(w)

0, otherwise,
λ−

d =
{

μ(d), ν(d) � R + 1, d | P(w)

0, otherwise,

where the notations are as in Subsection 1·1, and

w = exp

(
log X

(log log X)3

)
and R = 2

⌊
(log log X)

3
2

⌋
.

Since the support of λn ∗ 1 contains in addition to almost primes only numbers having
exceptionally many prime factors, we are able to save one logarithm factor in the mean
values. This is done in the following lemma.

LEMMA 13. Let λ+
d and λ−

d be the sieve weights of Brun’s pure sieve with the above
notations. Let k � 0 be a fixed integer, R1, ..., Rk � 1 and

an =
∑

p1 ···pk |n
Ri �pi �R1+ε

i

∣∣∣∣∣∣
∑

n=p1···pk dm

λ±
d

∣∣∣∣∣∣ ,
where either the sign + or − is chosen throughout (for k = 0, we define p1 · · · pk = 1).
Then for y � A(x/logA x) and x ∼ X we have∑

x�n�x+y

|an|2 � A(log log X)Ok (1) y

log X
(5·11)

∑
1�h� x

T

∑
m−n=h

m,n∈[x,x+y]

|am ||an| � A(log log X)Ok (1) X

T
· y2

log2 X
. (5·12)

For the proof of this lemma, we need the follows two lemmas.

LEMMA 14. For x � 2 and positive integer �, let

π�(x) = |{n ∈ [1, x] : ν(n) = �}|.
There exist absolute constants K and C such that

π�(x) <
K x

log x

(log log x + C)�−1

(� − 1)!
for all � and x � 2.

Proof. This is an elementary result of Hardy and Ramanujan from [8].
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LEMMA 15. Let a � 1 be fixed, and let R = 2
(log log X)
3
2 � as before. Then, for any

A > 0, ∑
n∼X

ν(n)�R

aν(n) � a,A
X

logA X
.

Proof. The sum in question can be written as∑
��R

a�|{n ∼ X : ν(n) = �}|,

and, by Lemma 14, this is

�
X

log X

∑
��R

(
ae(log log X + C)

� − 1

)�−1

� a X · 2−R � A
X

logA X

by the definition of R.

We can now proceed to proving Lemma 13.

Proof of Lemma 13. It suffices to consider the lower bound sieve weights. We assume
k � 1, as the case k = 0 is similar but a little simpler. Define θn = 1 ∗ λ−

n . We have

θn =
∑
d|n

ν(d)�R
d|P(w)

μ(d)

=
∑

d|(n,P(w))

μ(d) + O

⎛
⎜⎝∑

d|n
ν(d)>R

|μ(d)|
⎞
⎟⎠

= 1(n,P(w))=1 + O(2ν(n)1ν(n)>R).

Using this, we bound the sum (5·11). Denoting by � the product of all the primes in⋃k
i=1[Ri , R1+ε

i ] � [1, w], we observe that

an =
∑

p1 ···pk |n
Ri �pi �R1+ε

i

|θ n
p1 ···pk

| � ν(n)k(1(n,P(w)

� )=1 + 2ν(n)1ν(n)>R). (5·13)

The contribution of the first term on the right-hand side of (5·13) to the sum (5·11) is

�
∑

x�n�x+y

(n,
P(w)

� )=1

ν(n)2k � (log log X)Ok (1)
∑

x�n�x+y

(n,
P(w)

� )=1

1 � (log log X)Ok (1) y

log X

by Brun’s sieve and the fact that ν(n) � (log log X)3 when (n,P(w)) = 1. On the other
hand, the the second term on the right-hand side of (5·13) contributes to (5·11) at most

�
∑

x�n�x+y
ν(n)�R

ν(n)2k4ν(n) � k

∑
x�n�x+y

ν(n)�R

5ν(n) � A,k
X

logA X
(5·14)

by Lemma 15. This proves the first bound in Lemma 13.
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The second bound in Lemma 13 is proved analogously. The two terms in (5·13) can be
combined in four ways into products of two terms (two of these are symmetric). One of the
cases contributes to (5·12) at most

�
∑

1�h� x
T

∑
m−n=h

m,n∈[x,x+y]

ν(m)kν(n)k1(m,P(w)

� )=11(n,P(w)

� )=1 � (log log X)Ok (1) X

T
· y2

log2 X

by Brun’s sieve. The two symmetric terms obtained by multiplying terms in (5·13) have an
impact of

�
∑

1�h� x
T

∑
m−n=h

m,n∈[x,x+y]

ν(m)kν(n)k1(m,P(w)

� )=12ν(n)1ν(n)>R,

where the coefficients depending on m can be bounded trivially, while the coefficients de-
pending on n save an arbitrary power of logarithm, as in formula (5·14). Finally, the fourth
term arising from multiplication of (5·13) also saves an arbitrary power of logarithm by the
same argument.

6. Proof of theorem 5

Before proving Theorem 5, we need some preparation. Define

Sh(x) =
∑

x�p1 p�x+h

P1�p1�P1+ε
1

1, SX = SX (X)

and set

w = exp

(
log X

(log log X)3

)
.

We use Buchstab’s identity twice to decompose

Sh(x) =
∑

x�p1n�x+h
P1�p1�P1+ε

1
(n,P(w))=1

n>1

1 −
∑

x�p1q1n�x+h
P1�p1�P1+ε

1
w�q1<

√
x

(n,P(q1))=1
n>1

1

=
∑

x�p1n�x+h
P1�p1�P1+ε

1
(n,P(w))=1

n>1

1 −
∑

x�p1q1n�x+h
P1�p1�P1+ε

1
w�q1<

√
x

(n,P(w))=1
n>1

1 +
∑

x�p1q1q2n�x+h
P1�p1�P1+ε

1
w�q2<q1<

√
x

(n,P(q2))=1
n>1

1.

Call these sums �1(h), �2(h) and �3(h), respectively, and call the corresponding dyadic
sums �1(X), �2(X) and �3(X), respectively. We will divide �3(h) into two parts �′

3(h)

and �′′
3 (h) in such a way that �1(h), �2(h) and �′

3(h) can be evaluated asymptotically,
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while the error from �′′
3 (h) is manageable. To be precise, we will prove that

1

h
Sh(x) = 1

h
(�1(h) − �2(h) + �′

3(h) + �′′
3 (h))

= 1

X
(�1(X) − �2(X) + �′

3(X)) + 1

h
�′′

3 (h) + o

(
1

log X

)
(6·15)

= 1

X
SX + 1

h
�′′

3 (h) − 1

X
�′′

3 (X) + o

(
1

log X

)

� 1

X
SX − 1

X
�′′

3 (X) + o

(
1

log X

)

� ε · 1

X
SX (6·16)

almost always, with the steps (6·15) and (6·16) being the nontrivial ones. This estimate will
then immediately lead to Theorem 5. To prove these statements, we require some auxiliary
results for the cases of �1(h), �2(h) and �3(h).

6·1. Mean square bounds related to Theorem 5

We need three additional mean square bounds to deal with the sums �1(h), �2(h) and
�3(h). The first is a relative of Proposition 3 and would already improve slightly the expo-
nent c = 5 + ε obtained from the proof of Theorem 4. It will not be applied directly in the
proof of Theorem 5, but instead as an ingredient in the proof of Proposition 7.

PROPOSITION 5. Let X 1+o(1) � T � T0 = X 0.01, and 0 � α1 � 1. Furthermore, let

P(s) =
∑

P�p�P ′

1

ps
, M(s) =

∑
m∼M

bm

ms
,

with P = X ν+o(1), P ′ ∈
[

P + P
log X , 2P

]
, 0 < ν � 1/2, |bm | � dr (m) for fixed r, and

P M = X 1+o(1). Also let

U = {t ∈ [T0, T ] : |P(1 + i t)| � P−α1}.
Then, ∫

U
|P(1 + i t)M(1 + i t)|2dt � (log X)−100 + X

1
2 −min{2σ(ν), ν

2 }+o(1) · |U ′|P
X

for some well-spaced U ′ ⊂ U .

Proof. Note that Heath–Brown’s decomposition (Lemma 10) gives

|P(1 + i t)| � (logC X)(|G1(1 + i t)| + · · · + |GL(1 + i t)|),
with L � logC X and each G j (s) either of the form G j (s) = N (s) with N (s) a zeta sum
of length P1−o(1), or G j (s) = M1(s)M2(s) with M1 and M2 prime-factored polynomials of
length M1 � M2 � exp(log X/log log X), M1 M2 = P1−o(1). To bound the contribution of
the zeta sum, we divide the integral over U into integrals over dyadic intervals [T1, 2T1] with
T1 ∈ [T0, T ], and write N = T μ+o(1)

1 with μ � ν. If μ > 1, we know that |N (1 + i t)| �
log t/t and M(1 + i t) � (log X)O(1), so∫

U�[T1,2T1]
|M(1 + i t)N (1 + i t)|2dt �

(log X)O(1)

T0
.
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If μ � 1, we first pick a well-spaced U ′ ⊂ U such that∫
U

|M(1 + i t)N (1 + i t)|2dt �
∑
t∈U ′

|M(1 + i t)N (1 + i t)|2.

Now the Halász–Montgomery inequality and the the fact that N (s) is a zeta sum give

∑
t∈U ′�[T1,2T1]

|M(1 + i t)N (1 + i t)|2 � T −2σ(ν)+o(1)
∑

t∈U ′�[T1,2T1]
|M(1 + i t)|2

� T −2σ(ν)+o(1)

(
1 + |U ′|T 1

2 +o(1)

1
X
P

)
.

To deal with the contribution of the prime-factored polynomials Mi (s), we may use the
Halász–Montgomery inequality in a manner analogous to the above to obtain the estimate

∫
U

|M(1 + i t)M1(1 + i t)M2(1 + i t)|2dt � (log X)−100

(
1 + |U ′|T 1

2 +o(1)

X

P
1
2

)
,

since M M1 � X 1+o(1)/P
1
2 Taking the maximum of these two results produces the claimed

bound.

Our second mean square bound is a type I estimate where we exploit a long zeta sum with
the help of Watt’s theorem. In the cases of �1(h) and �2(h), this is necessary, and in the
case �3(h) it improves our exponent for Theorem 5. A closely related estimate can be found
for example in [10, chapter 9].

PROPOSITION 6. Let X 1+o(1) � T � T0, and let M(s), N (s), P(s) be Dirich-
let polynomials with coefficients bounded by Xo(1) and supported on the intervals
[M, 2M], [N , 2N ],[P, 2P], respectively. Denote Q(s) = ∑

m∼Q
am

ms , and let N (s) be a zeta
sum. Suppose in addition that

M N P = X 1+o(1), P Q2 � X
1
4 , M2 P � X 1+o(1).

Then∫ T

T0

|M(1 + i t)N (1 + i t)P(1 + i t)Q(1 + i t)|2dt � Xo(1)

(
Q−1 + 1

T0

)
max
m∼Q

|am |2.

Remark 9. In all our applications, the polynomial Q(s) has length essentially X ε, and it
is used to win by X ε2

, say, in our estimates.

Proof. We will reduce the proposition to Watt’s theorem (Lemma 9). Divide the integra-
tion domain into dyadic intervals [T1, 2T1]. By Cauchy–Schwarz, the mean value theorem
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and Watt’s theorem, we see that∫ 2T 1

T1

|M(1 + i t)N (1 + i t)P(1 + i t)Q(1 + i t)|2dt

�
(∫ 2T 1

T1

|N (1 + i t)|4|P(1 + i t)Q(1 + i t)2|2dt

) 1
2

·
(∫ 2T1

T1

|M(1 + i t)|4|P(1 + i t)|2dt

) 1
2

�

((
T o(1)

1 (T1 + T
1
2

1 P2 Q4)

N 2 P Q2
+ T o(1)

T 3
1

)
max
m∼Q

|am |4
) 1

2 (
T1 + M2 P

M2 P

) 1
2

�

((
T o(1)

1 (T1 + T
1
2

1 P2 Q4)

N 2 P Q2

)
max
m∼Q

|am |4
) 1

2 (
T1 + M2 P

M2 P

) 1
2

+ Xo(1)

T0
max
m∼Q

|am |2.

Hence, we need

(X + X
1
2 P2 Q4)(X + M2 P) � (M N P Xo(1))2

and this is guaranteed by our conditions.

For the �3(h) case in Subsection 6·3, we also need the following mean square bound,
which is somewhat analogous to Proposition 4 and is based on Propositions 1, 2 and 5, but
it will be clear only later how it is crucial for proving Theorem 5.

PROPOSITION 7. Let 0 � ν � 1/2, 0 < α2 � 1, a = 1/2α2 + C2ε, P1 = loga X,
X 1+o(1) � T � T0 = X 0.01, and w � P2 = X ν+o(1) with w = exp(log X/(log log X)3). Also
let

G(s) =
∑

p1 p2 p3n∼X
Pi �pi �P1+ε

i , i�2
p2<p3

(n,P(p2))=1
n>1

an(p1 p2 p3n)−s,

where |an| � (log X)ε. Suppose that for every Dirichlet polynomial M(s) = ∑
m∼M bm/ms

with |bm | � dr (m) for fixed r and M = X ν+o(1) any well-spaced set

U ′ ⊂ {t ∈ [0, T ] : |M(1 + i t)| � M−α2}
satisfies |U ′| � X

1
2 −ν+min{2σ(ν), ν

2 }−ε. Then we have∫ T

T0

|G(1 + i t)|2dt �
(

T P1 log X

X
+ 1

)
1

log2+ε X
.

Proof. Let α1 = 100ε and define H = log10ε X . Let

Qv,H,1(s) =
∑

e
v
H �p1<e

v+1
H

p−s
1 , Qv,H,2(s) =

∑
e

v
H �p2<e

v+1
H

p−s
2
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and

Gv,H,1(s) =
∑

p2 p3 p4m∼Xe− v
H

P2�p2�P1+ε
2

p2<p3, p2�p4
(m,P(p4))=1

ap4m(p2 p3 p4m)−s,

Gv,H,2(s) =
∑

p1 p3 p4m∼Xe− v
H

P1�p1�P1+ε
1

(m,P(p4))=1

ap4m(p1 p3 p4m)−s .

For j = 1, 2, we have∫
S

|G(1 + i t)|2dt �
(

T P1 log X

X
+ 1

)
1

log2+ε X

+ H 2(log2 Pj )(log10( j−1) X)

∫
S

|Qv j ,H, j (1 + i t)Gv j ,H, j (1 + i t)|2dt

for some v j ∈ [H log Pj , (1 + ε)H log Pj ] and any measurable S ⊂ [T0, T ]. In the case
j = 1, this follows from Lemmas 2 and 11, while in the case j = 2, we use Perron’s
formula to separate the variables in G(s). We partition [T0, T ] as T1 � T2 � T with

T1 = {t ∈ [T0, T ] : |Qv1,H,1(1 + i t)| � P−α1
1 },

T2 = {t ∈ [T0, T ] : |Qv2,H,2(1 + i t)| � P−α2
2 } \ T1,

and T = [T0, T ] \ (T1 � T2).

What remains to be done is estimating the integrals

Bj = H 2(log2 Pj )(log10( j−1) X)

∫
T j

|Qv j ,H, j (1 + i t)Gv j ,H, j (1 + i t)|2dt,

for j = 1, 2, as well as

B = H 2(log10 X)

∫
T

|Qv2,H,2(1 + i t)Gv2,H,2(1 + i t)|2dt.

We have B1 � (T P1 log X/X + 1)(P10ε−α1
1 /log2 X) by Proposition 1 and Lemma 11,

and this is small enough since α1 = 100ε. We also have, by Proposition 2 with � =
�log P2/log P1�,

B2 � H 2(log20 X)P−2α2
2 P (2+10ε)α1�

1 �(1+o(1))�

� P
2(α1−α2)+20ε+ 1+2ε

a
2

� P−ε
2 � (log X)−100,

as long as a � 1/2(α2 − α1)+C2ε/2, say. Lastly, Proposition 5 gives, for some well-spaced
U ′ of the type mentioned in the proposition,

B � (log X)−50 + X
1
2 −min{2σ(ν), ν

2 }+o(1) |U ′|X ν+o(1)

X
� (log X)−50

by our assumption on U ′. Now the proof is complete.
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6·2. Cases of �1(h) and �2(h)

Let λ+
d and λ−

d be the sieve weights of Brun’s pure sieve with R = 2
(log log X)
3
2 � and

sieving parameter w = exp(log X/(log log X)3). We have∑
x�p1dn�x+h

P1�p1�P1+ε
1

λ−
d �

∑
x
p1

�n� x+h
p1

P1�p1�P1+ε
1

(n,P(w))=1
n>1

1 = �1(h) �
∑

x�p1dn�x+h

P1�p1�P1+ε
1

λ+
d .

We consider the lower bound; the upper bound can be considered similarly. Letting X1 =
X/T 3

0 with T0 = X 0.01, we have

h

X1

∑
P1�p1�P1+ε

1
d|P(w)

λ−
d

∑
X

p1d �n� X+X1
p1d

1 = h
∑

P1�p1�P1+ε
1

d|P(w)

λ−
d

p1d
+ O

(
h

X1
wR P1+ε

1

)
,

so

�1(h) �
∑
d|P(w)

P1�p1�P1+ε
1

λ−
d

h

p1d
+

⎛
⎜⎜⎝ ∑

x�p1dn�x+h

P1�p1�P1+ε
1

λ−
d − h

X1

∑
X�p1dn�X+X1
P1�p1�P1+ε

1

λ−
d

⎞
⎟⎟⎠ (6·17)

+ O

(
1

log100 X

)
.

By the fundamental lemma of the sieve (see e.g. [4, chapter 6]), we further deduce that∑
d|P(w)

P1�p1�P1+ε
1

λ−
d

h

p1d
= (1 + O((log X)−100))

∑
d|P(w)

P1�p1�P1+ε
1

λ+
d

h

p1d

� h

X
�1(X) + O

(
h

log100 X

)
.

Therefore, we may concentrate on the expression in the parentheses in (6·17), which is a
difference between a short and long average. By Lemma 1, it is o(h/log X) for h � P1 log X
and for almost all x � X , provided that∫ T

T0

|F(1 + i t)|2dt = o

((
T P1 log X

X
+ 1

)
1

log2 X

)
,

for all T � T0, where T0 = X 0.01, and

F(s) =
∑

p1dn∼X

P1�p1�P1+ε
1

λ−
d (p1dn)−s .

Such an estimate is given by the following proposition, which is invoked again in the case
of the sum �2(h).

PROPOSITION 8. Let ε > 0, P1 = loga X with a � 2 + C3ε and

F(s) =
∑

p1dn∼X

P1�p1�P1+ε
1

λ±
d (p1dn)−s or F(s) =

∑
p1 pdn∼X

P1�p1�P1+ε
1

M�p�M1+ε

λ±
d (p1 pdn)−s,
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with M � X
1
2 +o(1) , X 1+o(1) � T � T0 = X 0.01 as before, and either + or − sign chosen

throughout. Then, ∫ T

T0

|F(1 + i t)|2dt �
(

T P1 log X

X
+ 1

)
1

log2+ε X
.

Proof. Let D be a large constant, and for positive integer v and H = log10ε X denote

Pv,H (s) =
∑

e
v
H �p<e

v+1
H

p−s

and

Fv,H (s) =
∑

dn∼Xe− v
H

λ±
d (dn)−s or Fv,H (s) =

∑
pdn∼Xe

− v
H

M�p�M1+ε

λ±
d (pdn)−s .

Lemma 2 gives∫ T

T0

|F(1 + i t)|2dt � H 2(log log X)2

∫ T

T0

|Pv0,H (1 + i t)Fv0,H (1 + i t)|2dt

+ T
∑

n∈[Xe
− 1

H ,Xe
1
H ] or

n∈[2X,2Xe
1
H ]

|an|2 + T
∑

1�h� X
T

∑
m−n=h

m,n∈[Xe− 1
H ,Xe

1
H ] or

m,n∈[2X,2Xe
1
H ]

|am ||an|, (6·18)

for some v0 ∈ I0, where I0 = [H log P1, H log P1+ε
1 ] and

am =
∑
p1 |m

P1�p1�P1+ε
1

∣∣∣∣∣∣
∑

m=p1dn

λ±
d

∣∣∣∣∣∣ or am =
∑
p1 |m

P1�p1�P1+ε
1

∣∣∣∣∣∣∣
∑

m=p1 pdn

M�p�M1+ε

λ±
d

∣∣∣∣∣∣∣ . (6·19)

Lemma 13 tells that the last two terms in (6·18) contribute, for some constant C > 0,

�
T

X

(
(log log X)C

H
· 1

log X
+ (log log X)C

H
· X

T
· 1

log2 X

)

�
(

T P1 log X

X
+ 1

)
· 1

log2+ε X

by the definition of H . We are now left with estimating the integral in (6·18). We consider
the integrals in two parts, namely the part over T1 and its complement, with

T1 = {t ∈ [T0, T ] : |Pv0,H (1 + i t)| � P−100ε
1 }.

The case of T1 is dealt with Proposition 1 and Lemma 13, and it contributes

� H 2(log log X)2 T

X
P1−200ε

1

(
S1

(
X

P1
, (an)

)
+ S2

(
X

P1
, (an)

))

� (log log X)C

(
T

X
· 1

log X
+ 1

P1
· 1

log2 X

)
· P1−100ε

1

�
(

T P1 log X

X
+ 1

)
· 1

log2+ε X
,

where the coefficients an involved in definition of Si(X, (an)) are given by (6·19).
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We turn to the integral over the complement of T1 and resort to the Watt-type Proposition
6. Let � be a large positive integer such that P�

1 = X ε+o(1). Letting Na(s) = ∑
n∼Xe−a n−s

and

Mv,H (s) =
∑

e
v
H �p1d<e

v+1
H

P1�p1�P1+ε
1

λ±
d (p1d)−s or Mv,H (s) =

∑
e

v
H �p1 pd<e

v+1
H

P1�p1�P1+ε
1

M�p�M1+ε

λ±
d (p1 pd)−s,

an application of Perron’s formula to separate variables, along with Lemma 13 and
|Pv1,H (1 + i t)P100ε

1 |2� � 1, yields∫
[T0,T ]\T1

|F(1 + i t)|2dt

� H 2(log10 X)P200ε�
1

∫ T

T0

|Pv0,H (1 + i t)�Mv1,H (1 + i t)N v1
H
(1 + i t)|2dt (6·20)

+
(

T P1 log X

X
+ 1

)
· 1

log2+ε X
,

for some v1 ∈ I1, where I1 = [H log M, H log(M1+εwR)]. Now Proposition 6 with N (s) =
N v1

H
(s), M(s) = Mv1,H (s), P(s) ≡ 1, Q(s) = Pv0,H (s)� and � = 
ε log X/log P1� bounds

(6·20) with

Xo(1) P200ε�
1

(
Q−1 + 1

T0

)
(�!)2 � (P−1

1 (log2 X))(1+o(1))� + X−ε � X−ε2
(6·21)

for a � 2 + C3ε, since the condition M2 P � X 1+o(1) certainly holds.

Note that Proposition 8 immediately shows that

1

h
�1(h) − 1

X1
�1(X1) � o

(
1

log X

)

for almost all x � X , where X1 = X/T 3
0 . Taking into account formula (6·17) and repeat-

ing the above argument with lower bound sieve weights replaced with upper bound sieve
weights, we see that the reverse inequality holds, so (1/h)�1(h) can be replaced with its
dyadic counterpart (1/X)�1(X) almost always.

Now we deal with �2(h). We use the same strategy, so that for example for the lower
bound we start with

�2 �
∑

x�p1 pdn�x+h
P1�p1�P1+ε

1

λ−
d ,

an inequality that is valid even when the interval [x/p1 p, (x + h)/p1 p] contains no integers.
This leads us to study the Dirichlet polynomial

F∗(s) =
∑

p1 pdn∼X
P1�p1�P1+ε

1
w�p<

√
x

λ−
d (p1 pdn)−s,

where the variable p can be divided into � log log X intervals of the form [M, M1+ε]
with M � X

1
2 +o(1) (the value of ε may be varied so that the division becomes exact).

For each of these Dirichlet polynomials where p is restricted, Proposition 8 gives a bound
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of (T P1 log X/X + 1)(log X)−2−ε for their second moment. Now by the same argument
as for �1(h), we infer that (1/h)�2(h) can also be replaced with its dyadic counterpart
(1/X)�2(X) almost always.

6·3. Case of �3(h)

We are left with the sum �3(h). This is the case that determines which value of a we
obtain (and hence the value of c, which is just a + 1), since so far in all cases a � 2 + C4ε

has been a sufficient assumption. We will establish the value a = 2.51.
Let β1, β2, β ∈ (1/6, 1/2) be parameters which are given the values

β1 = 0.1680, β2 = 0.1803, β = 0.1950

to optimise various subsequent conditions. We split �3(h) into three parts �
(1)

3 (h), �
(2)

3 (h)

and �
(3)

3 (h), say, the first sum being a type II sum that can be evaluated asymptotically, the
second being a type I sum (after Buchstab’s identity) that can mostly be evaluated asymp-
totically, and the third being a type II sum that can be transformed into Buchstab integrals
whose value is suitably small. Explicitly, let

�
(i)
3 (h) =

∑
x�p1q1q2n�x+h

P1�p1�P1+ε
1

(q1,q2)∈Ai
(n,P(q2))=1

n>1

1, i = 1, 2, 3

with

A1 ={(q1, q2) : w � q2 < q1, one of q1, q2 ∈ [w, Xβ1] � [Xβ2, Xβ]},
A2 ={(q1, q2) : w � q2 < q1, either q2

1 q3
2 � X or q1q4

2 � X, q1 � X
1
4 −2ε} \ A1,

A3 ={(q1, q2) : w � q2 < q1 � X
1
2 } \ (A1 � A2).

The underlying idea is that the small variable in A1 enables efficient use of large values
theorems, the conditions in A2 make it possible to apply Watt’s theorem (after two applic-
ations of Buchstab’s identity), and the remaining set A3 can be shown to contribute not too
much. We study the sums �

(i)
3 (h) separately, starting with �

(1)

3 (h).

6·3·1. Type II sums

We consider the Type II sum �
(1)

3 (h). In order to prove that (1/h)�
(1)

3 (h) is asymptotic-
ally (1/X)�

(1)

3 (X) almost always, it suffices to prove that (1/h)�
(1)

3 (h) is asymptotically
(1/X1)�

(1)

3 (X1) almost always with X1 = X/T 3
0 , and then apply the prime number theorem

in short intervals. For this latter asymptotic equivalence, it suffices to show that the Dirichlet
polynomial

G(s) =
∑

p1q1q2n∼X
P1�p1�P1+ε

1

Qi �qi �P1+ε
i ,i�2

q2<q1
(n,P(q2))=1

n>1

(p1q1q2n)−s

satisfies ∫ T

T0

|G(1 + i t)|2dt �
(

T P1 log X

X
+ 1

)
1

log2+ε X
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with T � X 1+o(1), T0 = X 0.01, P1 = loga X and Q1, Q2 � w otherwise arbitrary, but either
Q1 or Q2 is of size X ν+o(1) with ν ∈ [0, β1] � [β2, β]. These cases are similar, so assume
Q2 = X ν+o(1) with ν as above.

This is the setting of Proposition 7. Therefore, if for every polynomial of the form

M(s) =
∑
m∼M

bm

ms
,

with M = X ν+o(1) and |bm | � dr (n) for fixed r , any well-spaced set

U ′ ⊂ {t ∈ [0, T ] : |M(1 + i t)| � M−α2}
satisfies

|U ′| � X
1
2 −ν+min{2σ(ν), ν

2 }−ε,

the sum �
(1)

3 (h) has the anticipated asymptotic for a � 1/2α2 + C5ε. Of course, we fix
α2 = 1/(2·2.51) + C6ε.

We are left with estimating |U ′|, and to this end we utilise Jutila’s large values theorem.
Jutila’s large values theorem (Lemma 7) applied to the �th moment of M(s) can be refor-
mulated to say that if

R(ν, α2, k, �) = max

{
2να2�,

(
6 − 2

k

)
να2� + 1 − 2ν�, 1 + 8k�να2 − 2k�ν

}

and

R(ν, α2) = min
k,�∈{1,2,...}

R(ν, α2, k, �),

then |U | � X R̃(ν,α2)+o(1). It turns out that the case k = 3 is always optimal for us, and it
suffices to restrict to 4 � � � 12 (so our upper bound for R(ν, α2) is a minimum of 9
piecewise linear functions). Now we check that, with our choices of β1, β2, β and α2,

R(ν, α2) � 1

2
− ν + min

{
2σ(ν),

ν

2

}
− ε

for ν ∈ [0.05, β1] � [β1, β2]. Verifying this is straightforward, because both sides are piece-
wise linear functions.4

We must also prove the desired estimate for |U ′| in the range ν ∈ [0, 0.05). In this case,
we do not appeal to Jutila’s large values theorem, but to Lemma 6 (along with its remark),
which tells us that

|U ′| � T 2α2 X 2α2ν+o(1) � X 0.42 < X
1
2 −ν−ε

for the same value α2 = 1/(2·2.51) + C6ε. This means that for c = 3.51, (1/h)�
(1)

3 (h) can
be replaced with its dyadic counterpart almost always.

4 These computations can be carried out by hand with a bit of patience. For example, the case � = 4
in Jutila’s bound is good enough in the range ν ∈ [16315/90496, 15311/78512], and the bound for � = 5
is good enough when ν ∈ [753/5554, 15311/91112]. These intervals are [β2, β] and [0.1356, β1], up to
rounding.
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6·3·2. Type I sums

We turn to the sum �
(2)

3 (h). By applying Buchstab’s identity twice, we find that

�
(2)

3 (h) =
∑

x�p1q1q2n�x+h
P1�p1�P1+ε

1
(q1,q2)∈A2
(n,P(w))=1

n>1

1 −
∑

x�p1q1q2q3n�x+h
P1�p1�P1+ε

1
(q1,q2)∈A2
w�q3<q2

(n,P(w))=1
n>1

1 +
∑

x�p1q1q2q3q4n�x+h
P1�p1�P1+ε

1
(q1,q2)∈A2

w�q4<q3<q2
(n,P(q4))=1

n>1

1.

Call these sums �
(2,1)

3 (h), �
(2,2)

3 (h) and �
(2,3)

3 (h), respectively. We show that (1/h)�
(2,1)

3 (h)

and (1/h)�
(2,2)

3 (h) can be replaced with their dyadic counterparts almost always. We confine
to studying �

(2,2)

3 (h), as �
(2,1)

3 (h) is easier to handle.
We may make in �

(2,2)

3 (h) the additional assumption that all the variables except P1 are
in the intervals [Xβ1, Xβ2] � [Xβ, X ], since otherwise the sum can be dealt with in the same
way as �

(1)

3 (h). We may also assume that qi ∈ [Qi , Q1+ε
i ] for some Qi . Defining

F(s) =
∑

p1q1q2q3dn∼X
P1�p1�P1+ε

1

Qi �qi �Q1+ε
i

(q1,q2)∈A

λ±
d (p1q1q2q3dn)−s,

with λ±
d the same Brun’s sieve weights as before (the sign being the same throughout), and

taking into account the prime number theorem in short intervals and Lemmas 1 and 2, it
suffices to show that∫ T

T0

|F(1 + i t)|2dt �
(

T P1 log X

X
+ 1

)
1

log2+ε X
.

This bound is achieved similarly as in Proposition 8. Indeed, if T1 is defined as in the proof of
that proposition, the integral over T1 can be estimated in the same way as in that proposition.
In the complementary case, we separate all the variables, and it remains to show that∫

[T0,T ]\T1

|P1(1 + i t)Q1(1 + i t)Q2(1 + i t)Q3(1 + i t)D(1 + i t)N (1 + i t)|2dt

� (log X)−100,

where N (s) is a zeta sum, P1(s) and Qi(s) are polynomials supported on primes, and D(s)
has the sieve weights λd as its coefficients (actually, D(s) can be neglected by simply es-
timating it pointwise). Moreover, the lengths P1, Qi , D and N are from the same intervals
as p1, qi , d and n, respectively (in particular, d � exp(log X/log log X)). We appeal to
Proposition 6 with Q(s) = P1(s)�, P�

1 = X ε and with M(s) either Q1(s)Q3(s) or
Q2(s)Q3(s). If M(s) = Q1(s)Q3(s), the condition for Proposition 6 is Q2 � X

1
4 −2ε,

(Q1 Q3)
2 Q2 � X . If in turn M(s) = Q2(s)Q3(s), the condition for Proposition 6 is

Q1 � X
1
4 −2ε, Q1(Q2 Q3)

2 � X , and one of these conditions is always satisfied in our do-
main A2, since Q3 � Q2 and automatically Q2 � X

1
5 . Now it follows from (6·21) that for

a � 2 + C7ε, �
(2,2)

3 (h) has the desired asymptotic, and �
(2,1)

3 (h) can be evaluated similarly.
In the sum �

(2,3)

3 (h), we may again assume that all the variables lie in the intervals
[Xβ1, Xβ2] � [Xβ, X ], as otherwise we can use the type II sum argument. Let �

(2,4)

3 (h) be
what remains of �

(2,3)

3 (h) after this reduction. The sum �
(2,4)

3 results in a Buchstab integral,
and hence is postponed to Subsection 6·3·3.
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6·3·3. Buchstab integrals

We are left with the sums �
(3)

3 (h) and �
(2,4)

3 (h), for which no asymptotic was found. We
want to show that

1

X
�

(3)

3 (X) + 1

X
�

(2,4)

3 (X) � (1 − ε)
1

X
SX ,

which would complete the proof of Theorem 5, taking into account the estimates (6·15) and
(6·16). The following lemma allows us to transform our sums into Buchstab integrals.

LEMMA 16. Let a positive integer k and η > 0 be fixed. Let

A ⊂ {(u1, · · · , uk) ∈ Rk : u1, · · · , uk � η, u1 + · · · + uk � 1 − η}
be any set such that 1A is Riemann integrable. For a point q = (q1, ..., qk) ∈ Rk and X � 2,
define L(q) = (log q1/log X , ..., log qk/log X). Then∑

p1q1···qk n∼X
P1�p1�P1+ε

1
L(q1,...,qk )∈A
(n,P(qk ))=1

1

= (1 + o(1)) log(1 + ε)
X

log X

∫
(u1,...,uk )∈A

ω

(
1 − u1 − · · · − uk

uk

)
du

u1 · · · uk−1u2
k

,

where ω(·) is Buchstab’s function.

Proof. It suffices to prove the statement in the case that A is a box, that is, a set of the
form I1 ×· · ·× Ik with Ii intervals. Indeed, if the statement holds for boxes, then it holds for
finite unions of boxes. Moreover, since 1A is Riemann integrable, for every δ > 0 there is a
finite union B of boxes such that A \ B has measure at most δ. The part of A not contained
in B contributes at most η−k−1δ to the integral, and as δ → 0, this becomes arbitrarily small.

Now let A be a box. Using the connection between Buchstab’s function and the sieving
function (see the Appendix of Harman’s book [10]), summing partially, and using the change
of variables ui = log vi/log X , we see that∑

p1q1···qk n∼X
P1�p1�P1+ε

1
L(q1,...,qk )∈A
(n,P(qk ))=1

1 =
∑

P1�p1�P1+ε
1

L(q1,...,qk )∈A

S

([
X

p1q1 · · · qk
,

2X

p1q1 · · · qk

]
, P, qk

)

= (1 + o(1))
∑

P1�p1�P1+ε
1

L(q1 ,...,qk )∈A

X

p1q1 · · · qk log qk
ω

(
log X

p1q1···qk

log qk

)

= (1 + o(1))
∑

P1�p1�P1+ε
1

1

p1

∑
L(q1,...,qk )∈A

X

q1...qk log qk
ω

(
log X

q1...qk

log qk

)

= (b + o(1))

∫
L(v1,...,vk )∈A

X

v1 · · · vk log v1 · · · log2 vk

ω

(
log X

v1···vk

log vk

)
dv

= (b + o(1))
X

log X

∫
(u1,...,uk )∈A

1

u1 · · · u2
k

ω

(
1 − u1 − · · · uk

uk

)
du



280 JONI TERÄVÄINEN

with b = log(1 + ε), as wanted.

Let

A∗
3 ={(u1, u2) : u2 < u1, u1, u2 ∈ [β1, β2] � [β,

1

2
], 2u1 + 3u2 � 1,

max{u1 + 4u2, 4u1 − 10ε} � 1},
A∗

2 ={(u1, u2, u3, u4) : β1 � u4 < u3 < u2 < u1, u1, u2, u3, u4 � [β2, β], (u1, u2) ∈ A2}
be the sets corresponding to the summation conditions in �

(3)

3 (X) and �
(2,4)

3 (X), respect-
ively. The lemma above directly implies that

1

X
�

(3)

3 (X) = (1 + o(1)) log(1 + ε)

log X
J1,

1

X
�

(2,4)

3 (X) = (1 + o(1)) log(1 + ε)

log X
J2,

1

X
SX = (1 + o(1)) log(1 + ε)

log X
,

where J1 and J2 are given by

J1 =
∫

(u1,u2)∈A∗
3

ω

(
1 − u1 − u2

u2

)
du

u1u2
2

,

J2 =
∫

(u1,u2,u3,u4)∈A∗
2

ω

(
1 − u1 − u2 − u3 − u4

u4

)
du

u1u2u3u2
4

.

To compute J1, we approximate Buchstab’s function by

ω(u) �

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, u < 1
1
u , 1 � u � 2
1+log(u−1)

u , 2 � u � 3
1+log 2

3 , u > 3.

For u � 3 this is an equality, and for u > 3 the bound very sharp (it differs from the limiting
value e−γ , where γ is Euler’s constant, by less than 0.003), but we only need the fact that it
is an upper bound. We compute with Mathematica that J1 < 0.988 (when ε in the definition
of A∗

3 is small enough).5 The integral J2 only gives a minor contribution, and hence can be
estimated crudely as

J2 � β−5
1

∫
(u1 ,u2 ,u3 ,u4)∈A∗

2
u1+u2+u3+2u4�1

du

< β−5
1

∫
β1<u4<u3<u2<u1
u1+u2+u3+2u4�1

du < 0.007

5 The Mathematica code can be found at http://codepad.org/XCqx2iH3 . There is also a Py-
thon code for computing the integral at http://codepad.org/cVx065z5, where the integration
method is a rigorous computation of an upper Riemann sum.
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with Mathematica (the last integral could actually be evaluated exactly). To sum up, we have
J1 + J2 < 0.995 < 1 − ε, and this means, in view of (6·16), that with our parameter choices
β1, β2, β, the sums �

(3)

3 (X) and �
(2,4)

3 (X) can be discarded. Now, from (6·15) and (6·16) we
have (1/h)Sh(x) � ε · (1/X)SX , so Theorem 5 is proved. �

Remark 10. We can now observe that c = 3+ε is the limit of this method. Indeed, we are
forced to take α2 � 1/4 in the type II case, because nothing nontrivial is known about the
large values of Dirichlet polynomials beyond this region, and consequently a = 1/2α2+ε �
2 + ε and c � 3 + ε.
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THE GOLDBACH PROBLEM FOR PRIMES THAT ARE
SUMS OF TWO SQUARES PLUS ONE

JONI TERÄVÄINEN

Abstract. We study the Goldbach problem for primes represented by the
polynomial x2 + y2 + 1. The set of such primes is sparse in the set of all primes,
but the infinitude of such primes was established by Linnik. We prove that almost all
even integers n satisfying certain necessary local conditions are representable as the
sum of two primes of the form x2 + y2 + 1. This improves a result of Matomäki,
which tells us that almost all even n satisfying a local condition are the sum of one
prime of the form x2 + y2 + 1 and one generic prime. We also solve the analogous
ternary Goldbach problem, stating that every large odd n is the sum of three primes
represented by our polynomial. As a byproduct of the proof, we show that the primes
of the form x2 + y2 + 1 contain infinitely many three-term arithmetic progressions,
and that the numbers αp (mod 1), with α irrational and p running through primes of
the form x2 + y2 + 1, are distributed rather uniformly.

§1. Introduction. Let P be the set of primes represented by the quadratic
polynomial x2 + y2 + 1. We consider the Goldbach problem for the set P , our
main result being the following.

THEOREM 1.1. Almost all even positive integers n 6≡ 5, 8 (mod 9) can be
represented as n = p + q with p, q ∈P .

By “almost all” we mean that the number of exceptional n 6 N is o(N ).
The local condition n 6≡ 5, 8 (mod 9) is necessary (unless p or q equals 3 in
which case we can only represent o(N ) integers), as is easily seen by considering
primes of the form x2 + y2 + 1 modulo 9. A result of Matomäki [13], using a
somewhat different method, showed that one of the primes p and q can be taken
to be from P , the other one being a generic prime. A few years later, Tolev [21]
gave an asymptotic formula for a weighted count of the representations n = p+q
with p ∈ P and q a generic prime for almost all even n. Naturally, there is a
close connection between the almost-all version of the binary Goldbach problem
and the ternary Goldbach problem, so we can also solve the ternary problem for
the primes x2 + y2 + 1.

THEOREM 1.2. All large enough odd positive integers n can be represented
as n = p + q + r with p, q, r ∈P .

Received 7 December 2016, published online 25 January 2018.
MSC (2010): 11P32 (primary), 11N32, 11N36 (secondary).
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We remark that Tolev [22] established an asymptotic formula for the weighted
count of the representations of n as n = p+q+r with p, q ∈P but r a generic
prime. The proof of Theorem 1.2 is very similar to that of Theorem 1.1, and is
remarked on in §2.

As a byproduct of the method for proving Theorem 1.1, we will obtain an
analog of Roth’s theorem for the set of primes of the form x2+ y2+ 1, so that in
particular the set P contains infinitely many three-term arithmetic progressions.

THEOREM 1.3. Any subset of P∗ = {x2+ y2+1 : x, y coprime}∩P having
a positive upper density with respect to P∗ contains infinitely many non-trivial
three-term arithmetic progressions.

We will also conclude from the proof of Theorem 1.1 that for any irrational ξ ,
there is some uniformity in the distribution of the fractional parts of the numbers
ξp with p ∈P .

THEOREM 1.4. Let ξ be irrational and κ ∈ R. Then there are infinitely many
primes p ∈P such that ‖ξp+ κ‖ 6 p−θ , where θ = 1

80 − ε = 0.0125− ε and
ε > 0 is arbitrary. Here ‖ · ‖ stands for the distance to the nearest integer.

Theorems 1.3 and 1.4 are proved in §§4 and 11, respectively. In Theorem 1.4,
we have not pursued maximizing the value of θ , and the main message is that θ
can be taken to be positive.

It should be remarked that the distribution of ξp (mod 1) has been studied
also for some other subsets of the primes, such as for Chen primes [14, 19] and
very recently for Gaussian primes [1] and Piatetski–Shapiro primes [6]. In the
case of Chen primes the analog of Theorem 1.4 with θ > 0 was obtained in [14]
(and improved in [19] to θ = 3

200 = 0.015).
The proof of Theorem 1.1 is based on a recent paper of Matomäki and

Shao [15], where a transference-type theorem for additive problems of Goldbach
type was established, allowing one to deduce from certain desirable properties
of a set A the conclusion that A + A + A contains all large enough integers.
One should mention that a closely related transference principle for translation-
invariant additive problems was famously introduced by Green [3] and Green
and Tao [4, 5] to find arithmetic progressions in the primes, their principle
stating that a set A with certain desirable properties contains infinitely many
three-term arithmetic progressions (or k-term arithmetic progressions if one
assumes stronger conditions). The hypotheses of the transference-type result
for Goldbach-type equations [15, Theorem 2.3] resemble the ones of the
transference principle for translation-invariant equations [4, Proposition 5.1],
but include an additional assumption. An additional assumption is evidently
needed, since for example the primes p satisfying ‖√2p‖ < 1

100 contain a lot
of arithmetic progressions, but most odd integers are not the sum of three such
primes.

The first property required from a set A in the transference-type result of [15]
is “well-distribution” in Bohr sets, meaning that for ξ, κ ∈ R and η > 0 the
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sets {n : ‖ξn + κ‖ 6 η} and their intersections contain a fair proportion of the
elements of A. The second property, which is present in [4] as well, is that A is
“Fourier bounded”, in the sense that the Fourier transform 1̂A is small in `r norm
for r > 2. The last and simplest to check condition is that there should be a lower
bound of the correct order of magnitude for the number of elements in A up to N .
In [15], the transference-type result was applied to solve the ternary Goldbach
problem with three Chen primes or with three primes p such that [p, p + C]
contains at least two primes for some large constant C .

We employ a variant of the transference-type result of [15] in this paper,
the conditions for the principle being nearly identical, but with the conclusion
that A + A contains almost all positive integers (in the sense that there are
o(N ) integers n 6 N not representable in this form). This modification is
easy to implement, so the main part of our proof is devoted to verifying the
conditions involved in the transference-type result in the context of the set P .
The lower bound condition follows essentially from earlier work, so we are
mostly concerned with proving two requirements.

The Fourier boundedness requirement follows from the restriction theory
of the primes, in the form developed by Green and Tao in [4]. However, the
“enveloping sieve” β(n) (which is a pseudorandom majorant of a subset of the
primes and enjoys certain pleasant Fourier properties) has to be modified. It
turns out that the necessary modification is available in a paper of Ramaré and
Ruzsa [18], where the enveloping sieve was developed for purposes related to
additive bases, and actually the results in that paper imply that P is an additive
basis of finite (but large and unspecified) order.

Proving the well-distribution of the set P in Bohr sets requires more work
and occupies the majority of this paper. We use a strategy similar to the one that
was used in [15] to deal with Chen’s primes or with primes p with [p, p + C]
containing two primes for some large constant C , but we must use a different
sieve to detect primes of the form x2+ y2+1. The sieve suitable for this purpose
is a combination of the linear sieve and the semilinear sieve (also called the half-
dimensional sieve), developed by Iwaniec in [9] and used by him in [8] to prove
that the number of primes in P up to N is� N (log N )−3/2 (the infinitude of the
primes in P was established earlier by Linnik [11] in 1960, using his dispersion
method). An upper bound for |P ∩ [1, N ]| of the same order of magnitude
follows from the Selberg sieve, so P is a sparse set of primes.

When it comes to the sieve-theoretic part of the argument, we proceed along
the lines of [12] and [24] that consider the problem of finding primes from P in
short intervals. However, unlike in these works, one cannot apply the Bombieri–
Vinogradov theorem for the prime counting function, but one has to resort
to a Bombieri–Vinogradov-type result for exponential sums

∑
n6N 3(n)e(αn)

over primes. Such average results for exponential sums appeared for instance
in [14, 16, 20], but the level of distribution achieved in these works when the
weight sequence is not well-factorable (in the sense defined in [2, Ch. 12]) is
1
3 − ε, which is not good enough for our purposes. We derive a combinatorial
factorization for the semilinear sieve weights and apply [15, Lemma 8.4] (closely
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related to the estimates in [16]) on Bombieri–Vinogradov-type averages for∑
n6N 3(n)e(αn) to increase the level of distribution sufficiently and hence

obtain Theorem 1.1. In particular, the results of §§8, 9 and 10 imply the following
Bombieri–Vinogradov-type bound.

THEOREM 1.5. Let N > 1 be large and ε > 0, C > 10 fixed and let λ+,SEM
d

and λ−,SEM
d be the upper and lower bound semilinear sieve weights defined by

restricting the Möbius function µ(d) to the sets

D+,SEM = {p1 · · · pr 6 Nρ+ : z+ > p1 > · · · > pr ,

p1 · · · p2k−2 p2
2k−1 6 Nρ+ for all k > 1},

D−,SEM = {p1 · · · pr 6 Nρ+ : z− > p1 > · · · > pr ,

p1 · · · p2k−1 p2
2k 6 Nρ for all k > 1}

with the choices ρ+ = 2
5 − ε, ρ− = 3

7 − ε, z+ 6 N 1/2 and z− 6 N 1/3−ε. Let
α be a real number with |α − a/q| 6 1/q2 for some coprime integers a and q
with q ∈ [(log N )1000C , N (log N )−1000C ]. Then for any integer b 6= 0 we have
(choosing either the + or the − sign throughout)

∑
d6Nρ±
(d,b)=1

∣∣∣∣λ±,SEM
d

∑
n∼N

n≡b (mod d)

3(n)e(αn)
∣∣∣∣� N

(log N )C
.

We remark that the arguments of this paper would easily generalize to primes
of the form x2 + y2 + a, where a 6= 0 is any integer. We also note that since
for all the primes of the form x2 + y2 + 1 appearing in the rest of the paper the
only possible common prime factors of x and y are 2 and 3, Theorem 1.1 could
be stated in the form that almost all even n 6≡ 5, 8 (mod 9) are representable as
n = p + q with p and q primes and neither p − 1 nor q − 1 having any prime
factors greater than 3 that are ≡ −1 (mod 4). One should also mention that we
did not get an asymptotic formula for the number of representations of n as sums
of two or three primes from P (unlike in the work of Tolev [21, 22] on related
problems), nor did we show that the number of exceptional n in Theorem 1.1 is
� N/(log N )A instead of merely o(N ). We can nevertheless get a lower bound
of cn(log n)−3 for the number of representations in Theorem 1.1 for almost all n
for some small c > 0, and this is the correct order of magnitude.

1.1. Structure of the proofs. We give a brief outline of the dependences
between different theorems and propositions. The proof of Theorem 1.1 is
deduced from the transference-type theorem (Proposition 2.1) in §3, provided
that the two key conditions in the transference-type theorem are satisfied. One
condition is the well-distribution of the set P in Bohr sets and the other one
is a Fourier uniformity result for P (Propositions 3.2 and 3.3, respectively).
The proof of Proposition 3.3 is presented in §4, and in §3 it is shown that
Propositions 3.2 and 3.3 immediately imply Theorem 1.3.
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The largest part of the paper is then devoted to proving Proposition 3.2 using
sieve theory. The purpose of §5 is to show that Proposition 3.2 follows from
Proposition 5.1, which involves more notation but is easier to approach. In §6,
a weighted sieve for finding primes of the form x2 + y2 + 1 is presented, in
the form of Theorem 6.5. Section 7 constructs the weighted sequence (ωn) to
which Theorem 6.5 is applied, as well as sets up the circle method. Section 10
is then devoted to proving Hypothesis 6.4 for (ωn), since this hypothesis is the
requirement for applying Theorem 6.5. Section 10, which finishes the proofs of
Theorems 1.1 and 1.5, involves bounding Bombieri–Vinogradov sums related to
either semilinear or linear sieve coefficients and weighted by additive characters
that lie on either minor or major arcs. The type I and II inputs required in
§10 come from §8, while the required combinatorial input comes from §9. As
Remark 3.6 tells us, the only difference in the proofs of Theorems 1.2 and 1.1
is the form of the transference-type result being used. Finally, when it comes to
proving Theorem 1.4, one needs the sections from §6 onwards, the last of which,
§11, is required only for this purpose. We also remark that none of the §§2–6, 8
and 9 depend on each other.

1.2. Notation. The symbols j, k, `,m, n and q always denote integers, and
p is a prime number. We denote by e(α) = e2π iα the complex exponential, by
Li(x) = ∫ x

2 (dt/log t) the logarithmic integral and by π(x; q, a) the number of
primes up to x in the residue class a (mod q). We denote by ‖ · ‖ the distance to
the nearest integer function, by (·, ·) the greatest common divisor and by [·, ·] the
least common multiple. We denote by Zq the set of integers (mod q), sometimes
interpreting functions defined on this set as q-periodic functions on Z and vice
versa. The expression m−1 (mod q) stands for the inverse of m in Zq .

Starting from §3, there are various symbols that have been reserved a specific
meaning. The integer C is given by (2.2), the function s(n) by (3.1), the set S by
(3.2), the integer b by Definition 3.1, the numbers U, J and W by (3.3), the set Q
by (5.1), the product S(L) by Definition 6.1, the function g(`) by Definition 6.2
and lastly the parameter Q by Lemma 7.1. When it comes to sieve-theoretic
notation, λd are sieve weights and, for sets A of integers and P of primes, S(A,
P, z) counts the elements of A that are coprime to all the primes in P ∩ [2, z),
with each integer n weighted by ωn > 0, where (ωn) will be clear from context.
The arithmetic functions 3(n), µ(n) and ϕ(n) are the von Mangoldt, Möbius
and Euler functions, as usual, and the functions τ(n) and ν(n) count the number
of divisors and distinct prime factors of n, respectively.

The parameters ε, η > 0 are always assumed to be small enough, but fixed.
The variables N and x tend to infinity and, in §§7 and 10, A, B and C are large
enough constants (say greater than 1010). The numbers C, W and J are � 1,
but may be large. The expression 1S is the indicator function of a set S, so that
1S(n) = 1 when n ∈ S and 1S(n) = 0 otherwise. We use the usual Landau and
Vinogradov asymptotic notations o(·), O(·),�,�. When we write n ∼ X in a
summation, we mean X 6 n < 2X . By n � X , in turn, we mean X � n � X .
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§2. A transference-type result. We need a transference-type result for binary
Goldbach-type problems for proving Theorem 1.1. We begin with some
definitions.

Let � ⊂ ZN and η ∈ (0, 1
2 ), and write

B(�, η) =
{

n ∈ ZN :
∥∥∥∥ξn

N

∥∥∥∥ 6 η for all ξ ∈ �
}

for the Bohr set associated to these parameters. We will need a function χ =
χ�,η : Z→ R>0 that is a smoothed version of the characteristic function of the
Bohr set B(�, η). The exact construction of χ is not necessary, and we just list
the properties of χ we use, found in [15, Lemma 3.1]. We have

0 6 χ(n)�|�| 1, χ(n) = χ(−n) and χ(n + N ) = χ(n),
χ(n) > 1 for n ∈ B(�, η), χ(n) 6

(
η2

8

)|�|
for n 6∈ B(�, 2η),

1
N

∑
n∈ZN

χ(n) := ‖χ‖1 >
(
η

2

)|�|
.

(2.1)

Also from [15], we know that χ has Fourier complexity C �|�|,η 1, where the
Fourier complexity is defined as the smallest integer C for which we have a
Fourier representation

χ(n) =
C∑

k=1

cke(αkn), |ck | 6 C and αk ∈ R/Z. (2.2)

The formulation of the transference-type result requires harmonic analysis,
so we should state which normalization of the Fourier transform we use. For
functions f, g : ZN → C we define the Fourier transform and the convolution as

f̂ (ξ) = 1
N

∑
n∈ZN

f (n)e
(
−ξn

N

)
and f ∗ g(n) = 1

N

∑
k∈ZN

f (k)g(n − k),

so that Parseval’s identity and the convolution formula of the Fourier transform
take the forms∑

n∈ZN

| f (n)|2 = N
∑
ξ∈ZN

| f̂ (ξ)|2 and f̂ ∗ g(ξ) = f̂ (ξ)ĝ(ξ).

PROPOSITION 2.1. Let functions f1, f2 :ZN→R>0 and parameters K0> 1,
δ > 0, ε > 0 be given. Then there exist η = η(K0, δ, ε) > 0 and � ⊂ ZN ,
|�| �K0,δ,ε 1 with 1 ∈ � such that the following holds. Assume that, for a
function χ = χ�,η : Z→ R>0 obeying (2.1), we have:

(i) f2 ∗ χ(t) > δ‖χ‖1 for all t ∈ (N/3, 2N/3);
(ii)

∑
N/3<n<N/2 f1(n) > δN;
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(iii)
∑
ξ∈ZN
| f̂ j (ξ)|r 6 K0 for j ∈ {1, 2} and r ∈ {3, 4}.

Then
(iv) f1 ∗ f2(n) > δ2/3 for all but 6 εN values of n ∈ [0.9N , N ].

Proof. This is inspired by and similar to [15, Theorem 2.3] of Matomäki
and Shao. See also [4, Proposition 5.1], where similar ideas were applied for
Roth-type problems. Take � = {ξ ∈ ZN : | f̂1(ξ)| > ε0} ∪ {1}, where ε0 will
be chosen small enough in terms of δ, ε and K0. Condition (iii) tells us that
|�| 6 K0ε

−3
0 + 1. Let χ = χ�,η : Z→ R>0 be as in the proposition (so that χ

fulfills (2.1)). We will later choose η to be small enough in terms of δ, ε and K0.
Introduce the functions

g2 = 1
‖χ‖1 f2 ∗ χ and h2 = f2 − g2.

We have

ĝ2 = 1
‖χ‖1 f̂2χ̂ and ĥ2 = f̂2

(
1− χ̂

‖χ‖1

)
,

so that in particular |ĥ2(ξ)| 6 2| f̂2(ξ)|.
Next we estimate from above and below the average (1/N )

∑
n∈ZN
| f1 ∗

h2(n)|2, starting with the lower bound. Owing to conditions (i) and (ii), for
n ∈ [0.9N , N ], we have

f1 ∗ g2(n) = 1
‖χ‖1 f2 ∗ χ ∗ f1(n) >

δ

N

∑
n−2N/3<k<n−N/3

k∈ZN

f1(k) > δ2 (2.3)

since (N/3, N/2) ⊂ (n − 2N/3, n − N/3) for n ∈ [0.9N , N ]. Denoting T =
{n ∈ [0.9N , N ] : f1 ∗ f2(n) < δ2/3} and using the simple inequality |a − b|2 >
a2/2− b2 and (2.3), we infer that

1
N

∑
n∈ZN

| f1 ∗ h2(n)|2 > 1
N

∑
n∈T

(
1
2
| f1 ∗ g2(n)|2 − | f1 ∗ f2(n)|2

)

>
(
δ4

2
−
(
δ2

3

)2) |T |
N
> δ4

10
|T |
N
. (2.4)

When it comes to an upper bound, Parseval’s identity gives

1
N

∑
n∈ZN

| f1 ∗ h2(n)|2 =
∑
ξ∈ZN

| f̂1 ∗ h2(ξ)|2

=
∑
ξ∈ZN

| f̂1(ξ)ĥ2(ξ)|2

6 ε1/2
0

∑
ξ 6∈�
| f̂1(ξ)|3/2|ĥ2(ξ)|2 +

∑
ξ∈�
| f̂1(ξ)|2|ĥ2(ξ)|2.
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Here the first sum can be bounded with the Cauchy–Schwarz inequality and (iii),
implying that

ε
1/2
0

∑
ξ 6∈�
| f̂1(ξ)|3/2|ĥ2(ξ)|2 6 ε1/2

0

(∑
ξ∈ZN

| f̂1(ξ)|3
)1/2(∑

ξ∈ZN

|ĥ2(ξ)|4
)1/2

6 8ε1/2
0 K0.

The sum over ξ ∈ � in turn can be bounded by using the fact that∣∣∣∣1− χ̂(ξ)

‖χ‖1

∣∣∣∣ 6 30η for every ξ ∈ �,

the proof of which is contained in the proof of Theorem 2.3 in [15, §4]. After
this, we may again use the Cauchy–Schwarz inequality and (iii) to obtain∑

ξ∈�
| f̂1(ξ)|2|ĥ2(ξ)|2 6 (30η)2

∑
ξ∈�
| f̂1(ξ)|2| f̂2(ξ)|2

6 1000η2K0.

At this stage, we fix the choices ε0 = η = δ8ε2/104K 2
0 , so that

1
N

∑
n∈ZN

| f1 ∗ h2(n)|2 6 8ε1/2
0 K0 + 1000η2K0 6

1
10
δ4ε. (2.5)

Combining (2.4) and (2.5) above, we discover that |T | 6 10δ−4 · 1
10δ

4εN = εN ,
which concludes the proof. �

§3. Deducing Theorem 1.1 from the transference-type result. We will apply the
transference-type result (Proposition 2.1) to prove Theorem 1.1. This deduction
is done in this section assuming the conditions (i)–(iii) of the transference-
type result, and the rest of the paper is focused on verifying these conditions.
Naturally, the functions f1 and f2 in the transference-type result are taken to be
the characteristic functions of the primes of the form x2 + y2 + 1 (restricted to
a residue class), normalized in such a way that they have mean comparable to 1.
First, we introduce some notation.

Define the function

s(n) =
∏
p|n

p≡−1 (mod 4)
p 6=3

p, (3.1)

which excludes from the prime factorization of n the primes 2, 3 and those
primes that are ≡ 1 (mod 4). Denote

S = {a2 + b2 : a, b ∈ Z, (a, b) | 6∞}. (3.2)

We also define a property that we require from the linear functions we work with
in what follows.
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Definition 3.1. We say that a linear polynomial L with integer coefficients is
amenable if L(n) = K n + b for some integers K > 1 and b, and:

(i) 63 | K ;
(ii) (b, K ) = (b − 1, s(K )) = 1;

(iii) b − 1 = 2 j 32t (4h + 1) for some h ∈ Z, 3 - 4h + 1 and j, t > 0 with
2 j+232t+1 | K .

What these conditions imply is that there are no local obstructions (modulo
divisors of K ) to L(n) being prime and L(n) − 1 belonging to S (in particular,
L(n) − 1 crucially has an even number of prime factors p ≡ −1 (mod 4) with
multiplicities by (iii)). We note that it is essential that b − 1 is allowed to be
divisible by a power of 3. Indeed, if L i (n) = K n + bi are two amenable linear
functions with 3 | K and 3 - b1 − 1, 3 - b2 − 1, then L1(m) + L2(n) can only
represent numbers that are ≡ 1 mod 3. We also note that in our application we
must allow K to be divisible by arbitrarily high powers of 2. This is due to the
fact that if L i (n) = 2sn + bi are amenable, then L i (n) − 1 ≡ 2ai (mod 2ai+2)

for some integers 0 6 ai 6 s − 2, which implies that L1(m) + L2(n) is never
≡ 2 (mod 2s).

The majority of this paper is devoted to proving for functions fi related to
the characteristic function of P the following versions of the conditions (i) and
(iii) of the transference-type result. Throughout the rest of the paper, we use the
notation

U = 2J · 33 with 5 6 J � 1,

W = U ·
∏

56p6w
p with 101010 6 w � 1. (3.3)

PROPOSITION 3.2. Let χ : Z → R>0 have Fourier complexity C � 1. Let
W be as in (3.3) with w > C20, and suppose that the linear function W n + b is
amenable. For an integer N > 1, set

f (n) = (log N )3/2
(
ϕ(W )

W

)3/2

1W n+b∈P,W n+b−1∈S for n ∈
(

N
3
,

2N
3

)
(3.4)

and f (n) = 0 for other values of n ∈ [0, N ). Then, for N > N0(w, C), we have∑
n∼N/3

f (n)χ(t − n) > δ0

( ∑
n∼N/3

χ(t − n)− C N
w1/3

)
for t ∈ (N/3, 2N/3) and some absolute constants δ0 > 0,C > 0.

PROPOSITION 3.3. Suppose that the linear function W n+b is amenable with
W as in (3.3). Let N > 1 be an integer and g : ZN → R>0 with 0 6 g(n) 6 f (n)
for n ∈ [0, N ) and f as in (3.4). Then, for all r > 2,∑

ξ∈ZN

|̂g(ξ)|r 6 Kr

for some positive constant Kr depending only on r.
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In this section, we show that Propositions 3.2 and 3.3 indeed imply
Theorem 1.1. First we prove some lemmas about local representations of integers
modulo powers of 2 and 3.

LEMMA 3.4. Let J > 5 and n 6≡ 0 (mod 2J−1) be integers. Then we may
write n = a + b for some integers a and b with a ≡ 2i (mod 2i+2) and b ≡
2 j (mod 2 j+2) for some integers 0 6 i, j 6 J − 3.

Proof. Since 2J−1 - n, we may write n = 2gs, where 0 6 g 6 J − 5 and
s 6≡ 0 (mod 16). It is easy to check that every such s may be written as s = a′+b′
with a′ ≡ 2i (mod 2i+2), b′ ≡ 2 j (mod 2 j+2) for some 0 6 i, j 6 3. Then
n = a + b with a = 2ga′, b = 2gb′ is a representation of the desired form. �

LEMMA 3.5. Let m′ be any integer such that m′ 6≡ 3, 6 (mod 9). Then there
exist integers x1, x2, x3 and x4 such that

m′ ≡ x2
1 + x2

2 + x2
3 + x2

4 (mod 33),

x2
1 + x2

2 , x2
3 + x2

4 6≡ 1 (mod 3),

x2
1 + x2

2 , x2
3 + x2

4 6≡ 0 (mod 33).

Proof. One easily sees that x2+y2 (mod 27) attains all residue classes except
those that are≡ 3 (mod 9) or≡ 6 (mod 9) as x and y vary. Now the lemma only
states that every m′ 6≡ 3, 6 (mod 9) is the sum of two numbers, each of which
is 0, 2, 5 or 8 (mod 9) and neither of which is 0 (mod 27). This can quickly be
verified by hand. �

Proof of Theorem 1.1 assuming Propositions 3.2 and 3.3. Given any small
ε > 0, we must show that once N is large enough, the interval [0.9N , N ] contains
at most εN integers m ≡ 0 (mod 2), m 6≡ 5, 8 (mod 9) that cannot be written as
m = p + q with p and q primes of the form x2 + y2 + 1.

Let U and W be given by (3.3) with J = b10/εc and w � 1 large enough.
We start by showing that for any m ∈ [0.9N , N ], m ≡ 0 (mod 2), m 6≡ 5,
8 (mod 9), m 6≡ 2 (mod 2J ), we may find integers 0 6 B1, B2 6 W − 1 such
that m = B1+ B2 and the linear functions W n+ B1 and W n+ B2 are amenable.
The integers m ≡ 2 (mod 2J ) can be disposed of since there are 6 (ε2/10)N
such integers up to N .

To see that B1 and B2 exist, write m = 2m′ + 2, so that m′ 6≡ 3, 6 (mod 9).
Then 2J−1 - m′, so using Lemma 3.4 we may write m′ ≡ a1+ a2 (mod 2J ) with
a1 ≡ 2i (mod 2i+2), a2 ≡ 2 j (mod 2 j+2) for some 0 6 i, j 6 J − 3. Moreover,
using Lemma 3.5, we may write m′ ≡ a′1+ a′2 (mod 33) with a′1 and a′2 numbers
such that 33 - a′1, 33 - a′2, 2a′1+1, 2a2+1′ 6≡ 0 (mod 3) and the largest powers of
3 dividing a′1 and a′2 have even exponents (take a′1 = x2

1 + x2
2 and a′2 = x2

3 + x2
4

in that lemma and notice that the largest power of 3 dividing x2+ y2 has an even
exponent).

Now pick numbers bp for 5 6 p 6 w such that bp 6≡ 0, 1,m,m − 1
(mod p). By the Chinese remainder theorem, we can find an integer B such that
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B ≡ 2a1 + 1 (mod 2J ), B ≡ 2a′1 + 1 (mod 33) and B ≡ bp (mod p) for all
5 6 p < w. Therefore, we have found some integers B1 := B and B2 := m − B
such that m = B1+ B2, p - Bi , p - Bi −1 for 5 6 p < w, and B1−1 and B2−1
satisfy condition (iii) in the definition of amenability.

Therefore, we have a representation of any m of the form above as

m ≡ B1(m)+ B2(m) (mod W )

with W n + B1(m), W n + B2(m) amenable linear functions and 0 6 Bi (m) 6
W − 1 (we use the notation Bi (m) to emphasize that the Bi depend on
m (mod W )). For each 0 6 a 6 W − 1, we denote

Ba = {m ∈ [0.9N , N ] : m ≡ a (mod W )}.
We will show that each Ba with a ≡ 0 (mod 2), a 6≡ 5, 8 (mod 9), a 6≡ 2
(mod 2J ) contains at most ε(N/2W ) values of m ∈ [0.9N , N ] that are not of the
form p+q with p and q primes of the form x2+ y2+1, and afterwards we sum
this result over a.

If a satisfies the congruence conditions above, the polynomials W n + B1(a)
and W n + B2(a) are amenable linear polynomials. Set M ′ = bN/Wc and, for
` ∈ {1, 2}, set

f`(n) = (log N )3/2
(
ϕ(W )

W

)3/2

1W n+B`(a)∈P, W n+B`(a)−1∈S

for n ∈
(

M ′

3
,

2M ′

3

)
with S as in (3.2) and let f`(n) = 0 for n ∈ [0,M ′) \ (M ′/3, 2M ′/3).

Concerning condition (ii) of the transference-type result, applying
Proposition 3.2 to the function χ ≡ 1, we see that∑

M ′/3<n<2M ′/3
f1(n) >

δ0

10
M ′,

but we evidently get the same outcome with summation over M ′/3 < n <

M ′/2 (since one could clearly replace n ∼ N/3 with N/3 < n < N/2 in
Proposition 3.2). This takes care of condition (ii).

Next, by Proposition 3.3, ∑
ξ∈ZM ′

| f̂`(ξ)|r 6 K0

for some absolute constant K0 when r ∈ {3, 4}, so condition (iii) also holds.
Let then χ = χ�,η : ZM ′ → R>0 be as in Proposition 2.1 (with χ depending

on K0 and δ0 that appeared above), where � ⊂ ZM ′ satisfies 1 ∈ �, |�| �ε 1
and 1�ε η 6 0.05. According to (2.1), χ is symmetric around the origin and∑

n∈[−M ′/2,M ′/2]
|n|>0.1M ′

χ(n) 6
(
η2

8

)|�|
M ′ 6 η

(
η

2

)|�|
M ′ 6 0.05‖χ1‖M ′.
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Keeping this in mind and using Proposition 3.2, for t ∈ (M ′/3, 2M ′/3)we obtain∑
n∼M ′/3

f2(n)χ(t − n) > δ0

( ∑
n∼M ′/3

χ(t − n)− C M ′

w1/3

)

> δ0

10

( ∑
n∈ZM ′

χ(t − n)− C M ′

w1/3

)
> δ0

20
M ′‖χ‖1

for w large enough, the final step coming from (2.1), since

‖χ‖1 >
(
η

2

)|�|
> 1
w0.1

for w large enough. This means that condition (i) of the transference-type result
holds with δ = δ0/20.

From the transference-type result (Proposition 2.1), we conclude that f1 ∗
f2(n) > 0 for all n ∈ [0.9M ′,M ′], n 6∈ Ta , where Ta is some set of integers with
|Ta| 6 (ε/2)M ′ = ε(N/2W ). This leads to n ≡ n1 + n2 (mod M ′) with

W ni + Bi (a) ∈ P, W ni + Bi (a)− 1 ∈ S (3.5)

for n ∈ [0.9M ′,M ′], n 6∈ Ta . Since n1, n2 ∈ (M ′/3, 2M ′/3), we can actually
say that n = n1 + n2. What we showed at the beginning of the proof is that any
m ∈ Ba , m ∈ [0.9N + 2W, N ] with m ≡ 0 (mod 2), m 6≡ 5, 8 (mod 9) and
m 6≡ 2 (mod 2J ) can be written as m = W n + B1(a)+ B2(a) with n ∈ [0.9M ′,
M ′] and W n+B1(a) and W n+B2(a) amenable (the interval [0.9N , 0.9N+2W ]
contains 6 (ε2/10)N numbers and can hence be ignored). Then

m = (W n1 + B1(a))+ (W n2 + B2(a))

for some n1 and n2 satisfying (3.5) whenever m ∈ Ba \T ′a , m ∈ [0.9N+2W, N ],
m ≡ 0 (mod 2), m 6≡ 5, 8 (mod 9) and m 6≡ 2 (mod 2J ), where T ′a = {a +Wτ :
τ ∈ Ta} satisfies |T ′a| 6 ε(N/2W ). Since∑

06a6W−1
a≡0 (mod 2)

a 6≡5,8 (mod 9)
a 6≡2 (mod 2J )

|Ta| 6 W · ε N
2W
= ε

2
N ,

we conclude that all but 6 (ε/2 + ε2)N 6 εN even integers m ∈ [0.9N , N ]
satisfying m 6≡ 5, 8 (mod 9) can be written as m = p + q with p, q primes of
the form x2 + y2 + 1. �

Remark 3.6. The proof of the ternary result, Theorem 1.2, goes along
very similar lines. One would replace Proposition 2.1 with the analogous
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ternary transference-type result, namely [15, Theorem 2.3]. The premise in both
transference-type results is essentially the same (except that [15, Theorem 2.3]
has one additional function f3), and therefore the differences in the proofs can
only arise when showing that the transference-type theorem implies the additive
result. In fact, these proofs are also very similar, and one would simply replace
Lemma 3.4 with a version where we want to represent an arbitrary integer n
as a sum of three numbers of the form 2i (mod 2i+2), and one would replace
Lemma 3.5 with a version where there is no restriction on m′ and there are six
variables xi (and one would define f3 analogously to f1 and f2).

§4. Restriction theory for primes of the form x2+ y2+ 1. The objective of the
current section is proving Proposition 3.3, after which proving Theorem 1.1 has
been reduced to demonstrating Proposition 3.2. As a byproduct of the arguments,
we will obtain Theorem 1.3. The proof of Proposition 3.3 is based on the Green–
Tao approach [4] that offers a way to estimate the Fourier norms of prime-related
functions and therefore to detect translation-invariant constellations within the
primes. The Green–Tao approach is based on proving a restriction theorem for
the Fourier transform from `r (ZN ) to `2(ZN ) weighted by a certain “enveloping
sieve” that acts as a pseudorandom majorant for the characteristic function of
the primes of the desired form. Therefore, we start by asserting that there is a
suitable enveloping sieve β(·) for the primes of the form x2 + y2 + 1.

PROPOSITION 4.1. Let W and w be as in (3.3), and suppose that B is an
integer for which W n + B is an amenable linear function. Then, for any large
N, there exists a function β : N→ R>0 with the following properties (for some
absolute constants κ1, κ2 > 0):

(i) β(n) > κ1(log N )3/2(logw)−3/2 for n ∼ N/3
when W n + B ∈ P∩ (S + 1);

(ii)
∑

n6N β(n) 6 κ2 N;
(iii) for every fixed ε > 0, we have β(n)� N ε;
(iv) we may write, for z = N 0.1,

β(n) =
∑
q6z2

∑
a∈Z×q

v

(
a
q

)
e
(
−an

q

)
, (4.1)

where v(a/q) � qε−1 (and Z×q is the set of primitive residue classes
(mod q));

(v) we have v(1) = 1 and v(a/q) = 0 in (4.1) whenever q is not square-free
or q | W, q 6= 1.

The message of the previous proposition, which we will soon prove, is that
β(·) is an upper bound for the normalized characteristic function of the primes
x2 + y2 + 1 in a residue class, β(·) has average comparable to 1 and β(·) has a
Fourier expansion with small coefficients. The above result implies the following
restriction theorem, which is identical to [4, Proposition 4.2], except that β(·) has
a different definition.



THE GOLDBACH PROBLEM FOR PRIMES OF THE FORM x2 + y2 + 1 33

PROPOSITION 4.2. Let β : N→ R>0 be as in Proposition 4.1. Let N > 1 be
large and let (an)n6N be any sequence of complex numbers. Given a real number
r > 2, for some Cr > 0 we have(∑

ξ∈ZN

∣∣∣∣ 1
N

∑
n6N

anβ(n)e
(−ξn

N

)∣∣∣∣r)1/r

6 Cr

(
1
N

∑
n6N

|an|2β(n)
)1/2

.

Proof of Proposition 4.2 assuming Proposition 4.1. Our function β(·) fulfills
the same axioms as in the paper of Green and Tao (except the pointwise lower
bound, which is not used for the proof of [4, Proposition 4.2]). Therefore, the
proof of [4, Proposition 4.2] goes through in this setting. �

At this point, we show that Proposition 4.2 easily implies Proposition 3.3,
which corresponds to condition (iii) in the transference-type result.

Proof of Proposition 3.3 assuming Proposition 4.1. We already know that
if Proposition 4.1 is true, so is Proposition 4.2. We choose an = g(n)/β(n)
whenever β(n) 6= 0 and an = 0 otherwise. Since 0 6 g(n) 6 f (n) 6 κ−1

1 β(n)
in the notation of Proposition 3.3, from Proposition 4.2 we immediately derive(∑

ξ∈ZN

|̂g(ξ)|r
)1/r

6 Cr

(
1
N

∑
n6N
β(n)6=0

g(n)2

β(n)

)1/2

6 Cr

(
κ−2

1
N

∑
n6N

β(n)
)1/2

6 Crκ
−1
1 κ

1/2
2

by part (ii) of Proposition 4.1. �

What remains to be shown is that the enveloping sieve promised by
Proposition 4.1 exists. This is based on an argument of Ramaré and Ruzsa [18]
(which incidentally developed the enveloping sieve for purposes unrelated to
restriction theory). The enveloping sieve β(n) turns out to be a normalized
Selberg sieve corresponding to sifting primes of the form p = x2 + y2 + 1,
p ≡ B (mod W ).

Proof of Proposition 4.1. We first introduce some notation. For a prime p, let
Ap ⊂ Zp denote the residue classes (mod p) that are sifted away when looking
for primes of the form x2 + y2 + 1 ≡ B (mod W ). In other words,

Ap =


∅ for p 6 w,
{0} for p ≡ 1 (mod 4), p > w,

{0, 1} for p ≡ −1 (mod 4), p > w.

Further, for square-free d , let

Ad =
⋂
p|d

Ap,
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where Ad is interpreted as a subset of Zd . Set also A1 = Z1 and Ad = ∅
when d is not square-free. For d > 2, we have |Ad | = ω(d), where ω(·) is
a multiplicative function supported on the square-free integers and having the
values

ω(p) =


0 for p 6 w,
1 for p ≡ 1 (mod 4), p > w,

2 for p ≡ −1 (mod 4), p > w.

For later use, we also define

K1 = Z1, Kp = Zp \Ap, Kd =
⋂
p|d

Kp for µ(d)2 = 1 (4.2)

and let Kd = Zd for µ(d) = 0.
Let the Selberg sieve coefficients ρd (not the same as sieve weights) be given

by

ρd = µ(d)Gd(z)
G1(z)

, where z = N 0.1, Gd(z) =
∑
δ6z
[d,δ]6z

h(δ),

h(δ) =
∏
p|δ

h(p) and h(p) = ω(p)
p − ω(p) .

The above notations are otherwise the same as in [18, §4], except that λd there
has been replaced with ρd and Ld with Ad . We define

β(n) = G1(z)
( ∑

d|P(z)
W n+B∈Ad

ρd

)2

, (4.3)

where

P(z) =
∏

w<p<z

p.

In [18], the factor G1(z) does not appear in their definition of β(n), but this is just
a normalization constant. In (4.3), the condition m ∈Ad means that m (mod d) ∈
Ad . Now we can check parts (i)–(v) of Proposition 4.1.

For part (i), first observe that if W n + B = x2 + y2 + 1 ∈ P ∩ (S + 1)
with n ∼ N/3, then x2 + y2 + 1 6≡ 0 (mod p) for w < p < z = N 0.1 and
x2 + y2 6≡ 0 (mod p) for p ≡ −1 (mod 4), w < p < z, since (x, y) | 6J .
This means that if W n + B = x2 + y2 + 1 ∈ P ∩ (S + 1) with n ∼ N/3, then
β(n) = G1(z). Now the assertion follows from

G1(z) > 10−10
∏

w<p<z

(
1− ω(p)

p

)−1

> 10−20(log N )3/2(logw)−3/2.
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Part (ii) in turn follows by applying the Selberg sieve [10, Ch. 7] to estimate

G1(z)
∑
n6N

( ∑
d|P(z)

W n+B∈Ad

ρd

)2

6 1010(log N )3/2(logw)−3/2

×
(

N
∏

w<p<z

(
1− ω(p)

p

)
+ z3

)

6 1020(log N )3/2(logw)−3/2 · N
(

logw
log z

)3/2

6 1030 N .

Part (iii) is verified as follows. From the definition of ρd , it is clear that |ρd |
6 1, so that

β(n) 6 G1(z)
( ∑

d|P(z)
W n+B∈Ad

1
)2

. (4.4)

Note that if W n + B ∈ Ap for some w < p 6 z, then p | W n + B or p | W n +
B−1, so that p can be chosen in at most ν(W n+B)+ν(W n+B−1)ways, where
ν(·) is the number of distinct prime factors. Since d is square-free and a product
of such primes p, d can be chosen in at most 2ν(W n+B)+ν(W n+B−1) � N ε/3

ways in (4.4). Therefore, (4.4) is� (log N )3/2 N (2/3)ε � N ε.
Part (iv), which is the most crucial part concerning pseudorandomness, was

verified in [18]. Namely, our set of primes of the form W n+ B = x2+ y2+ 1 is
“sufficiently sifted” in the sense of the definition given on [18, pp. 1 and 2] (to see
that, take in that paper A to be the set of primes of the form under consideration
up to N and κ = 3

2 ). This property is all that is needed to obtain (iv) with the
bound v(a/q) � q−1/2, by [18, formula (4.1.19)]. It is clear that this can be
replaced with the stronger bound v(a/q)� qε−1, since we have defined the sets
Kd in (4.2) so that [18, formula (4.1.18)] holds for ξ = ε/2, instead of just some
0 < ξ < 1

2 .
We are then left with part (v). Equations (4.1.13) and (4.1.21) of [18] reveal

that (4.1) holds when v(a/q) is defined for (a, q) = 1 by

v

(
a
q

)
= G1(z)

∑
q|[d1,d2]

ρ∗d1
ρ∗d2

[d1, d2] |K[d1,d2]| ·
∑

b∈Kq
e(ab/q)

|Kq |
with

ρ∗` =
∑

d≡0 (mod `)

µ

(
d
`

)
µ(d)ρd ,

where the set Kd is given by (4.2). As in [18, formula (4.1.17)], we have∣∣∣∣∑
b∈Kq

e
(

ab
q

)∣∣∣∣ = ∣∣∣∣ ∑
b∈Zq\Kq

e
(

ab
q

)∣∣∣∣ 6 |Zq \Kq | 6
∏
pα ||q

(pα − |Kpα |),
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which immediately gives v(a/q) = 0 unless q is square-free and (q,W ) = 1.
In addition, by formula (4.1.13) of the same paper (with the right-hand side
multiplied by G1(z)), we have

v

(
a
q

)
= G1(z)w#

q ·
∑

b∈Kq
e(ab/q)

|Kq | , (4.5)

where by (4.1.14) we have

w#
q =

1
G1(z)

∑
δ6z

h(δ)ρz(q, δ),

and ρz(q, δ) satisfies (4.1.15). Putting q = 1 into (4.1.15), we clearly get w#
1 =

1/G1(z), so that v(1) = 1 by (4.5). �

We have now proved Proposition 3.3, which will be needed in the proof
of Theorem 1.1. As a consequence of the above considerations, we can now
establish Theorem 1.3, that is, Roth’s theorem for the subset P of primes.

Proof of Theorem 1.3. This is very similar to the proof of [4, Theorem 1.2].
Let A ⊂ P∗ have positive upper density in P∗. Then there is δ > 0 (which
may be assumed small) such that |A ∩ (N/3, 2N/3)| > δ|P∗ ∩ (N/3, 2N/3)|
for N ∈ N , where N is some infinite set of positive integers. Let W , w and J
be as in (3.3) with J = b10/δc.

Let SB = S ∩ {W n + B : n > 1} for any set S and integer B. Note that if
n = x2+ y2+ 1 ∈ (N/3, 2N/3) is a prime with (x, y) = 1 and N > 10W , then
(n,W ) = (n − 1, s(W )) = 1 and (n − 1, 3) = 1, 4 - n − 1. Therefore,∑

16B6W
W n+B amenable

∣∣∣∣AB ∩
(

N
3
,

2N
3

)∣∣∣∣ = ∣∣∣∣A ∩ (N
3
,

2N
3

)∣∣∣∣ > δ∣∣∣∣P∗ ∩
(

N
3
,

2N
3

)∣∣∣∣
for N > 10W and N ∈N , so using the pigeonhole principle and the lower bound
for |P∗ ∩ (N/3, 2N/3)| coming from Proposition 3.2 with χ ≡ 1, we can find
a value of B ∈ [1,W ] such that the polynomial W n + B is amenable and∣∣∣∣AB ∩

(
N
3
,

2N
3

)∣∣∣∣ > δ1 · δ(logw)3/2
N

W (log N )3/2
(4.6)

for N ∈ N ′ with N ′ an infinite set of positive integers and for some small
absolute constant δ1 > 0, since the Chinese remainder theorem shows that there
are 6 1010W (logw)−3/2 amenable functions W n + B with 1 6 B 6 W .

Next set

g(n) = δ2(log N )3/2(logw)−3/21AB∩(N/3,2N/3)(n)
for N ∈ N ′ and 1 6 n 6 N
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with δ2 > 0 small and extend g periodically to ZN . The assertion of the
theorem will follow from the Green–Tao transference principle [4, Proposition
5.1] as soon as we check formulas (5.3)–(5.6) of that paper for the functions
g(n) and ν(n) = β(n)1[1,N ](n) (extended periodically to ZN ) with β(·)
given by Proposition 4.1. We know (5.3) from Proposition 4.1 and (5.6) from
Proposition 3.3. Formula (5.5) follows from the properties (i)–(v) of β(n) just as
in [4, Ch. 6]. We are left with (5.4), which follows (for a different value of δ) for
N ∈ N ′ from (4.6). Now, as mentioned, [4, Proposition 5.1] yields the result,
since any triple of the form (a, a + d + j1 N , a + 2d + j2 N ) is an arithmetic
progression in Z if a, a + 2d + j1 N , a + 2d + j2 N ∈ (N/3, 2N/3). �

§5. Reductions for finding primes in Bohr sets. The proof of Proposition 3.2
goes through an intermediate result (namely Proposition 5.1 below) that
resembles it and is slightly more technical, but at the same time easier to
approach. The proof of Proposition 5.1 uses among other things the circle
method, Bombieri–Vinogradov-type estimates and ideas similar to Iwaniec’s
proof [8] of the infinitude of primes x2 + y2 + 1, and will occupy §§6–10.

PROPOSITION 5.1. Let χ : Z → R>0 have Fourier complexity C � 1. Let
N > 1 be an integer and W be as in (3.3) withw > C20, and suppose that W n+b
is an amenable linear function. There exists an integer Q 6 (log N )B , depending
only on χ , with B �C 1, such that the following holds. For N > N0(w, C),
|t | 6 5N and c0 ∈ Q, we have

∑
n∼N

n≡c0 (mod Q)
W n+b∈P

W n+b−1∈S

χ(t − n) > δ1

(log N )3/2

(
W
ϕ(W )

)3/2

× Q
|Q|

( ∑
n∼N

n≡c0 (mod Q)

χ(t − n)+ o
(

N
Q

))
,

where δ1 > 0 is an absolute constant and

Q = {c0 (mod Q) : (W c0 + b, Q) = (W c0 + b − 1, s(Q)) = 1}. (5.1)

We remark that, by the Chinese remainder theorem,

|Q| = Q
∏
p|Q
p-W

p≡1 (mod 4)

(
1− 1

p

) ∏
p|Q
p-W

p≡−1 (mod 4)

(
1− 2

p

)
, (5.2)

considering that (b,W ) = (b − 1, s(W )) = 1 by the definition of amenability.
In this section, we will show that Proposition 5.1 implies Proposition 3.2, by

appealing to the following lemma.
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LEMMA 5.2. Let χ : Z → R>0 have Fourier complexity at most C. Let N ,
Q > 1 be such that N > 2Q2. Let Q be a collection of residue classes (mod Q)
such that for all q | Q, q 6= 1 and for all (a, q) = 1, we have∣∣∣∣∑

c0∈Q
e
(

a
q

c0

)∣∣∣∣ 6 η0|Q|

for some η0 > 0. Then, with the same notations as in Proposition 5.1, for some
absolute constant C ′ > 0 and for all integers t , we have

Q
|Q|

∑
c0∈Q

∑
n∼N

n≡c0 (mod Q)

χ(t − n) >
∑
n∼N

χ(t − n)− C ′(η0C2 N + QC2 N 1/2).

Proof. This is [15, Lemma 7.4]. �

Note that the conclusion of Proposition 3.2 (with N/3 replaced with N ) can
be rewritten as∑

n∼N
W n+b∈P

W n+b−1∈S

χ(t − n) > δ0

(log N )3/2

(
W

ϕ(W )

)3/2(∑
n∼N

χ(t − n)− C N
w1/3

)
(5.3)

for N > N0(w, C) and t ∈ (N , 3N ), with δ0 > 0 and C > 0 absolute constants.
In view of the previous lemma, Proposition 3.2 follows immediately from
Proposition 5.1 by splitting in (5.3) the sum over n on the left-hand side to a
sum over n in different residue classes (mod Q), provided that the premise of
Lemma 5.2 is true for η0 = w−1/2. This is what we will prove in the remainder
of this section.

LEMMA 5.3. Let Q > 1 and let Q be defined by (5.1) (and W and w in
the definition of Q given by (3.3)). Let a and q | Q be positive integers with
(a, q) = 1, q 6= 1. We have∣∣∣∣∑

c0∈Q
e
(

a
q

c0

)∣∣∣∣ 6 w−1/2|Q|. (5.4)

Before proving this, we present another lemma, which will be used to prove
Lemma 5.3.

LEMMA 5.4. Let a and q be positive integers, q 6= 1, (a, q) = 1, and let
W n+ b be an amenable linear polynomial with W and w as in (3.3). Let V > 1
be an integer with (q, V ) = 1. Then∣∣∣∣ ∑

n (mod q)
(W V n+b,q)=1

(W V n+b−1,s(q))=1

e
(

a
q

n
)∣∣∣∣ 6 τ(q) · 1(q,W )=1. (5.5)
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Proof. Using Möbius inversion, the sum in question (without absolute values)
becomes ∑

d|q
µ(d)

∑
k|s(q)

µ(k)
∑

n (mod q)
W V n≡−b (mod d)

W V n≡−(b−1) (mod k)

e
(

a
q

n
)
. (5.6)

Now consider the sum ∑
n (mod q)

W V n≡−b (mod d)
W V n≡−(b−1) (mod k)

e
(

a
q

n
)
. (5.7)

Note that the sum is non-empty only if (d, k) = 1. Let x1, . . . , xR(d,k) (mod dk)
be the pairwise incongruent solutions to the system W V x ≡ −b (mod d),
W V x ≡ −(b − 1) (mod k) (if there are none, the sum (5.7) is empty). Since
dk = [d, k] | q , after writing n = x j + dkt for some 1 6 j 6 R(d, k) and
1 6 t 6 q/dk, (5.7) transforms into

R(d,k)∑
j=1

∑
n (mod q)

n≡x j (mod dk)

e
(

an
q

)
=

R(d,k)∑
j=1

e
(

ax j

q

) ∑
t (mod q/dk)

e
(

at
q/dk

)
. (5.8)

The inner sum is non-zero only when dk = q, in which case it is 1. Taking these
considerations into account, (5.6) has absolute value at most∑

d|q
k|s(q)
dk=q

R(d, k)|µ(d)||µ(k)|. (5.9)

We estimate this differently depending on whether (q,W ) > 1 or (q,W ) = 1.
In the former case, there is some prime p such that p | q , p | W , so dk = q tells
us that p divides either d or k. If p | d , then supposing that R(d, k) 6= 0, the
congruence W V x ≡ −b (mod p) must be solvable. It however is not solvable,
since p - b for p | W by the amenability of W n + b. If p | k, then k | s(q)
implies that p ≡ −1 (mod 4), p 6= 3. If R(d, k) 6= 0, the congruence W V x ≡
−(b − 1) (mod p) has a solution, but p - b − 1 by amenability, so we have a
contradiction. We deduce that all the summands in (5.9) vanish for (q,W ) > 1.

Then let (q,W ) = 1. As d, k | q in (5.9), we also have (d,W ) = (k,W ) = 1
and (d, V ) = (k, V ) = 1. Now clearly both of the congruences W V x ≡
−b (mod d), W V x ≡ −(b − 1) (mod k) have a unique solution, so if the
two congruences are thought of as a simultaneous equation, it has at most one
solution (mod dk). Therefore, R(d, k) 6 1, which leads to (5.9) being at most∑

dk=q

1 6 τ(q),

as asserted. �
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Proof of Lemma 5.3. This is similar to the argument on [15, p. 21]. We can
find unique q ′ and Q′ such that Q = qq ′Q′ and (q, Q′) = 1 and all the prime
divisors of q ′ divide q . Writing c0 = c1q + c2 Q′, c0 runs through each residue
class (mod Q) exactly once as c1 runs through residue classes (mod q ′Q′) and
c2 runs independently through residue classes (mod q). Now the left-hand side
of (5.4) (without absolute values) becomes

6 :=
∑

c1 (mod q ′Q′)
(Wqc1+b,Q′)=1

(Wqc1+b−1,s(Q′))=1

∑
c2 (mod q)

(W Q′c2+b,q)=1
(W Q′c2+b−1,s(q))=1

e
(

aQ′

q
c2

)
. (5.10)

Since (aQ′, q)= 1, the inner sum is exactly of the form appearing in Lemma 5.4.
Therefore,

|6| 6
∑

c1 (mod q ′Q′)
(Wqc1+b,Q′)=1

(Wqc1+b−1,s(Q′))=1

τ(q) · 1q>w.

Since w > 101010
, estimating the divisor function crudely yields

|6| 6 1q>w · q0.1
∑

c1 (mod q ′Q′)
(Wqc1+b,Q′)=1

(Wqc1+b−1,s(Q′))=1

1 = 1q>w · q ′q0.1
∑

c1 (mod Q′)
(Wqc1+b,Q′)=1

(Wqc1+b−1,s(Q′))=1

1

= 1q>w · q ′q0.1 Q′
∏
p|Q′
p>w

(
1− ω(p)

p

)
,

where ω(p) ∈ {1, 2} and ω(p) = 2 precisely when p ≡ −1 (mod 4). The
previous expression is, for q > w > 101010

,

6 q ′q0.2
∏
p|q

p>w

(
1− ω(p)

p

)
· Q′

∏
p|Q′
p>w

(
1− ω(p)

p

)

= Q
q0.8

∏
p|Q
p>w

(
1− ω(p)

p

)
6 |Q|
w1/2 ,

where the last step comes from (5.2). �

From Lemma 5.3, we conclude that proving Proposition 5.1 is enough for
establishing Proposition 3.2 (and hence Theorem 1.1).

§6. Weighted sieve for primes of the form p = x2+ y2+1. Next we investigate
primes of the form x2+ y2+1 in Bohr sets and prove Proposition 5.1 concerning
these, from which Theorem 1.1 will follow. We will prove in this section
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Theorem 6.5 about weighted counting of primes in the shifted set S + 1 =
{s + 1 : s ∈ S}. The proof resembles Iwaniec’s proof [8] of the infinitude of
primes of the form x2 + y2 + 1, as well as the later works [12, 24] on the
same problem in short intervals, but the theorem involves a weighted version
of the sieve procedure and hence requires a hypothesis about the weights. We
will later verify the conditions of this hypothesis for a weight function related
to the function χ(n) in Proposition 5.1, and this will imply Proposition 5.1 and
consequently Theorem 1.1. To formulate Theorem 6.5, we first introduce the
hypothesis regarding our weight coefficients. To this end, we need a couple of
definitions.

Definition 6.1. Given a linear function L , let S(L) be the singular product

S(L) =
∏

p≡−1 (mod 4)
p 6=3

(
1− |{n ∈ Zp : L(n) ≡ 0 or 1 (mod p)}|

p

)(
1− 2

p

)−1

×
∏

p 6≡−1 (mod 4)

(
1− |{n ∈ Zp : L(n) ≡ 0 (mod p)}|

p

)(
1− 1

p

)−1

.

Definition 6.2. We say that a sequence (g(`))`>1 of complex numbers is of
convolution type (for a given large integer N and constant σ ∈ (3, 4)) if

g(`) =
∑
`=km

N 1/σ6k6N 1−1/σ

αkβm

for some complex numbers |αk |, |βk | 6 τ(k)2 log k.

Definition 6.3. For 1
3 < ρ2 < ρ1 <

1
2 and σ ∈ (3, 4), let H(ρ1, ρ2, σ ) be the

proposition

1
2
√
ρ2

∫ ρ2σ

1

dt√
t (t − 1)

>
1

2ρ1

∫ σ

2

log(t − 1)
t (1− t/σ)1/2

dt + 10−10. (6.1)

In the proof of Theorem 1.1, we will use the fact that

H
( 1

2 − ε, 3
7 − ε, 3+ ε) is true for small enough ε > 0.

This holds for ε = 0 by a numerical computation and by continuity in a small
neighborhood of 0. Indeed, the difference between the integrals in (6.1) is then
> 10−3. We are ready to state our Bombieri–Vinogradov-type hypothesis, whose
validity depends on the weight sequence (ωn), as well as on the parameters ρ1,

ρ2 and σ .

HYPOTHESIS 6.4. Let L(n) = K n + b be an amenable linear function with
K � (log N )O(1). Let (ωn)n∼N be a non-negative sequence of real numbers
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and let δ = (b − 1, K ). Let ε > 0 be any small number. Let 1
3 < ρ2 < ρ1 <

1
2 − ε, σ ∈ (3, 4). Then, for any sequence (g(`))`6N 0.9 of convolution type (with
parameter σ ),∑

d6Nρ1
(d,K )=1

λ
+,LIN
d

∑
`6N 0.9

(`,K )=δ
(`,d)=1

g(`)
( ∑

n∼N
L(n)=`p+1

L(n)≡0 (mod d)

ωn − 1
ϕ(d)

K
ϕ(K/δ)

∑
n∼N

ωn

` log(K n/`)

)

�
∑

n∼N ωn

(log N )100 ,∑
d6Nρ2
(d,K )=1

λ
−,SEM
d

( ∑
n∼N

L(n)∈P
L(n)≡1 (mod d)

ωn − 1
ϕ(d)

K
ϕ(K )

∑
n∼N

ωn

log(K n)

)

�
∑

n∼N ωn

(log N )100 ,

where λ+,LIN
d are the upper bound linear sieve weights with sifting parameter

z1 = N 1/5 and λ−,SEM
d are the lower bound semilinear sieve weights with sifting

parameter z2 = N 1/σ (the weights λ±,SEM
d were defined in Theorem 1.5, and the

weights λ±,LIN
d are defined analogously by replacing β = 1 by β = 2 in that

definition).

THEOREM 6.5. Assume Hypothesis 6.4 for a linear form L(n), sequence
(ωn)n∼N and parameters ρ1, ρ2, σ satisfying H(ρ1, ρ2, σ ). Then∑

n∼N
L(n)∈P

L(n)−1∈S

ωn >
δ0 ·S(L)
(log N )3/2

∑
n∼N

ωn + O(N 1/2),

where δ0 > 0 is an absolute constant.

Remark 6.6. We will be able to prove Hypothesis 6.4 in §10 for ρ1 = 1
2 − ε,

ρ2 = 3
7 − ε and σ = 3 + ε when L(n) is suitable and ωn is of bounded Fourier

complexity. It would suffice to prove the same with ρ2 = 0.385 instead of ρ2 =
3
7 − ε = 0.428 . . . (since then H(ρ1, ρ2, σ ) is true). On the other hand, existing
Bombieri–Vinogradov estimates such as [20, Lemma 12] would only give us
ρ2 = 1

3 − ε = 0.333 . . . , which falls short of what we need.

Proof. Put

A = {L(n)− 1 : n ∼ N , L(n) ∈ P},
P4,−1 = {p ∈ P : p ≡ −1 (mod 4), p 6= 3},
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P(z) =
∏
p<z

p∈P4,−1

p,

P∗4,1 = {n > 1 : p | n ⇒ p ≡ 1 (mod 4)}.
If we weight the elements of A by νn = ω(L−1(n+1)), where L−1 is the inverse
function of L , the sifting function is

S(A,P4,−1, z) =
∑
n∼N

L(n)∈P
(L(n)−1,P(z))=1

ωn.

Note that L(n) − 1 ≡ 2β (mod 2β+2) for some β > 1 by the definition of
amenability, so that L(n) − 1 has an even number of prime factors that are ≡
−1 (mod 4) (counted with multiplicity). We have∑

n∼N
L(n)∈P

L(n)−1∈S

ωn = S(A,P4,−1, (3K N )1/2), (6.2)

since the right-hand side counts with weight ωn the numbers L(n) − 1 =
2α13α2k ∈ A with k ∈ P∗4,1, and we claim that these numbers are precisely
the numbers in S ∩ A. We have 2α13α2k = L(n) − 1, so by amenability
α2 ≡ 0 (mod 2). It is a fact in elementary number theory that for k ∈ P∗4,1, both
k and 2k can be expressed in the form a2 + b2 with (a, b) = 1, and additionally
no number of the form 2α13α2k with (k, 6) = 1 and α2 odd or k 6∈ P∗4,1 is of the
form x2+ y2 with (x, y) | 6∞. Hence, both sides of (6.2) indeed count the same
integers.

Buchstab’s identity reveals that

S(A,P4,−1, (3K N )1/2) = S(A,P4,−1, N 1/σ )−
∑
n∼N

L(n)∈P

∑
p2|L(n)−1

N 1/σ6p2<(3K N )1/2
(L(n)−1,P(p2))=1

p2∈P4,−1

ωn.

The condition p2 | L(n)− 1 ≡ 2β (mod 2β+2) implies that L(n)− 1 has either
exactly two prime divisors from P4,−1 or at least four such prime divisors (with
multiplicities). The second case is impossible, since all the prime divisors of
L(n) − 1 that are from P4,−1 are > p2 and p4

2 > N 4/σ > L(2N ) − 1. This
means that we may write L(n) − 1 = p1 p2m′, p1 > p2, p1 ∈ P4,−1, with m′
having no prime divisors from P4,−1. Now δ | L(n) − 1 = K n + b − 1 with
δ = (b − 1, K ) and, since p1 > p2 > N 1/σ > K , we have δ | m′. Hence, we
may write m′ = δm, where m ∈ P∗4,1 (we have 3 - m, since K is divisible by
a larger power of 3 than b − 1 is, by the definition of amenability. Similarly,
2 - m). We claim that (m, K/δ) = 1. Indeed, if p | m and p | K/δ, we must have
p | (b − 1)/δ, which is a contradiction to (K , b − 1) = δ. Now we have

S(A,P4,−1, (3K N )1/2) = S − T . (6.3)
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Here

S = S(A,P4,−1, N 1/σ ),

T =
∑
n∼N

L(n)∈P

∑
L(n)−1=δp1 p2m

p1,p2∈P4,−1
N 1/σ6p26p1

m∈P∗4,1

ωn 6
∑
`∈L

S(M(`),P(`), N 1/6)

with

L =
{
δp2m : N 1/σ 6 p2 6 (3K Nm−1)1/2,

p2 ∈ P4,−1,m ∈ P∗4,1,
(

m,
K
δ

)
= 1

}
,

M(`) = {L(n) : L(n) = `p + 1 : n ∼ N , p ∈ P},
P(`) = {p ∈ P : (p, 2`) = 1}, Q(z) =

∏
p<z

p∈P(`)

p

and M(`) has been assigned the weights νn = ωL−1(n), so that

S(M(`),P(`), z) =
∑
n∼N

L(n)=`p+1
(L(n),Q(z))=1

ωn.

We carry out bounding S from below and bounding T from above separately.

Bounding S. For d | P(z), (d, K ) = 1, let

r(A, d) =
∑
n∼N

L(n)∈P
L(n)−1≡0 (mod d)

ωn − 1
ϕ(d)

K
ϕ(K )

∑
n∼N

ωn

log(K n)

and, for (d, K ) > 1, let r(A, d) = 0 (since if p | d , p | K and p ∈ P4,−1, then
p does not divide any element of A by the amenability of L(n)). Let σ ∈ (3, 4)
be as in Hypothesis 6.4. The semilinear sieve [2, Theorem 11.13], with β = 1,
sifting parameter z = N 1/σ and level D = zs , 1 6 s 6 2, gives

S(A,P4,−1, N 1/σ ) > K
ϕ(K )

∑
n∼N

ωn

log(K n)
V SEM

K (N 1/σ )

× ( f (s)+ O((log N )−0.1))

+
∑

d6N s/σ

λ
−,SEM
d r(A, d), (6.4)

where λ−,SEM
d are the lower bound semilinear weights with sifting parameter

z = N 1/σ and we have introduced the quantities

f (s) =
√

eγ

πs

∫ s

1

dt√
t (t − 1)

and V SEM
K (z) =

∏
p<z

p≡−1 (mod 4)
p-K

(
1− 1

ϕ(p)

)
.
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We take s = ρ2σ ∈ [1, 2], where ρ2 is as in Hypothesis 6.4. Now Hypothesis 6.4
permits replacing the last sum in (6.4) with an error of�∑

n∼N ωn/(log N )100

(since the terms of that sum in (6.4) vanish unless (d, K ) = 1). Moreover, the
term V SEM

K (N 1/σ ) can be computed asymptotically using [24, Proposition 1],
which implies that

V SEM
K (z) = (1+ o(1))

∏
p|K

p≡−1 (mod 4)

(
1− 1

p − 1

)−1

· 2AC4,−1 ·
(
πe−γ

log z

)1/2

,

where

A = 1

2
√

2

∏
p≡−1 (mod 4)

(
1− 1

p2

)1/2

and

C4,i =
∏

p≡i (mod 4)

(
1− 1

(p − 1)2

)
for i ∈ {−1, 1}. Therefore, we end up with the bound

S > 4AC4,−1 + o(1)
(log N )1/2

· I1(ρ2, σ )
K

ϕ(K )

∏
p|K

p≡−1 (mod 4)

(
1− 1

p − 1

)−1

×
∑
n∼N

ωn

log(K n)

= 4AC4,−1 + o(1)
(log N )3/2

· I1(ρ2, σ )
K

ϕ(K )

∏
p|K

p≡−1 (mod 4)

(
1− 1

p − 1

)−1

×
∑
n∼N

ωn, (6.5)

where

I1(ρ2, σ ) = 1
2
√
ρ2

∫ ρ2σ

1

dt√
t (t − 1)

.

Bounding T . Write, for d | Q(z), (d, K ) = 1, (`, d) = 1 and (`, K ) = δ,

r(M(`), d) =
∑
n∼N

L(n)−1=`p
L(n)≡0 (mod d)

ωn − 1
ϕ(d)

K
ϕ(K/δ)

∑
n∼N

ωn

` log(K n/`)
.

For all other d such that d | Q(z), let r(M(`), d) = 0 (since if (d, K ) > 1, then
L(n) − 1 = `p, L(n) ≡ 0 (mod d) is impossible). With these notations, for
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1 6 s 6 3 the linear sieve [2, Theorem 11.13] with β = 2 provides the bound

S(M(`),P(`), N 1/6) 6 (1+ o(1))K
ϕ(K/δ)

∑
n∼N

ωn

` log(K n/`)
V LIN

K (N 1/5, `)F(s)

+
∑

d6N s/5

λ
+,LIN
d r(M(`), d), (6.6)

where λ+,LIN
d are the upper bound linear sieve coefficients with sifting parameter

z = N 1/5, F(s) = 2eγ /s and

V LIN
K (z, `) =

∏
p∈P(`)

p<z
p-K

(
1− 1

ϕ(p)

)
=

∏
2<p<z

(
1− 1

p − 1

) ∏
p|K`

2<p<z

(
1− 1

p − 1

)−1

.

Applying [24, formula (4.6)], we get the asymptotic

V LIN
K (z, `)= (1+ o(1)) 2C4,1C4,−1e−γ f(K`)

log z ,

where f(d) =∏ p|d
p>2

(
1− 1

p−1

)−1

.
(6.7)

We take s = 5ρ1 ∈ [1, 3] in the linear sieve. Then we have∑
`∈L

∑
d6Nρ1

λ
+,LIN
d r(M(`), d) =

∑
d6Nρ1
(d,K )=1

λ
+,LIN
d

∑
`6N 3/4+ε
(`,d)=1
(`,K )=δ

1L(`)r(M(`), d), (6.8)

since 1L(`) is supported on ` 6 3K 2 N 1−1/σ 6 N 3/4+ε. Concerning the error
sum in (6.6), observe that

1L(`) =
∑

`=k·δm
N 1/σ6k6(3K N )1/2

k6(3K N/m)1/2

1P4,−1(k)1P∗4,1(m)1(m,K/δ)=1,

so 1L(`) is of convolution type (for the value of σ we are considering), except
for the cross condition k 6 (3K N/m)1/2. We use Perron’s formula in the form

1(1,∞)(y) = 1
π

∫ N 4

−N 4

sin(t log y)
t

dt + O
(

1
N 4|log y|

)
= 2
π

∫ N 4

N−5

sin(t log y)
t

dt + O
(

1
N 4|log y| +

|log y|
N 5

)
for N−3 < y 6 N 3, y 6= 1 to dispose of the cross condition. We choose
y = 3K N/k2m, which satisfies |y − 1| > 1/3K N 2 after altering N by 6 1
if necessary, so that the error term in Perron’s formula becomes O(K/N 2).
According to the addition formula for sine, we have
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sin(t log y) = sin(t log(3K N )− t log k2) cos(t log m)
− cos(t log(3K N )− t log k2) sin(t log m),

which permits us to separate the variables k and m. Then we have

1L(`) = 2
π

∫ N 3

N−4

1
t

∑
`=k·δm

N 1/σ6k6(3K N )1/2

(α
(1)
k (t)β(1)m (t)− α(2)k (t)β(2)m (t)) dt

+ O
(

1
N 2−ε

)
,

where |α( j)
k (t)|, |β( j)

m (t)| 6 1 and t 7→ α
( j)
k (t) and t 7→ β

( j)
m (t) are continuous

and α( j)
k (t) is supported on N 1/σ 6 k 6 (3K N )1/2. Substituting this to (6.8),

Hypothesis 6.4 tells us that∑
`∈L

∑
d6Nρ1

λ
+,LIN
d r(M(`), d)�

∑
n∼N ωn

(log N )99 + O(N 1/2−ε).

We sum (6.6) over ` ∈ L and make use of (6.7), after which we have obtained∑
`∈L

S(M(`),P(`), N 1/5) 6 (F(s)+ o(1))

× K
ϕ(K/δ)

∑
n∼N

∑
`∈L

ωn

` log(K n/`)
V LIN

K (N 1/6, `)

+ O
(∑

n∼N ωn

(log N )99

)
=
(

2eγ

5ρ1
+ o(1)

)
· K
ϕ(K/δ)

∑
`∈L

f(K`)
` log(K N/`)

×
∑
n∼N

ωn · 2C4,1C4,−1e−γ

1/5 log N
+ O

(∑
n∼N ωn

(log N )99

)
.

We analyze the sum over L in the above formula. Denoting L′ = {`/δ :
` ∈ L}, it is∑

`∈L

f(K`)
` log(K N/`)

=
(

1
δ
+ o(1)

) ∑
`′∈L′

f(K`′)
`′ log(K N/`′)

1(`′,K/δ)=1,

since δ | K . The previous sum can be written as

(1+ o(1))
∑

m6N 1−2/σ+ε

u(m)f(K m)1(m,K/δ)=1

m

×
∑

N 1/σ6p6(3K N/m)1/2
p≡−1 (mod 4)

1
p log(N/pm)

, (6.9)
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where u(m) is the characteristic function of P∗4,1. To evaluate this sum, we study
the sum ∑

m6x

u(m)f(K m)1(m,K/δ)=1. (6.10)

The sum can be written as

f(K )
∑
m6x

u(m)f(ψK (m))1(m,K/δ)=1 where ψK (m) =
∏
p|m
p-K

p

and the advantage is that f(ψK (m)) is a multiplicative function. By Wirsing’s
theorem [23, Satz 1] applied to the non-negative multiplicative function h(m) =
u(m)f(ψK (m))1(m,K/δ)=1 (which is bounded by 2 at prime powers and fulfills∑

p6x h(p) log p = ( 1
2 + o(1))x), we see that (6.10) equals

(f(K )+ o(1))
e−γ /2√
π

x
log x

∏
p6x

p-K/δ
p≡1 (mod 4)

(
1+ h(p)

p
+ h(p2)

p2 + · · ·
)

= (f(K )+ o(1))
e−γ /2√
π

x
log x

∏
p6x
p-K

p≡1 (mod 4)

(
1+ 1

p − 2

) ∏
p|K

p-K/δ
p≡1 (mod 4)

(
1− 1

p

)−1

.

Applying Wirsing’s theorem reversely, this is

(f(K )+ o(1))
∑
m6x

u(m)f(m) ·
∏
p|K

p≡1 (mod 4)

(
1+ 1

p − 2

)−1 ∏
p|K

p-K/δ
p≡1 (mod 4)

(
1− 1

p

)−1

.

By [24, Lemma 3], we have∑
m6x

u(m)f(m) = (1+ o(1))
A

C4,1

x
(log x)1/2

.

Now, using the same argument as in the proof of [12, Lemma 5], we compute
that (6.9) equals

A + o(1)
C4,1(log N )1/2

· 1
2

∫ σ

2

log(t − 1)
t (1− t/σ)1/2

dt

× f(K )
δ

∏
p|K

p≡1 (mod 4)

(
1+ 1

p − 2

)−1 ∏
p|K

p-K/δ
p≡1 (mod 4)

(
1− 1

p

)−1

.
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Concluding the proof. Now we have

T 6 4AC4,−1 + o(1)
(log N )3/2

I2(ρ1, σ )K f(K )
δϕ(K/δ)

×
∏
p|K

p≡1 (mod 4)

(
1+ 1

p − 2

)−1 ∏
p|K

p-K/δ
p≡1 (mod 4)

(
1− 1

p

)−1 ∑
n∼N

ωn, (6.11)

where

I2(ρ1, σ ) = 1
2ρ1

∫ σ

2

log(t − 1)
t (1− t/σ)1/2

dt.

We claim that the local factors in (6.5) and (6.11) are identical, or in other words
that ∏

p|K

(
1− 1

p

)−1 ∏
p|K

p≡−1 (mod 4)

(
1− 1

p − 1

)−1

=
∏

p|K/δ

(
1− 1

p

)−1 ∏
p|K
p>2

(
1− 1

p − 1

)−1

×
∏
p|K

p≡1 (mod 4)

(
1+ 1

p − 2

)−1 ∏
p|K

p-K/δ
p≡1 (mod 4)

(
1− 1

p

)−1

. (6.12)

By the identity (1+ 1/(p − 2))−1 = 1− 1/(p − 1), (6.12) is equivalent to∏
p|K

(
1− 1

p

)−1

=
∏

p|K/δ

(
1− 1

p

)−1 ∏
p|K

p-K/δ
p≡1 (mod 4)

(
1− 1

p

)−1

,

which in turn is equivalent to the non-existence of a prime p 6≡ 1 (mod 4) for
which p | K , p - K/δ. If p > 5 were such a prime, we would have p | δ, so
p | b − 1, which contradicts the definition of amenability. We also cannot have
p = 2 or p = 3, since 2 | K/δ and 3 | K/δ for δ = (b − 1, K ) by amenability.

Thus, no such p exists and (6.12) holds. Furthermore, it is clear that (6.12) is
at least 0.01S(L). Consequently,

S − T > (0.01+ o(1))4AC4,−1S(L)(I1(ρ2, σ )− I2(ρ1, σ ))

×
∑

n∼N ωn

(log N )3/2
+ O(N 1/2).

Owing to the fact that H(ρ1, ρ2, σ ) is assumed to be true, we have I1(ρ2, σ ) −
I2(ρ1, σ ) > 10−10, and this completes the proof of Theorem 6.5 in view of (6.2)
and (6.3). �
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§7. Preparation for verifying the hypothesis. The sequence (ωn) to which we
will apply Theorem 6.5 will be determined by a function χ(n) having a Fourier
series of the form (2.2). In (2.2), it is natural to separate the phases αi into major
and minor arc parameters. This partition arises from the following lemma.

LEMMA 7.1. Let α1, . . . , αC be real numbers with C � 1 and let W � 1 be
as in (3.3). Also let the constants A, B > 1 be related by B = A(3C)C . Then, for
any large N, there exists a positive integer Q 6 (log N )B such that each αk may
be written as

αk = W
ak

qk
+ εk, (ak, qk)= 1, 16 qk 6

N
(log N )100B , |εk |6 (log N )100B W

qk N

and either qk | Q or qk > qk/(qk, Q2) > (log N )A.

Proof. This is [15, Lemma 3.2]. �

From now on, A (and therefore also B) will be large enough quantities (say A,
B > 1010). Let us define the sequence (ωn) to which we will apply Theorem 6.5
in order to prove Proposition 5.1. Let χ : Z→ R>0 be any function with Fourier
complexity 6 C (i.e., χ satisfies (2.2)). Given an integer t with |t | 6 5N , we
choose

(ωn)n∼N/Q = (χ(t − (Qn + c0)))n∼N/Q,

where Q is determined by the αi in (2.2) with the help of Lemma 7.1 and c0 ∈Q
with

Q = {c0 (mod Q) : (W c0 + b, Q) = (W c0 + b − 1, s(Q)) = 1}.
Recall that |Q| is given by (5.2).

From now on, let

x = N
Q
, L(n) = QW n +W c0 + b, c0 ∈ Q.

To prove Proposition 5.1 and hence Proposition 3.2 and Theorem 1.1, it suffices
to show that for W as in (3.3) and S(L) as in Definition 6.1, we have∑

n∼x
L(n)∈P

L(n)−1∈S

χ(t − (Qn + c0)) >
δ0 ·S(L)
(log x)3/2

∑
n∼x

χ(t − (Qn + c0))

+ o
(

x
(log x)3/2

)
, (7.1)

since L(n) is amenable and since by (5.2)

S(L) �
∏

p≡−1 (mod 4)
p|QW
p-W

(
1− 1

p

)−2 ∏
p 6≡−1 (mod 4)

p|QW
p-W

(
1− 1

p

)−1
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×
∏

p≡−1 (mod 4)
p|W

(
1− 1

p

)−2 ∏
p 6≡−1 (mod 4)

p|W

(
1− 1

p

)−1

�
(

W
ϕ(W )

)3/2 Q
|Q| .

By Theorem 6.5 and the remark after it, formula (7.1) will follow once we have
verified Hypothesis 6.4 for our sequence (χ(t − (Qn + c0)))n∼x and linear
function L(n) and parameters

ρ1 = 1
2 − 10ε, ρ2 = 3

7 − 10ε and σ = 3+ ε. (7.2)

By formula (2.2) for χ(n) and Lemma 7.1, it suffices to inspect Hypothesis 6.4
with the choices (7.2) for (e(ξn))n∼x , where ξ is an arbitrary real number
satisfying, for some Q 6 2(log x)B ,∣∣∣∣ξ − QW a

q

∣∣∣∣ 6 2(log x)102B

qx
for (a, q) = 1, q 6 x

(log x)99B and q | Q or
q

(q, Q2)
> (log x)A.

(7.3)

Moreover, we may assume in (7.1) that∑
n∼x

χ(t − (Qn + c0))� x
(log x)S(L)

,

since otherwise we have nothing to prove, and consequently it suffices to
prove Hypothesis 6.4 for (e(ξn))n∼x with (

∑
n∼x ωn)(log x)−100 replaced by

x(log x)−200 in that hypothesis.

§8. Bombieri–Vinogradov sums weighted by additive characters. We will
establish Hypothesis 6.4 in the setting of §7 subsequently in §10. For that
purpose as well as for proving Theorem 1.4 in §11, we need the following
Bombieri–Vinogradov-type estimates for type I and II exponential sums. We
employ for positive integers q and v the notation

qv = q
(q, v2)

.

LEMMA 8.1. Let M 6 N 0.4, R 6 N 0.1 and ρ 6 1
2 − ε for some ε ∈ (0, 1

6 ).
Let ξ be a real number with |ξ − a/q| 6 1/(qv)2 for some coprime a and
q ∈ [1, N ] and some positive integer v 6 N 0.1. Then, for any complex numbers
|αm | 6 τ(m)2 log m and any t ∈ [N , 2N ], we have∑

0<|r |6R

∑
d6Nρ

max
(c,dv)=1

∣∣∣∣ ∑
N6mn6t

mn≡c (mod dv)
m6M

αme(ξrmn)
∣∣∣∣

�
(

RN
v

)1/2(
RM Nρ + RN

vqv
+ qv

)1/2

(log N )1000.



52 J. TERÄVÄINEN

Proof. We follow the proof of [15, Lemma 8.3]. It suffices to consider the
sum over 0 < r 6 R. Our task is to estimate

Sr =
∑

d6Nρ

max
(c,dv)=1

∣∣∣∣ ∑
N6mn6t

mn≡c (mod dv)
m6M

αme(ξrmn)
∣∣∣∣

for r 6 R. The inner sum in the definition of Sr is a geometric sum in the variable
n, so evaluating it provides the bound

Sr �
∑

d6Nρ

∑
m6M

|αm |min
{

RN
rm dv

,
1

‖rξm dv‖
}
.

Observe that |vξ − av/q| 6 1/q2. Based on this, writing d ′ = rm d and using
a standard bound for sums over fractional parts [15, Lemma B.3] (taking x =
RN/v in that lemma), we get∑

r6R

Sr �
∑

d ′6RM Nρ

τ(d ′)5 min
{

RN
d ′v

,
1

‖vξd ′‖
}
(log N )

�
(

RN

vq1/2
v

+
(

RN · RM Nρ

v

)1/2

+
(

RN
v

qv

)1/2)
(log N )1000

�
(

RN
v

)1/2(
RM Nρ + RN

vqv
+ qv

)1/2

(log N )1000,

as wanted. �

LEMMA 8.2. Let M ∈ [N 1/2, N 3/4] and 11,12 > 1, 1112 6 N 1/2,
111

2
2 6 M/v for some positive integer v 6 N 0.1. Let ξ be a real number with

|ξ − a/q| 6 1/(qv)2 for some coprime a and q ∈ [1, N ]. Then, for any complex
numbers |αm |, |βm | 6 τ(m)2 log m and any integer c′ 6= 0 and number t ∈ [N ,
2N ], we have∑

0<|r |6R

∑
d1∼11

∑
d2∼12

(d2,c′d1v)=1

max
(c,d1v)=1

∣∣∣∣ ∑
N6mn6t

mn≡c (mod d1v)
mn≡c′ (mod d2)

m∼M

αmβne(ξrmn)
∣∣∣∣

� RN
v

min{F1, F2}(log N )1000

with

F1 =
(
11 Mv

N
+111

2
2
v

M

)1/2

+
(

1
11
+ 1

qv
+ qvv2

RN

)1/8

,

F2 = 1112

(
1

q1/2
v

+ v

M1/2 +
v2 M

N
+ q1/2

v v

(RN )1/2

)1/2

.
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Remark 8.3. In §10, we will only need the case R = 1, while the dependence
on v will be crucial. In §11, on the other hand, v = 1 but the dependence on R
will be crucial.

Proof. We follow the proof of [15, Lemma 8.4], which in turn is based on an
argument of Mikawa [16]. It suffices to consider the case r > 0. We will first
prove the lemma in the case F1 = min{F1, F2}. Let us write

Ir =
∑

d1∼11

∑
d2∼12

(d2,c′d1v)=1

max
(c,d1v)=1

∣∣∣∣ ∑
N6mn6t

mn≡c (mod d1v)
mn≡c′ (mod d2)

m∼M

αmβne(ξrmn)
∣∣∣∣,

so that
∑

r6R Ir is what we are interested in. Since 111
2
2 6 M/v, a formula

on [15, p. 37] tells us (with x = N , D = 11, α = rξ ) that

I 2
r � N (log N )100

(
11

∑
d1∼11

∑
0<| j |6812

2 N/11 Mv

τ3( j)

× min
{

RN
r(d1v)2| j | ,

1
‖rξ(d1v)2| j |‖

}
+ 11 M

v

)
(since the term (x2/Q2)(log x)−C+10 present in that formula of [15] can be
replaced with (DMx/Q)(log x)100 without changing anything in the proof).
Using the Cauchy–Schwarz inequality, we obtain

1
(log N )200

∑
r6R

Ir 6
1

(log N )200 R1/2
(∑

r6R

I 2
r

)1/2

6 (RN )1/2
(
11

∑
d1∼11

∑
0<| j |6812

2 N/11 Mv

∑
r6R

τ3( j)

× min
{

RN
r(d1v)2| j | ,

1
‖rξ(d1v)2| j |‖

}
+ 11 RM

v

)1/2

� (RN )1/2
(
11

∑
d1∼11

∑
16`6812

2 RN/11 Mv

τ4(`)

× min
{

RN
(d1v)2`

,
1

‖v2ξd2
1`‖

}
+ 11 RM

v

)1/2

, (8.1)

after writing ` = r j . When it comes to the sum above, we can estimate it using
the lemma on [16, p. 6] (with τ3(·) replaced by τ4(·)), stating that

11
∑

d1∼11

∑
`∼J

τ4(`)min
{

x

d2
1`
,

1
‖ξ ′d2

1`‖
}

�
(
12

1 J + x3/4
(

q ′ + x
q ′
+ x
11

)1/4)
(log x)100 (8.2)
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for 1 6 J 6 10x and any real number ξ ′ satisfying |ξ ′ − a′/q ′| 6 1/q ′2
for some coprime a′ and q ′ 6 x . In the case q ′ > x , (8.2) continues
to hold, by trivial estimates. We substitute (8.2) with x = RN/v2, ξ ′ =
v2ξ and J 6 812

2 RN/11 Mv into (8.1) (we have J 6 10(RN/v2), since
111

2
2 6 M/v), making use of our assumption on ξ , which implies that

|v2ξ − (av2/(q, v2))/qv| 6 1/q2
v . This results in the claimed bound.

Then let F2 = min{F1, F2}. In this situation, we use the orthogonality of
characters to bound the sum in Lemma 8.2 with∑

r6R

∑
d1∼11

∑
d2∼12

max
ψ (mod d1d2)

∣∣∣∣ ∑
N6mn6t

mn≡cv(d1,d2) (mod v)
m∼M

αmψ(m)βnψ(n)e(ξrmn)
∣∣∣∣,

(8.3)

where cv(d1, d2) is a suitably chosen integer coprime to v. Estimating the sums
over d1 and d2 trivially and using the Cauchy–Schwarz inequality and expanding
a square, we find that (8.3) is, for some |β ′n| 6 τ(n)2 log n and some cv coprime
to v,

6 1112(RM)1/2
(∑

r6R

∑
m6M

∣∣∣∣ ∑
N/m6n6t/m

n≡cvm−1 (mod v)

β ′ne(ξrmn)
∣∣∣∣2)1/2

(log M)100

= 1112(RM)1/2
(∑

r6R

∑
N/2M6ni62N/M

n1≡n2 (mod v)
for i∈{1,2}

β ′n1
β ′n2

×
∑

m6M
N/ni6m6t/ni

m≡cvn−1
i (mod v)

for ∈{1,2}

e(ξrm(n1 − n2))

)1/2

(log M)100

� 1112(RN )1/2
(

RM +
∑
r6R

∑
16n62N/M
n≡0 (mod v)

T (n)

× min
{

RN
rnv
+ 1,

1
‖vξrn‖

})1/2

(log M)101, (8.4)

where

T (n) = M
N

∑
n=n1−n2

n1,n262N/M

τ(n1)
2τ(n2)

2.

We can write n = kv and ` = kr to bound (8.4) with

� 1112(RN )1/2
(

RM +
∑

`62RN/Mv

U (`)min
{

RN
`v2 + 1,

1
‖v2ξ`‖

})1/2

× (log N )101, (8.5)
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where

U (`) =
∑
`=`1`2

`162N/Mv

T (`1v).

We apply [15, Lemma B.3] (with k = 20) to (8.5). The weight function U (`) is
not a divisor function, but the only property of the weight function needed in that
lemma is a second-moment bound. Therefore, (8.5) can be bounded with

� 1112(RN )1/2
(

RN

q1/2
v v2

+ RN
(v2 M)1/2

+ RM +
(

RNqv
v2

)1/2)1/2

× (log N )1000, (8.6)

once we prove that ∑
`62RN/Mv

U (`)2 � RN
Mv

(log N )100. (8.7)

We calculate ∑
`62RN/Mv

( ∑
`=`1`2

`162N/Mv

T (`1v)

)2

� RN
Mv

∑
`162N/Mv
`′162N/Mv

T (`1v)T (`′1v)
[`1, `

′
1]

� RN
Mv

∑
d62N/Mv

1
d

∑
`162N/d Mv
`′162N/d Mv

T (`1dv)T (`′1dv)
`1`
′
1

= RN
Mv

∑
d62N/Mv

1
d

( ∑
`62N/d Mv

T (`dv)
`

)2

. (8.8)

We can estimate the sum inside the square using∑
n62N/M

n≡0 (mod c)

T (n)
n
� M

N

∑
n162N/M
n262N/M

n1≡n2 (mod c)
n1>n2

τ(n1)
2τ(n2)

2

n1 − n2

� M
Nc

∑
16a6c

∑
n′162N/Mc
n′262N/Mc

n′1>n′2

τ(cn′1 + a)2τ(cn′2 + a)2

n′1 − n′2

� M
Nc

∑
16a6c

∑
n62N/Mc

τ(cn + a)4

� M
Nc

∑
m62N/M+c

τ(m)4 � 1
c
(log N )15
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for c 6 2N/M , where we used Hilbert’s inequality [17, Ch. 7] in the third
last step. Taking c = dv, and substituting to (8.8), we see that (8.7) holds, as
claimed. Therefore, we indeed have the bound (8.6) for (8.5) and that bound can
be rewritten as the desired bound F2. �

§9. Factorizing sieve weights. The linear and semilinear sieve weights will
play a crucial role in verifying Hypothesis 6.4, since we aim to split the
summation over d 6 xρ in that hypothesis to summations over d1 ∼ 11,
d2 ∼ 12 for various values of 11 and 12. If such a factorization can be
done, it provides more flexibility in our Bombieri–Vinogradov sums and hence
gives better bounds. This advantage can be seen from Lemma 8.2, which often
produces better bounds when 11 and 12 are of somewhat similar size, as
opposed to the choice 11 = xρ , 12 = 1. The following lemmas about the
combinatorial structure of sieve weights have been tailored so that the estimate
given by Lemma 8.2 will be � Nv−1(log N )−1000 if 11 and 12 satisfy the
conditions for d1 and d2 in Lemma 9.1 or 9.2 with D = x1−ε2

/M , θ = 0, R = 1
and q suitably large, and additionally ρ = 3

7 (1−4θ)−ε in the case of Lemma 9.1
or ρ = 1

2 (1 − 4θ) − ε in the case of Lemma 9.2. It should be remarked that in
§10 we will only need the case θ = 0 of the following lemmas, but for the proof
of Theorem 1.4 we will choose θ = 1

80 − ε.
9.1. Linear sieve weights.

LEMMA 9.1. Let ε > 0 be small, 0 6 θ 6 1
30 and ρ = 1

2 (1− 4θ)− ε. Let

D+,LIN = {p1 · · · pr 6 xρ : z1 > p1 > · · · > pr ,

p1 · · · p2k−2 p3
2k−1 6 xρ for all k > 1}

be the support of the upper bound linear sieve weights with level xρ and sifting
parameter z1 6 x1/2. Then, for any D ∈ [x1/5, xρ], every d ∈ D+,LIN can
be written as d = d1d2, where the positive integers d1 and d2 satisfy d1 6 D,
d1d2

2 6 x1−4θ−2ε2
/D. Moreover, we can take either d1 > x0.1 or d2 = 1.

Proof. The proof is similar to the proof of [2, Lemma 12.16] (which
essentially says that the linear sieve weights λ+,LIN

d are well-factorable for any
sifting parameter z 6 x1/2−ε). We will actually show that any d = p1 · · · pr ∈
D+,LIN can be written as d = d1d2 with d1 6 D, d2 6 xρ/D and either
d1 > x0.1 or d2 = 1. After that statement has been proved, we have proved
the lemma, because then d1d2

2 6 x2ρ/D 6 x1−4θ−2ε2
/D. We use induction

on r to prove the existence of such d1 and d2. For r = 1, we can simply take
d1 = p1 and d2 = 1, since p1 6 xρ/3 6 x1/6. If r = 2, we can take d1 = p1 p2,
d2 = 1, unless p1 p2 > D. In the case p1 p2 > D, in turn, the choice d1 = p1,
d2 = p2 works, since p1 6 x1/6 and p2 6 xρ/p1 p2 6 xρ/D. Suppose then that
r > 3 and that case r − 1 has been proved and consider the case r . We have
p1 · · · pr−1 ∈ D+,LIN, so by the induction assumption p1 · · · pr−1 = d ′1d ′2 with
d ′1 6 D, d ′2 6 xρ/D and either d ′1 > x0.1 or d ′2 = 1. We claim that we can take
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either d1 = d ′1 pr , d2 = d ′2 or d ′1 = d1, d2 = d ′2 pr . Firstly, if d ′1 < x0.1, then d ′2 = 1
and d ′1 = p1 · · · pr−1. Since r > 3, this yields p1 p2 < x0.1, so p2 < x0.05. Now
the choice d1 = d ′1 pr , d2 = d ′2 = 1 works because d1 < x0.1 pr 6 x0.15 6 D.
Secondly, if in the opposite case d ′1 > x0.1 neither of the choices for (d1, d2)

works, then d ′1d ′2 p2
r > xρ . However, d ′1d ′2 p2

r = p1 · · · pr−1 p2
r 6 xρ by the

definition of D+,LIN, so we have a contradiction and the induction works. �

9.2. Semilinear sieve weights.

LEMMA 9.2. Let ε > 0 be small, 0 6 θ 6 1
30 and ρ = 3

7 (1− 4θ)− ε. Let

D−,SEM = {p1 · · · pr 6 xρ : z2 > p1 > · · · > pr ,

p1 · · · p2k−1 p2
2k 6 xρ for all k > 1}

be the support of the lower bound semilinear sieve weights with level xρ and
sifting parameter z2 6 x1/3−2θ−2ε2

. Then, for any D ∈ [x1/3−2θ−2ε2
, xρ], every

d ∈ D−,SEM can be written as d = d1d2, where the positive integers d1 and d2

satisfy d1 6 D, d1d2
2 6 x1−4θ−2ε2

/D. Moreover, we can take either d1 > x0.1

or d2 = 1.

Remark 9.3. The exponent ρ = 3
7 (1 − 4θ) − ε is optimal in Lemma 9.2.

Namely, if ρ = 3
7 (1−4θ)+3ε, then the lemma is false for D = x (3/7)(1−4θ) and

p1 p2 p3 ∈ D−,SEM, p1, p2, p3 ∼ 1
2 x (1/7)(1−4θ)+ε.

Remark 9.4. We remark that an argument almost identical to the proof of
Lemma 9.2 below shows that the lemma holds also for the set

D+,SEM = {p1 · · · pr 6 xρ : x1/2 > p1 > · · · > pr ,

p1 · · · p2k−2 p2
2k−1 6 xρ for all k > 1},

which is the support of the upper bound semilinear weights, when ρ = 2
5 (1 −

4θ) − ε, θ 6 1
40 and all the other parameters are as before. This observation

will be used in the proof of Theorem 1.5. This exponent is also optimal, as is
seen by taking ρ = 2

5 (1 − 4θ) + 2ε and D = x (2/5)(1−4θ), p1 p2 ∈ D+,SEM,
p1, p2 ∼ 1

2 x (1/5)(1−4θ)+ε.

Proof of Lemma 9.2. The proof resembles some arguments related to
Harman’s sieve [7, Ch. 3]. Let d = p1 · · · pr ∈ D−,SEM. The claim is that
the set {p1, . . . , pr } can be partitioned into two subsets S1 and S2 in such a
way that the products P1 and P2 of the elements of S1 and S2 satisfy P1 6 D,
P1 P2

2 6 x1−4θ−2ε2
/D and additionally P1 > x0.1 or P2 = 1. Note that for r = 1,

one can take S1 = {p1} and S2 = ∅. Assume then that r > 2. If p1 · · · pr 6 D,
we may take S1 = {p1, . . . , pr }, S2 = ∅. Indeed, then P1 6 D, P2 = 1 and
P1 P2

2 6 D 6 x1−4θ−2ε2
/D. Now we may assume that p1 · · · pr > D. Since
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p1 6 D, we can select the largest j for which p1 · · · p j 6 D. We have j 6 r−1
and p j+1 6 p2 6 xρ/3, so

p1 · · · p j = p1 · · · p j+1

p j+1
> D

xρ/3
.

We claim that the choice S1 = {p1, . . . , p j }, S2 = {p j+1, . . . , pr } works. First
of all, we have P1 > D/xρ/3 > x0.1. Supposing that the claim does not hold
for S1 and S2, we have (P1 P2)

2 > P1x1−4θ−2ε2
/D. Using P1 P2 6 xρ and P1 >

D/xρ/3, this yields x2ρ > x1−4θ−ρ/3−2ε2
, from which we solve ρ > 3

7 (1−4θ)−
6
7ε

2, which is a contradiction to our choice of ρ. �

§10. Verifying the hypothesis.

10.1. Splitting variables. Based on §7, the proof of Hypothesis 6.4 for the
sequence (ωn)n∼x and linear function L(n) defined in that section has been
reduced to showing that∑

d6xρ2
(d,QW )=1

λ
−,SEM
d

( ∑
n∼x

L(n)∈P
L(n)≡1 (mod d)

e(ξn)− 1
ϕ(d)

QW
ϕ(QW )

∑
n∼x

e(ξn)
log(QW n)

)

(10.1)

and ∑
d6xρ1

(d,QW )=1

λ
+,LIN
d

∑
`6x1−ε

(`,QW )=δ
(`,d)=1

g(`)
( ∑

n∼x
L(n)=`p+1

L(n)≡0 (mod d)

e(ξn)

− 1
ϕ(d)

QW
ϕ(QW/δ)

∑
n∼x

e(ξn)
` log(QW n/`)

)
(10.2)

are � x(log x)−200, where δ = (W c0 + b − 1, QW ), (g(`))`>1 is a sequence
of convolution type (with parameter σ ), the sieve weights λ+,LIN

d , λ
−,SEM
d have

respective sifting parameters z1 6 x1/5+ε, z2 6 x1/(3+ε/2), ρ1, ρ2, σ are as in
(7.2) and ξ is subject to (7.3). It would actually suffice to replace ` 6 x1−ε by
` 6 x0.9+ε above, but this would not simplify the argument.

As mentioned in §9, we wish to split the sum over d into a double sum. This
is enabled by Lemmas 9.1 and 9.2. If D is as in Lemma 9.2 with 0 6 θ 6 1

30 , we
may write

|λ−,SEM
d | 6 min

D

∑
d=d1d2
d16D

d1d2
26x1−4θ−2ε2/D
(d1,d2)=1

d1>x0.1 or d2=1

1 6
(

log x
log 2

)2

min
D

max
11,12

∑
d=d1d2
d1∼11
d2∼12
(d1,d2)=1

1, (10.3)
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where the maximum and minimum are over those 11,12 > 1 and D > 1 that
satisfy

D ∈ [x1/3−2θ−2ε2
, xρ2], 11 6 D, 111

2
2 6

x1−4θ−2ε2

D
,

1112 6 xρ2, and either 11 > x0.1 or 12 = 1.
(10.4)

By Lemma 9.1, formula (10.3) continues to hold with λ−,SEM
d replaced with

λ
+,LIN
d and (10.4) replaced with

D ∈ [x1/5, xρ1], 11 6 D, 111
2
2 6

x1−4θ−2ε2

D
,

1112 6 xρ1, and either 11 > x0.1 or 12 = 1.
(10.5)

We take θ = 0 in this section, but in §11 we will employ the same formulas
with θ > 0. As a conclusion, we see that (10.1) and (10.2) are bounded by
((log x)/(log 2))2 times∑

d1∼11
(d1,QW )=1

∑
d2∼12

(d2,QW )=1
(d1,d2)=1

∣∣∣∣ ∑
n∼x

L(n)∈P
L(n)≡1 (mod d1d2)

e(ξn)− QW
ϕ(d1d2)ϕ(QW )

∑
n∼x

e(ξn)
log(QW n)

∣∣∣∣
(10.6)

and ∑
d1∼11

(d1,QW )=1

∑
d2∼12

(d2,QW )=1
(d1,d2)=1

∣∣∣∣ ∑
`6x1−ε

(`,QW )=δ
(`,d1d2)=1

g(`)
( ∑

n∼x
L(n)=`p+1

L(n)≡0 (mod d1d2)

e(ξn)

− QW
ϕ(d1d2)ϕ(QW/δ)

∑
n∼x

e(ξn)
` log(QW n/`)

)∣∣∣∣, (10.7)

respectively, where 11 and 12 are any numbers constrained by (10.4) or (10.5),
depending on whether we consider (10.6) or (10.7). At this point, it is also natural
to split into two cases depending on whether ξ lies on a major arc or a minor arc
(that is, whether q | Q or q/(q, Q2) > (log x)A holds in (7.3)).

10.2. Major arcs for the semilinear sieve. We first assume the major arc
condition q | Q in the definition of ξ in (7.3). By partial summation, (10.1)
becomes

=
∫ 2x

x
e(±‖ξ‖t) d

{ ∑
d6xρ2

(d,QW )=1

λ
−,SEM
d

×
( ∑

x6n6t
L(n)∈P

L(n)≡1 (mod d)

1− QW
ϕ(QW )

1
ϕ(d)

∑
x6n6t

1
log(QW n)

)}
.
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Naming the function inside d{. . .} as G(t), partial integration tells us that the
previous expression is

= G(2x)e(±2‖ξ‖x)∓ 2π i‖ξ‖
∫ 2x

x
e(±‖ξ‖t)G(t) dt

� (1+ ‖ξ‖x) max
x6t62x

|G(t)|. (10.8)

Since 1/log(QW n) = (1/QW )
∫ QW (n+1)

QW n (du/log u) + O(1/n), putting c1 =
W c0 + b we have

G(t) 6
∑

d6xρ2
(d,QW )=1

|λ−,SEM
d |

∣∣∣∣ ∑
QW x6p6QW t
p≡c1 (mod QW )

p≡1 (mod d)

1− 1
ϕ(QW d)

∫ QW t

QW x

du
log u

∣∣∣∣
+ O(x1/2)

6
∑

d6xρ2
(d,QW )=1

max
(r,QW d)=1

∣∣∣∣π(QW t; QW d, r)− 1
ϕ(QW d)

Li(QW t)
∣∣∣∣

+
∑

d6xρ2
(d,QW )=1

max
(r,QW d)=1

∣∣∣∣π(QW x; QW d, r)− 1
ϕ(QW d)

Li(QW x)
∣∣∣∣

+ O(x1/2)

� x
(log x)1000B

by the Bombieri–Vinogradov theorem [10, Theorem 17.1]. As ξ is on a major
arc, by (7.3) we have ‖ξ‖ 6 2(log x)102B/x , so (10.8) is � x(log x)−1000.
Therefore, the major arc case for the semilinear sieve has been dealt with.

10.3. Major arcs for the linear sieve. Again assume that q | Q in (7.3). After
applying partial summation, (10.2) takes the form

∫ 2x

x
e(±‖ξ‖t) d

{ ∑
d6xρ1

(d,QW )=1

λ
+,LIN
d

×
( ∑

x6n6t
L(n)=`p+1

L(n)≡0 (mod d)
`6x1−ε

(`,QW )=δ
(`,d)=1

g(`)− QW
ϕ(d)ϕ(QW/δ)

∑
x6n6t
`6x1−ε

(`,QW )=δ
(`,d)=1

g(`)
` log(QW n/`)

)}
,



THE GOLDBACH PROBLEM FOR PRIMES OF THE FORM x2 + y2 + 1 61

so we want this to be� x(log x)−202. Proceeding as in §10.2, it suffices to prove
for t ∈ [x, 2x] that ∑

d6xρ1
(d,QW )=1

∣∣∣∣ ∑
x6n6t

L(n)=`p+1
L(n)≡0 (mod d)

`6x1−ε

g(`)1(`,QW )=δ, (`,d)=1

− QW
ϕ(d)ϕ(QW/δ)

∑
x6n6t
`6x1−ε

(`,QW )=δ
(`,d)=1

g(`)
` log(QW n/`)

∣∣∣∣

is� x(log x)−1000B .
We start by analyzing the second sum inside the absolute values in the

previous expression. Since QW � (log x)B+1 and ` 6 x1−ε, a change of
variables and the prime number theorem give

QW
ϕ(QW/δ)

∑
x6n6t

1
` log(QW n/`)

= QW
ϕ(QW/δ)

∫ t

x

du
` log(QW u/`)

+ O(QW )

= 1
ϕ(QW/δ)

∫ QW t/`

QW x/`

du
log u

+ O(QW )

= 1
ϕ(QW/δ)

∑
QW x6`p6QW t

1+ O
(

x
`
(log x)−3000B

)
.

The error term remains still� x(log x)−2000B after multiplying it by |g(`)|/ϕ(d)
and summing over d 6 xρ1 , ` 6 x1−ε. Hence, what we wish to show is that∑

d6xρ1
(d,QW )=1

∣∣∣∣ ∑
QW x6`p6QW t
`p≡−1 (mod d)

`p≡c1−1 (mod QW )

`6x1−ε
(`,QW )=δ
(`,d)=1

g(`)− 1
ϕ(QW d/δ)

∑
QW x6`p6QW t

`6x1−ε
(`,QW )=δ
(`,d)=1

g(`)
∣∣∣∣ (10.9)

is � x/(log x)1000B for t ∈ [x, 2x] and c1 = W c0 + b. Since (`, QW ) = δ,
(`, d) = 1 and (d, δ) = 1, the congruences `p ≡ −1 (mod d), `p ≡
c1 − 1 (mod QW ) can be rewritten as `′ p ≡ −δ−1 (mod d), `′ p ≡
(c1 − 1/δ) (mod QW/δ) with `′ = `/δ. By the Chinese remainder theorem,
these congruences are equivalent to `′ p ≡ c (mod QW d/δ) for some c
depending on Q,W, d and δ and coprime to QW d/δ. Concerning the second
sum inside absolute values in (10.9), we wish to add the constraint (`′ p,
QW d/δ) = 1 to that summation (where again `′ = `/δ). We know that (`′,
QW/δ) = (`′, d) = 1 and clearly p > xε in (10.9), so (p, QW ) = 1. Therefore,
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we have shown that we may insert the constraint (`′ p, QW d) = 1 if the case
p | d has a small enough contribution to the aforementioned sum. That case
contributes at most ∑

p|d
p>xε

∑
`62QW x/p

|g(`)| �ε x1−ε/2,

which is� x1−ε2
when multiplied by 1/ϕ(QW d/δ) and summed over d 6 xρ1 .

Summarizing, our aim has been reduced to showing that

∑
d6xρ1

(d,QW )=1

max
(c,QW d/δ)=1

∣∣∣∣ ∑
QW x/δ6`′ p6QW t/δ
`′ p≡c (mod QW d/δ)

`′6x1−ε/δ

g(δ`′)

− 1
ϕ(QW d/δ)

∑
QW x/δ6`′ p6QW t/δ
(`′ p,QW d/δ)=1
`′6x1−ε/δ

g(δ`′)
∣∣∣∣ (10.10)

is� x/(log x)1000B for t ∈ [x, 2x].
To obtain this estimate, we apply [10, Theorem 17.4] to the sequences

(α`′)`′6x1−ε/δ = (g(δ`′))`′6x1−ε/δ and (βk)k>1 = (1P(k))k>1—that theorem
is applicable since the sequence (1P(k))k>1 is well-distributed in the sense
of [10, formula (17.13)] (with 1 = (log x)−20000B there) by the Siegel–Walfisz
theorem. Now, since in (10.10) we have `′ > xε/2, p > xε, ρ1 < 1

2 and
|α`′ | 6 τ(`′)2 log `′, the claimed Bombieri–Vinogradov-type estimate follows
immediately from the theorem cited above.

10.4. Minor arcs for the semilinear sieve. We assume then that ξ is on a minor
arc, meaning that q/(q, Q2) > (log x)A in (7.3). We study the sum (10.6). Using
partial summation, we see that

∑
n∼x

e(ξn)
log(QW n)

� max
x6t62x

∣∣∣∣ ∑
x6n6t

e
(
ξn
)∣∣∣∣� 1

‖ξ‖ .

We have (q, QW ) 6 W (q, Q) 6 Wq/(log x)A < q , so q - QW . Taking this
and (7.3) into account, ‖ξ‖ > 1/q − 2(log x)102B/qx > 1/2q , so the second
expression inside absolute values in (10.6) is � q/ϕ(d) � x/(log x)99Bϕ(d).
Hence, it contributes� x(log x)−98B when summing over d .

When it comes to the first expression inside absolute values in (10.6), it equals

∑
n∼x

L(n)∈P
L(n)≡1 (mod d1d2)

e(ξn) = e
(−ξc1

QW

) ∑
p∼QW x

p≡c1 (mod QW )
p≡1 (mod d1d2)

e
(

ξ

QW
p
)
+ O(QW ),



THE GOLDBACH PROBLEM FOR PRIMES OF THE FORM x2 + y2 + 1 63

where the error O(QW ) remains � x1/2 when summed over d 6 xρ2 . With
partial summation, we may bound the sum on the right-hand side by∣∣∣∣ ∑

n∼QW x
n≡c1 (mod QW )
n≡1 (mod d1d2)

3(n)e
(

ξ

QW
n
)∣∣∣∣

+
∫ 2QW x

QW x

∑
QW x6n6t

n≡c1 (mod QW )
n≡1 (mod d1d2)

3(n)e
(

ξ

QW
n
)

dt

t log2 t
+ O(x1/2+ε),

the error coming from the values of n that are prime powers, and the error being
� x1−ε2

after summing over d 6 xρ2 . This means that it suffices to prove that∑
d1∼11

(d1,QW )=1

∑
d2∼12

(d2,QW )=1
(d1,d2)=1

∣∣∣∣ ∑
QW x6n6t

n≡c1 (mod QW )
n≡1 (mod d1d2)

3(n)e
(

ξ

QW
n
)∣∣∣∣� x

(log x)1000 (10.11)

uniformly for t ∈ [QW x, 2QW x]. We may now apply Vaughan’s identity (in the
form of [10, Proposition 13.4] with y = z = (QW x)1/3 there), which transforms
the sum inside absolute values in (10.11) (up to error O(x1/3+ε)) into a sum of
� (log x)10 type I and type II sums of the form

R̃I
d1d2

(t) =
∑

QW x6mn6t
mn≡c1 (mod QW )
mn≡1 (mod d1d2)

m�M

αme
(
ξmn
QW

)

and

R̃II
d1d2

(t) =
∑

QW x6mn6t
mn≡c1 (mod QW )
mn≡1 (mod d1d2)

m�M

αmβne
(
ξmn
QW

)

with |αm |, |βm | 6 τ(m)2 log m some complex numbers and M 6 (2QW x)1/3 in
the case of R̃I

d1d2
(t), while M ∈ [(QW x)1/3, (2QW x)2/3] in the case of R̃II

d1d2
(t).

Moreover, we may assume in the latter case that M ∈ [(QW x)1/2, (2QW x)2/3]
by flipping the roles of the variables if necessary. We may replace the type I and
type II sums with the (possibly larger) sums

RI
d1d2

(t)=max(c,d1d2 QW )=1

∣∣∣∣ ∑
QW x6mn6t

mn≡c (mod d1d2 QW )
m�M

αme
(

ξ

QW
mn
)∣∣∣∣

RII
d1d2

(t)=max(c,d1 QW )=1

∣∣∣∣ ∑
QW x6mn6t

mn≡c (mod d1 QW )
mn≡1 (mod d2)

m�M

αmβne
(

ξ

QW
mn
)∣∣∣∣. (10.12)
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We are now in a position to apply the Bombieri–Vinogradov Lemmas 8.1
and 8.2. Note that, by (7.3), we either have |ξ − QWa/q| 6 1/(QWq)2 or
q > x/2(log x)102B(QW )2. If the latter happens, we have |e((ξ/QW )mn) −
e((a/q)mn)| 6 |ξ/QW − a/q|mn 6 8(QW )3(log x)204B/x for mn 6 2QW x .
This implies that e((ξ/QW )mn) can be replaced by e((a/q)mn) in the type I
and II sums. In conclusion, we can assume in any case that |ξ − QWa/q| 6
1/(QWq)2.

The type I Bombieri–Vinogradov sums cause no problems, as Lemma 8.1
with the choices R = 1, N = QW x , v = QW , M = x1/3+ε, ρ 6 1

2 − ε tells us
at once that ∑

d1∼11
(d1,QW )=1

∑
d2∼12

(d2,QW )=1
(d1,d2)=1

RI
d1d2

(t)� x/(log x)A/10,

since q/(q, (QW )2) > W−2(log x)A and 1112 6 xρ2 .
We know that (QW x)1/2 6 M 6 (2QW x)2/3 in the sum RII

d1d2
(t). We divide

the analysis of this sum into three cases.

Case 1. Assume that M > x1−ρ2−ε2
, 11 > (log x)A/10. Take D = x1−ε2

/M .
We know that x1/3−ε2

(log x)−B 6 D 6 xρ2 by the bound on M . In view of
(10.4) with θ = 0, this means in particular that 11 6 x1−ε2

/M and 111
2
2 6

x1−2ε2
/D = Mx−ε2

. Now we apply Lemma 8.2 (in the case of F1) with R = 1,
N = QW x , v = QW , ρ = ρ2 6 3

7 − ε to deduce that

∑
d1∼11

(d1,QW )=1

∑
d2∼12

(d2,QW )=1
(d1,d2)=1

RII
d1d2

(t)� x
((

1
11
+ W 2

(log x)A + (log x)−99B(QW )2
)1/8

+
(
11 M

x
+111

2
2

QW
M

)1/2)
(log x)1000,

which is� x/(log x)A/100 for A large enough by the lower bound on 11.

Case 2. Assume then that M > x1−ρ2−ε2
,11 < (log x)A/10. Since11 < x0.1,

we know that 12 = 1, so applying Lemma 8.2 (in the case of F2) we obtain, for
A large enough,∑

d1∼11
(d1,QW )=1

∑
d2∼12

(d,QW )=1
(d1,d2)=1

RII
d1d2

(t)

� x(log x)A/5
(

W
(log x)A/2 +

QW
M1/2 +

(QW )2 M
x

+ (QW )1/2

(log x)99B/2

)1/2

and this is again� x/(log x)A/100 for A large.
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Case 3. Lastly, assume that M < x1−ρ2−ε2
. Then we estimate (10.1) instead of

(10.6). This amounts to just replacing d1 ∼ 11, d2 ∼ 12 with d1 6 xρ2 , d2 = 1
throughout this subsection. We have xρ2 6 x1−ε2

/M and xρ2 6 Mx−ε2
, so we

can bound the type II sums in the same way as for M > x1−ρ2−ε2
(considering

again the cases 11 > (log x)A/10 and 11 < (log x)A/10 separately), so also
Case 3 contributes� x/(log x)A/100.

Consequently, we have shown that the contribution of the minor arcs for the
semilinear sieve is small enough.

10.5. Minor arcs for the linear sieve. We assume again that q/(q, Q2) >
(log x)A. We first look at the second expression inside absolute values in (10.7).
We have by partial summation∑

n∼x

e(ξn)
` log(QW n/`)

� 1
`‖ξ‖

for ` 6 x1−ε just as in §10.4. We showed earlier that 1/‖ξ‖ � x/(log x)99B

when q/(q, Q2) > (log x)A, so the second expression inside absolute values in
(10.7) is � x/`ϕ(d)(log x)98B , which is � x(log x)−97B after summing over
d 6 xρ1 and over ` 6 x1−ε weighted by |g(`)|.

We may write the first expression inside absolute values in (10.7) as

e
(−(c1 − 1)ξ

QW

) ∑
`p∼QW x

`p≡c1−1 (mod QW )
`p≡−1 (mod d)

`6x1−ε

g(`)e
(

ξ

QW
`p
)
+ O(QW ) (10.13)

and the error O(QW ) is� x1/2 after summing over d 6 xρ1 . We have ignored
the conditions (`, QW ) = δ, (`, d) = 1 above, since if either of them fails,
`p ≡ c1 − 1 (mod QW ), `p ≡ −1 (mod d) is impossible.

Crucially, our assumption is that the sequence (g(`))`>1 is of convolution
type, so the sum in (10.13) can be rewritten as∑

kmp∼QW x
kmp≡c1−1 (mod QW )

kmp≡−1 (mod d)
km6x1−ε

αkβme
(

ξ

QW
kmp

)
,

where (αk) is supported on x1/σ 6 k 6 (Qx)1−1/σ for σ = 3+ ε. Putting

β∗r =
∑

r=mp

βm

and splitting the previous sum dyadically, it becomes� log x sums of the form∑
kr∼QW x

kr≡c1−1 (mod QW )
kr≡−1 (mod d)

k�M

αkβ
∗
r e
(

ξ

QW
kr
)
,
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where x1/σ 6 M 6 (Qx)1−1/σ and, by changing the roles of the variables, we
may further assume that (QW x)1/2 6 M 6 Qx1−1/σ . Now our bilinear sums are
exactly of the same form as in (10.12) (but with different M). Furthermore, we
may assume that |ξ − QWa/q| 6 1/(QWq)2 for the same reason as in §10.4. If
M > x1−ρ1−ε2

, denoting D = x1−ε2
/M ∈ [x1/5, xρ1], we again see that111

2
2 6

Mx−ε2
in (10.5) (with θ = 0). Therefore, we may apply the very same estimates

as in the Cases 1 and 2 of §10.4. If M < x1−ρ1−ε2
, we can apply precisely the

same argument as in Case 3 of the previous subsection, since xρ1 6 x1−ε2
/M

and xρ1 6 Mx−ε2
. Summarizing, we have showed that the minor arcs for the

linear sieve contribute� x(log x)−A/100, which is small enough for large A.
We have now concluded the proof of Theorem 1.1, in view of Theorem 6.5

and Proposition 5.1. �

Proof of Theorem 1.5. We take Q = W = 1 and L(n) = n in (10.1) and
replace L(n) ≡ 1 (mod d) by L(n) ≡ b (mod d) (with b 6= 0 an arbitrary
integer) there and note that the proof that (10.1) is �C x(log x)−C is verbatim
the same as the minor arc argument for the semilinear sieve in this section,
provided that ξ is any real number with |ξ − a/q| 6 1/q2 for some coprime
a and q ∈ [(log x)1000C , x(log x)−1000C ]. This proves Theorem 1.5 in the case
of lower bound sieve weights. The case of upper bound sieve weights follows
very similarly by replacing λ−,SEM

d with λ+,SEM
d and making use of a remark

after Lemma 9.2 (which is where the value ρ+ = 2
5 − ε comes from). �

§11. The distribution of ξp modulo 1. We show that our considerations on
primes x2+ y2+ 1 in Bohr sets imply a result about the distribution of irrational
multiples of such primes, in the form of Theorem 1.4.

For proving Theorem 1.4, it suffices to prove that, given an irrational ξ > 0,
there exist infinitely many integers N > 1 such that some prime p ∼ N of
the form x2 + y2 + 1 satisfies ‖ξp + κ‖ 6 N−θ/2. Let χ0 be a 1-periodic
function which is a lower bound for the characteristic function of [−η/2, η/2]
with η = N−θ . Specifically, as in [14], we choose χ0 so that

0 6 χ0(t) 6 1, χ0(t) = 0 when t 6∈
[
−η

2
,
η

2

]
,

χ0(t) = η

2
+
∑
|r |>0

c(r)e(r t) with c(r)� η

and
∑
|r |>R

|c(r)| � R−1 for R = η−1(log η−1)C

for some large constant C . This construction goes back to Vinogradov’s work.
What we want to show is that∑

p∼N
p∈S+1

χ0(ξp + κ) > δ0
ηN

(log N )3/2
(11.1)
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for some absolute constant δ0 > 0 and infinitely many N . From now on, we
choose a large integer q satisfying |ξ − a/q| 6 1/q2 for some a coprime to q
(there are infinitely many such q) and take

N = q2, R = η−1(log η−1)C � N θ (log N θ )C . (11.2)

Concerning the term on the right-hand side of (11.1), we note that∑
n∼N

χ0(ξn + κ)− η
2

N � η
∑

0<|r |6R

∣∣∣∣∑
n∼N

e(ξrn)
∣∣∣∣+ N

R

� η
∑

0<|r |6R

1
‖ξr‖ + ηN (log N )−C

� ηq log 2q + ηN (log N )−C

� ηN (log N )−C

for 2ε 6 θ 6 1
2 − ε, so (11.1) takes the form∑

p∼N
p∈S+1

χ0(ξp + κ) > δ1

(log N )3/2
∑
n∼N

χ0(ξn + κ) (11.3)

for some absolute constant δ1 > 0. This is what we set out to prove.

Proof of Theorem 1.4. Pick any amenable linear polynomial, such as L(n) =
K n + 5 with K = 64. By applying Theorem 6.5 to ωn = χ0(K ξn + κ + 5ξ)
and L(n), we see that (11.3) will follow (with N replaced by N/K ) once
we establish Hypothesis 6.4 (with δ = (K , 5 − 1) = 4) for this sequence
(ωn) and some parameters satisfying H(ρ1, ρ2, σ ) under the conditions (11.2).
Taking the definition of χ0(·) into account and making use of the classical
Bombieri–Vinogradov theorem, it suffices to prove Hypothesis 6.4 for ω′n =∑

0<|r |<R c(r)e(K ξrn) (with the choices (11.2)). Hence, what we must show is
that∑

d6Nρ2
(d,K )=1

|λ−,SEM
d |

∑
0<|r |<R

∣∣∣∣ ∑
n∼N

K n+5∈P
K n+4≡0 (mod d)

e(K ξrn)− K
ϕ(K d)

∑
n∼N

e(K ξrn)
log(K n)

∣∣∣∣
and∑

d6Nρ1
(d,K )=1

|λ+,LIN
d |

∑
0<|r |<R

×
∣∣∣∣ ∑
`6N 1−ε
(`,d)=1
(`,K )=δ

g(`)
( ∑

n∼N
K n+4=`p

K n+5≡0 (mod d)

e(K ξrn)− K
ϕ(K d)

∑
n∼N

e(K ξrn)
` log(K n/`)

)∣∣∣∣
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are � N/(log N )100, where λ−,SEM
d has sifting parameter z2 � N 1/σ , while

λ
+,LIN
d has sifting parameter z1 � N 1/5. We know that |K ξ − a′/q ′| 6 64/q ′2

for some coprime a′ and q ′ � N 1/2, so the minor arc arguments from §10 allow
replacing the previous Bombieri–Vinogradov sums (up to error � N 1−ε) with
the sums ∑

d6Nρ2
(d,K )=1

|λ−,SEM
d |

∑
0<|r |<R

∣∣∣∣ ∑
n∼N

K n+5∈P
K n+4≡0 (mod d)

e(K ξrn)
∣∣∣∣ and

∑
d6Nρ1
(d,K )=1

|λ+,LIN
d |

∑
0<|r |<R

∣∣∣∣ ∑
`6N 1−ε
(`,d)=1
(`,K )=δ

g(`)
∑
n∼N

K n+4=`p
K n+5≡0 (mod d)

e(K ξrn)
∣∣∣∣. (11.4)

Splitting the variables as in §10.1 and again employing the minor arc arguments
from §10, the sums in (11.4) reduce to� (log N )10 sums of the same form as in
Lemmas 8.1 and 8.2 with

R 6 N θ (log N )C , v = 1, q � N 1/2, M � N 1/3

in the type I case, while

R 6 N θ (log N )C , v = 1, q � N 1/2, M ∈ [N 1/2, N 2/3+ε2],
11,12 subject to (10.4)

(with x replaced by N in (10.4)) in the type II sums arising from the semilinear
sieve weights and

R 6 N θ (log N )C , v = 1, q � N 1/2, M ∈ [N 1/2, N 3/4−ε],
11,12 subject to (10.5)

(with x replaced by N in (10.5)) in the type II sums arising from the linear sieve
weights.

From now on, we fix the values

ρ1 = 1
2
(1− 4θ)− ε, ρ2 = 3

7
(1− 4θ)− ε, σ = 1

1/3− 2θ
+ ε.

The bound offered by Lemma 8.1 for the type I sums we face is evidently �
N 1−ε2

for θ 6 1
30 . This takes care of the type I sums.

We turn to the type II sums that are of the same form as in Lemma 8.2.
Utilizing Lemma 8.2, such Bombieri–Vinogradov sums are bounded by

� RN (log N )1000
((

11 M
N
+ 111

2
2

M

)1/2

+
(

1
11
+ 1

N 1/2

)1/8)
(11.5)
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when 1112 6 N 1/2 and 111
2
2 6 M . For R 6 N θ (log N )C , the estimate (11.5)

is� N 1−0.1ε2
, provided that

11 6
N 1−2θ−ε2

M
, 111

2
2 6 M N−2θ−ε2

,

11 > N 0.1, θ 6 1
80
− ε. (11.6)

We deal with the type II sums in three cases. We will use ρ to denote either ρ1
or ρ2.

Case 1. Suppose that M > N 1−ρ−2θ−ε2
,11 > N 0.1. By taking D =

N 1−2θ−ε2
/M in (10.4)–(10.5) and using the fact that 1/σ 6 1

3 − 2θ − 2ε2,
we can indeed achieve (11.6) as long as D ∈ [N 1/5, Nρ] in the case of the
linear sieve and D ∈ [N 1/3−2θ−2ε2

, Nρ] in the case of the semilinear sieve.
The inequality D 6 Nρ holds due to our lower bound on M . The inequality
D > N 1/5 holds for M 6 N 3/4, which is true in the linear case. Similarly, the
inequality D > N 1/3−2θ−2ε2

reduces to M 6 N 2/3+ε2
and this holds in the

semilinear case. Therefore, in this case (11.6) is always valid, which means that
our type II sums are� N 1−0.1ε2

, which is what we wanted.

Case 2. Suppose that M > N 1−ρ−2θ−ε2
,11 < N 0.1. In this case we know

that 12 = 1 from (10.4) and (10.5). Now, choosing F2 in Lemma 8.2, we obtain
for the type II Bombieri–Vinogradov sum the bound

� RN11

(
1

N 1/4 +
1

M1/2 +
M
N
+ N 1/4

(RN )1/2

)1/2

� RN11 N−1/8 � N 0.999

when θ 6 1
50 .

Case 3. Suppose finally that M < N 1−ρ−2θ−ε2
,11 > N 0.1. Similarly as in

Case 3 of §10.4, we may take11 = Nρ ,12 = 1. Again we require this choice to
fulfill (11.6). The first constraint in (11.6) follows directly from our upper bound
on M . Since M > N 1/2, the second constraint in (11.6) holds for ρ 6 1

2−2θ−ε2,
which certainly holds for our choices of ρ1 and ρ2. This means that also in Case 3
we get good enough bounds for the type II sums. Putting everything together, in
each of the Cases 1–3 we get a good enough bound for the type II sums.

Combining the analyses of the Cases 1–3, we see that Theorem 1.4 will follow
with exponent θ if H(ρ1, ρ2, σ ) is true for σ = 1/(1/3− 2θ) + ε, ρ1 = 1

2 (1 −
4θ)−ε and ρ2 = 3

7 (1−4θ)−ε, provided that θ 6 1
80−ε. By continuity, it suffices

to check H(1
2 (1− 4θ), 3

7 (1− 4θ), 1/(1/3− 2θ)) for θ = 1
80 and this holds by a

numerical computation (the difference between the left- and right-hand sides of
(6.1) is then > 10−3). This completes the proof of Theorem 1.4. �
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ODD ORDER CASES OF THE LOGARITHMICALLY AVERAGED CHOWLA
CONJECTURE

TERENCE TAO AND JONI TERÄVÄINEN

Abstract. A famous conjecture of Chowla states that the Liouville function λ(n) has negligible
correlations with its shifts. Recently, the authors established a weak form of the logarithmically
averaged Elliott conjecture on correlations of multiplicative functions, which in turn implied all the
odd order cases of the logarithmically averaged Chowla conjecture. In this note, we give a new
proof of the odd order cases of the logarithmically averaged Chowla conjecture. In particular, this
proof avoids all mention of ergodic theory, which had an important role in the previous proof.

1. Introduction

Let λ(n) be the Liouville function, defined as λ(n) := (−1)Ω(n), with Ω(n) being the number of
prime factors of the integer n counting multiplicity. The distribution of λ(n) has been extensively
studied. For instance, the statement

1
x

∑

n≤x

λ(an + b) = ox→∞(1)

for any fixed a ∈ N, b ∈ Z is equivalent to the prime number theorem in arithmetic progressions
by an elementary argument. It was conjectured by Chowla [2] that we have the significantly more
general correlation estimate

1
x

∑

n≤x

λ(a1n + b1) · · · λ(akn + bk) = ox→∞(1)(1)

for any k ≥ 1, a1, . . . , ak, b1, . . . , bk ∈ N satisfying the non-degeneracy condition aib j − a jbi , 0
for 1 ≤ i < j ≤ k. The non-degeneracy condition may be omitted when k is odd, since a degener-
ate pair λ(ain + bi)λ(a jn + b j) with aib j − a jbi = 0 is constant in n and can therefore be deleted.
One can of course extend this conjecture to the case where the b1, . . . , bk are integers rather than
natural numbers (after defining λ arbitrarily on negative numbers), but this leads to an equivalent
conjecture after applying a translation in the n variable.

Chowla’s conjecture (1) can be thought of as a simpler analogue of the famous Hardy-Littlewood
prime k-tuple conjecture [13], [10, Section 1], which predicts an asymptotic for the correlations of
the von Mangoldt function Λ(n). Any rigorous implication between (1) and the Hardy-Littlewood
k-tuples conjecture, however, would require good savings of the type O((log x)−A) for the error
term ox→∞(1) in (1) and a large regime of uniformity in the parameters a1, . . . , ak, b1, . . . , bk; none
of the currently known partial progress on Chowla’s conjecture for k > 1 fulfills these additional
requirements. Nevertheless, Chowla’s conjecture is subject to the well-known parity problem of

2010 Mathematics Subject Classification. 11N37.
Key words and phrases. Liouville function, Chowla’s conjecture, Gowers uniformity norms.
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sieve theory, which also obstructs sieve theoretic approaches to the Hardy-Littlewood prime k-
tuple conjecture. The parity problem states the fact, first observed by Selberg (see [8, Chapter
16]), that classical combinatorial sieves are unable to distinguish numbers with an odd and even
number of prime factors from each other.

One can also view Chowla’s conjecture as a special case of Elliott’s conjecture on correlations of
multiplicative functions (see [23, Section 1] for a modern version of this conjecture, avoiding a
technical counterexample to the original conjecture in [3]).

In [19], Matomäki, Radziwiłł and the first author showed that Chowla’s conjecture holds on av-
erage over the shifts b1, . . . , bk, and this was generalised by Frantzikinakis [5] to averages over
independent polynomials. Nevertheless, not much is known in the case of individual shifts, unless
one considers the logarithmically averaged1 version of the conjecture, which states that

1
log x

∑

n≤x

λ(a1n + b1) · · · λ(akn + bk)
n

= ox→∞(1),(2)

provided again that aib j − a jbi , 0 for 1 ≤ i < j ≤ k. These logarithmically averaged correlations
are certainly easier, since (1) implies (2) by partial summation. For the logarithmically averaged
variant (2) of Chowla’s conjecture, it was shown by the first author [21] that (2) is ox→∞(1) for
k = 2, and we recently showed in [23] that the same conclusion holds for all odd k. Both of these
works actually handle more general correlations of bounded multiplicative functions, with [21]
having the same assumptions as in Elliott’s conjecture, and [23] having a non-pretentious assump-
tion for the product of the multiplicative functions (see [23, Corollary 1.4] for a precise statement).
In addition, it was recently shown by Frantzikinakis and Host [7, Theorem 1.4] that if one replaces
the weight 1

n in (2) with e2πiαn

n for any irrational α, then the analogue of (2) holds for all k. When it
comes to conditional results, Frantzikinakis [6] showed that the logarithmically averaged Chowla
conjecture would follow from ergodicity of the measure preserving system associated with the
Liouville function.

The proof in [23] of the odd order cases of the logarithmically averaged Chowla conjecture relies
on deep results of Leibman [17] and Le [16] on ergodic theory, and is not much simpler than the
proof of the structural theorem for correlations of general bounded multiplicative functions in that
paper. Here we give a different proof of the odd order cases of Chowla’s conjecture, which avoids
all use of ergodic theory, although it now requires the Gowers uniformity of the von Mangoldt
function, established by Green, the first author and Ziegler [10], [11], [12]. The proof we give
here is also shorter than the earlier proof, given the mentioned Gowers uniformity result. More
precisely, we will prove the following.

Theorem 1.1 (Odd order cases of the logarithmic Chowla conjecture). Let k ≥ 1 be an odd natural
number, and let a1, . . . , ak, b1, . . . , bk be natural numbers. Then we have

1
log x

∑

n≤x

λ(a1n + b1) · · · λ(akn + bk)
n

= ox→∞(1).

Remark 1.2. As remarked previously, as we are dealing with an odd number of shifts of the
Liouville function, there is no need to impose any non-degeneracy assumptions on the coefficients
a1, . . . , ak, b1, . . . , bk.

1If 1 ≤ ω(x) ≤ x is any function tending to infinity, one could equally well consider (2) with a sum over x
ω(x) ≤ n ≤ x,

with the log x normalisation replaced by logω(x). In fact, this is what is done in [21], [23].
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Remark 1.3. Using the same proof as for Theorem 1.1, one could establish an analogous state-
ment for the Möbius function µ(·), namely that

1
log x

∑

n≤x

µ(a1n + b1)c1 · · · µ(akn + bk)ck

n
= ox→∞(1)(3)

whenever c j ≥ 1 are fixed integers with c1 + · · · + ck odd and a j, b j are as above (see also [23,
Corollary 1.6]).2

Remark 1.4. From the proof of Theorem 1.1, we see that for the three-point case k = 3 of Theorem
1.1, we only need U3-uniformity of the von Mangoldt function, which was established in [9] and
is simpler than the general Uk-uniformity result. In contrast, in [23] the k = 3 case was no easier
than the general case.

It was shown by the first author in [22] that the logarithmically averaged Chowla conjecture (2)
for all k is equivalent to two difficult conjectures, namely the logarithmically averaged Sarnak
conjecture [22, Conjecture 1.5] and the (logarithmic) local Gowers uniformity of the Liouville
function [22, Conjecture 1.6]. We manage to avoid these problems, since we will only be dealing
with odd values of k. Indeed, it is natural that the even order cases of Chowla’s conjecture are
harder than the odd order ones, since one can use the Kátai-Bourgain-Sarnak-Ziegler orthogonality
criterion [15], [1] to show that the even order cases imply the odd order ones (see [23, Remark
1.7]). Another indication that the even order cases are more challenging is Elliott’s result [3] that
for odd k the lim sup of the absolute value of (2) is strictly less than 1; in the even order cases this
has not been shown in general. We also remark that the proof of Theorem 1.1 does not require the
Matomäki-Radziwiłł theorem [18], in contrast to the k = 2 result in [21] which relied crucially on
this theorem.

1.1. Acknowledgments. TT was supported by a Simons Investigator grant, the James and Carol
Collins Chair, the Mathematical Analysis & Application Research Fund Endowment, and by NSF
grant DMS-1266164.
JT was supported by UTUGS Graduate School and project number 293876 of the Academy of
Finland.
We thank the anonymous referees for careful reading of the paper and valuable comments. Part
of this paper was written while the authors were in residence at MSRI in spring 2017, which
is supported by NSF grant DMS-1440140. We thank Kaisa Matomäki for helpful discussions
and encouragement and Maksym Radziwiłł for suggesting the use of semiprimes in the entropy
decrement argument.

2. Notation

We use standard notation for arithmetic functions throughout this paper. In particular, λ(n) is the
Liouville function, µ(n) is the Möbius function, Λ(n) is the von Mangoldt function, and ϕ(n) is the
Euler totient function. Various letters, such as m, n, d, a j, b j, are reserved for integer variables. We
use (n,m) to denote the greatest common divisor of n and m. The variable p in turn will always
be a prime; in particular, summations such as

∑
p∈A f (p) will always be understood to restricted to

primes. We will use the standard Landau asymptotic notations O(·), o(·), with oη→0(1) for instance
signifying a quantity that tends to 0 as η → 0; we also use the Vinogradov notation X � Y for

2The only small modification in the proof of (3) compared to that of Theorem 1.1 is in the approximate functional
equation (Theorem 3.1). The approximate functional equation holds in the same form for correlations of the Möbius
function, but in its proof the multiplicativity relation λ(pn) = −λ(n) is to be replaced with µ(pn)c = (−1)cµ(n)c +O(1p|n).
The contribution of O(1p|n) is negligible by the triangle inequality and the fact that p will be moderately large.
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X = O(Y).

For a proposition P(n) depending on n, we denote by 1P(n) the function that takes value 1 if P(n)
is true and 0 if it is false. We also use the expectation notations

En∈A f (n) :=
∑

n∈A f (n)∑
n∈A 1

and

E
log
n∈A f (n) :=

∑
n∈A

f (n)
n∑

n∈A
1
n

whenever A is a finite non-empty set and f : A → C is a function. If we replace the symbol n by
p, it is understood that all sums involved are over primes, thus for instance

E
log
p∈A f (p) :=

∑
p∈A

f (p)
p∑

p∈A
1
p

.

Strictly speaking, this average may be undefined if A contains no primes, but in practice we will
always be in a regime in which A contains plenty of primes.

3. The two key subtheorems

Let k be a natural number, and let a1, . . . , ak, b1, . . . , bk be natural numbers. All implied constants
in asymptotic notation (and in assertions such as “X is sufficiently large depending on Y” are
henceforth allowed to depend on these quantities. For any natural number a and any x ≥ 1, define
the quantity

(4) fx(a) := Elog
n≤xλ(a1n + ab1) · · · λ(akn + abk).

To prove Theorem 1.1, it will suffice to show that

(5) fx(1) � ε

whenever ε > 0, k is odd, and x is sufficiently large depending on ε (and, by the preceding
convention, on k, a1, . . . , ak, b1, . . . , bk).
To obtain (5), we will rely crucially on the following approximate functional equation for fx, which
informally asserts that fx(ap) ≈ (−1)k fx(a) for “most” a and p:

Theorem 3.1 (Approximate functional equation). Let k, a1, . . . , ak, b1, . . . , bk be natural numbers.
For any 0 < ε < 1, x > 1, and any natural number a, one has

(6) E2m<p≤2m+1 | fx(ap) − (−1)k fx(a)| � ε

for all natural numbers m ≤ log log x outside of an exceptional setM with

(7)
∑

m∈M

1
m
� aε−3,

where the quantity fx(a) is defined in (4).

Results similar to these appear in [7, Theorem 3.6], [23, Theorem 3.6]. As in these references, we
will prove Theorem 3.1 in Section 4 via the entropy decrement argument introduced in [21]; we
will use the modification of that argument in [23] to obtain the relatively strong bound (7).
From (6) we have

E
log
2m<p≤2m+1 | fx(ap) − (−1)k fx(a)| � ε
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(since 1/p is comparable to 1/2m in the range 2m < p ≤ 2m+1), and hence from the triangle
inequality we have

fx(a) = (−1)kE
log
2m<p≤2m+1 fx(ap) + O(ε)

for all m with 2m ≤ (log x)1/2 outside of the exceptional setM. The fact that the average on the
right-hand side is over primes will be inconvenient for our argument. To overcome this, we will
establish the following comparison.

Theorem 3.2 (Comparison). Let k, a1, . . . , ak, b1, . . . , bk be natural numbers. Let 0 < ε < 1, and
let

1 < w < H− < H+ < x

be parameters with w be sufficiently large depending on ε; H− sufficiently large depending on w, ε;
H+ sufficiently large depending on H−,w, ε; and x sufficiently large depending on H+,H−,w, ε.
Set W :=

∏
p≤w p. Then, for any natural number a ≤ H+ and any m with H− ≤ 2m ≤ H+, one has

E
log
2m<p≤2m+1 fx(ap) = E

log
2m<n≤2m+1:(n,W)=1

fx(an) + O(ε)

where the quantity fx(a) is defined in (4).

We will prove this assertion in Section 5. Our main tool will be the theory of the Gowers uniformity
norms, and in particular the Gowers uniformity of the W-tricked von Mangoldt function proven in
[10], [11], [12]. In contrast to Theorem 3.1, the bounds in Theorem 3.2 (particularly with regards
to what “sufficiently large” means) are qualitative rather than quantitative; this is primarily due to
the qualitative nature of the bounds currently available for the Gowers uniformity of the W-tricked
von Mangoldt function. A key technical point in the above theorem is that the parameter a is
permitted to be large compared to the parameter w (or W); this will be important in the argument
below.
In the remainder of this section we show how Theorem 3.1 and Theorem 3.2 yield (5) when k is
odd and x is sufficiently large depending on ε.
Fix 0 < ε < 1/2. We will need parameters

(8)
1
ε
< w < H1 < H2 < H3 < H4 < x

with w sufficiently large depending on ε, each Hi for i = 1, 2, 3, 4 sufficiently large depending on
w, ε and H1, . . . ,Hi−1, and x sufficiently large depending on H4,H3,H2,H1,w, ε.
From Theorem 3.1 and the hypothesis that k is odd, one has

fx(1) = −Elog
2m<p1≤2m+1 fx(p1) + O(ε)

for all m in the range H1 ≤ 2m ≤ H2, outside of an exceptional setM1 with
∑

m∈M1

1
m
� ε−3.

For m in this exceptional set, we of course have

fx(1) = −Elog
2m<p1≤2m+1 fx(p1) + O(1).

Averaging over all such m and using the prime number theorem, we conclude (given the hypothe-
ses on the parameters (8)) that

(9) fx(1) = −Elog
H1<p1≤H2

fx(p1) + O(ε).
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A similar application of Theorem 3.1 yields

(10) fx(1) = −Elog
H3<p≤H4

fx(p) + O(ε).

Also, applying Theorem 3.1 with a replaced by p1, we have

fx(p1) = −Elog
H3<p2≤H4

fx(p1 p2) + O(ε)

for all primes p1 with H1 < p1 ≤ H2; inserting this into (9), we obtain

(11) fx(1) = +E
log
H1<p1≤H2

E
log
H3<p2≤H4

fx(p1 p2) + O(ε).

Crucially, the sign in (11) is the opposite of the sign in (10). To conclude the proof of (5) from
(10), (11), it will suffice to show that the average (10) involving primes p and the average (11)
involving semiprimes p1 p2 are comparable in the sense that

(12) E
log
H3<p≤H4

fx(p) = E
log
H1<p1≤H2

E
log
H3<p2≤H4

fx(p1 p2) + O(ε).

To do this, we use Theorem 3.2 several times. Firstly, from this theorem we see that

E
log
2m<p≤2m+1 fx(p) = E

log
2m<n≤2m+1:(n,W)=1

fx(n) + O(ε)

whenever H3 ≤ 2m ≤ H4; averaging over m (and noting that the error terms that arise can be easily
absorbed into the O(ε) error) we conclude that

E
log
H3<p≤H4

fx(p) = E
log
H3<n≤H4:(n,W)=1 fx(n) + O(ε).

Similarly, we have

E
log
H3<p2≤H4

fx(p1 p2) = E
log
H3<n2≤H4:(n2,W)=1 fx(p1n2) + O(ε)

whenever H1 < p1 ≤ H2 (note that this is despite p1 being large compared with w or W). Thus it
will suffice to show that

(13) E
log
H3<n≤H4:(n,W)=1 fx(n) = E

log
H1<p1≤H2

E
log
H3<n2≤H4:(n2,W)=1 fx(p1n2) + O(ε).

By making the change of variables n = p1n2, and noting that n is coprime to W if and only if n2
is, we can write

E
log
H3<n2≤H4:(n2,W)=1 fx(p1n2) = E

log
p1H3<n≤p1H4:(n,W)=1 fx(n)p11p1 |n + O(ε),

and one can modify the range p1H3 < n ≤ p1H4 to H3 < n ≤ H4 incurring a further error of O(ε).
We may thus rearrange (13) as

E
log
H3<n≤H4:(n,W)=1 fx(n)(g(n) − 1) = O(ε)

where g is the weight
g(n) := Elog

H1<p1≤H2
p11p1 |n.

By the Cauchy-Schwarz inequality and the boundedness of fx, it thus suffices to establish the
bound

E
log
H3<n≤H4:(n,W)=1(g(n) − 1)2 � ε2

which will follow in turn from the bounds

(14) E
log
H3<n≤H4:(n,W)=1g(n) = 1 + O(ε2)

and

(15) E
log
H3<n≤H4:(n,W)=1g(n)2 = 1 + O(ε2).
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The left-hand side of (14) can be rewritten as

E
log
H1<p1≤H2

p1E
log
H3<n≤H4:(n,W)=11p1 |n

and the claim (14) follows since one can easily compute that

E
log
H3<n≤H4:(n,W)=11p1 |n =

1 + O(ε2)
p1

.

Similarly, the left-hand side of (15) can be rewritten as

E
log
H1<p1≤H2

E
log
H1<p′1≤H2

p1 p′1E
log
H3<n≤H4:(n,W)=11p1,p′1 |n

and the claim (15) follows since Elog
H3<n≤H4:(n,W)=11p1,p′1 |n is equal to 1+O(ε2)

p1 p′1
when p1 , p′1, and

can be bounded crudely by O(1/p1) when p1 = p′1. This concludes the proof of Theorem 1.1,
except for the proofs of Theorem 3.1 and Theorem 3.2 which will be accomplished in the next two
sections respectively.

4. Using the entropy decrement argument

We now prove Theorem 3.1. Let k, a1, . . . , ak, b1, . . . , bk, ε, a, x be as in that theorem. We may
assume that

(16) x ≥ exp exp exp(aε−3)

since otherwise the claim is trivial by setting M to consist of all m ≤ log log x. We may also
restrict attention to proving (6) for m satisfying

(17) exp(aε−3) ≤ m ≤ 1
100

log log x

since all the m between 1
100 log log x and log log x, or less than exp(aε−3), can be placed in the

exceptional setM without significantly affecting (7). Finally, we can assume that ε ≤ 1/2, since
for 1/2 < ε ≤ 1 the bound (6) holds from the triangle inequality.
For any prime p, one has the identity

λ(n) = −λ(pn)

for any natural number n, and hence

λ(a1n + ab1) · · · λ(akn + abk) = (−1)kλ(a1 pn + apb1) · · · λ(akn + apbk).

From (4) we thus have

fx(a) = (−1)kE
log
n≤xλ(a1 pn + apb1) · · · λ(ak pn + apbk).

If p ≤ log x, then (using (16)) we have
∑

x<n≤px
1
n � ε

∑
n≤x

1
n , and hence3 that

E
log
n≤pxg(n) = E

log
n≤xg(n) + O(ε)

whenever g : N→ C is bounded in magnitude by 1. Thus we have

fx(a) = (−1)kE
log
n≤pxλ(a1 pn + apb1) · · · λ(ak pn + apbk) + O(ε)

for all p ≤ log x. Making the change of variables n′ := pn, we conclude that

fx(a) = (−1)kE
log
n′≤xλ(a1n′ + apb1) · · · λ(akn′ + apbk)p1p|n′ + O(ε).

3Here it is essential that we are using logarithmic averaging; the argument breaks down completely at this point if
one uses ordinary averaging.
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Replacing n′ with n, and comparing with (4) with a replaced by ap, we conclude that

fx(a) − (−1)k fx(ap) = (−1)kE
log
n≤xλ(a1n + apb1) · · · λ(akn + apbk)(p1p|n − 1) + O(ε).

The contribution of those n with n ≤ xε is O(ε), so we have

fx(a) − (−1)k fx(ap) = (−1)kE
log
xε<n≤xλ(a1n + apb1) · · · λ(akn + apbk)(p1p|n − 1) + O(ε)

for all p ≤ log x. If we set cp ∈ {−1, 0,+1} to be the signum of Elog
n≤xλ(a1n + apb1) · · · λ(akn +

apbk)(p1p|n − 1), it will thus suffice to show that

(18) E2m<p≤2m+1cpE
log
xε<n≤xλ(a1n + apb1) · · · λ(akn + apbk)(p1p|n − 1) = O(ε)

for all m obeying (17), outside of an exceptional setM obeying (7).
Let m obey (17). If j is a natural number less than or equal to 2m (and hence of size O(log1/10 x)),
one easily computes the total variation bound

∑

xε<n≤xε+ j

1
n

+
∑

xε+ j<n≤x+ j

∣∣∣∣∣
1
n
− 1

n + j

∣∣∣∣∣ �
log1/10 x

xε

and thus

E
log
xε≤n≤xg(n) = E

log
xε≤n≤xg(n + j) + O

(
log1/10 x
xε log x

)

for any function g : N→ C bounded in magnitude by 1. By (16), the error term is certainly of size
O(ε). In particular, the left-hand side of (18) can be written as

E2m≤p≤2m+1cpE
log
xε<n≤xλ(a1n + a1 j + apb1) · · · λ(akn + ak j + apbk)(p1p|n+ j − 1) + O(ε)

for any 1 ≤ j ≤ 2m. Averaging in j and rearranging, we can thus write the left-hand side of (18)
in probabilistic language4 as

EZm + O(ε),
where E denotes expectation, Zm is the random variable

Zm := E2m<p≤2m+1E j≤2mcpλ(a1n + a1 j + apb1) · · · λ(akn + ak j + apbk)(p1p|n+ j − 1),

and n is a random natural number in the interval (xε, x] drawn using the logarithmic distribution

P(n = n) =
1/n

∑
xε<n′≤x

1
n′

for all xε < n ≤ x.
We now “factor” the random variable Zm into a function of two other random variables Xm,Ym,
defined as follows. Let B := maxi bi and

C :=
k∑

i=1

(2aB + 1)ai,

and let Xm ∈ {−1,+1}C2m
and Ym ∈∏

2m<p≤2m+1 Z/pZ be the random variables

Xm := (λ(ain + r))1≤i≤k;1≤r≤(2aB+1)ai2m

and
Ym := (n mod p)2m<p≤2m+1 .

4We will use boldface symbols such as n,Xm,Ym,Zm to denote random variables, with non-boldface symbols such
as Xm being used to denote deterministic variables instead.
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Then we may write Zm = Fm(Xm,Ym), where Fm : {−1,+1}C2m ×∏
2m<p≤2m+1 Z/pZ → R is the

function defined by

Fm((bi,r)1≤i≤k;1≤r≤(2aB+1)ai2m , (np)2m<p≤2m+1)
:= E2m<p≤2m+1E j≤2mcpb1,a1 j+apb1 · · · bk,ak j+apbk (p1p|np+ j − 1).

for all bi,r ∈ {−1,+1} and np ∈ Z/pZ. It will now suffice to show that

EFm(Xm,Ym) = O(ε)

for all m obeying (17), outside of an exceptional setM obeying (7).
At this point we recall some information-theoretic concepts:

Definition 4.1 (Entropy and conditional expectation). Let X,Y,Z be random variables taking
finitely many values. Then we have the entropy

H(X) :=
∑

x

P(X = x) log
1

P(X = x)

where the sum is over all x for which P(X = x) , 0. Similarly we have the conditional entropy

H(X|E) :=
∑

x

P(X = x|E) log
1

P(X = x|E)

for any event E of positive probability, and

H(X|Y) :=
∑

y

P(Y = y)H(X|Y = y).

Finally, we define the mutual information

I(X : Y) = H(X) −H(X|Y) = H(Y) −H(Y|X),

and similarly define the conditional mutual information

I(X : Y|Z) = H(X|Z) −H(X|Y,Z) = H(Y|Z) −H(Y|X,Z).

For each m obeying (17), let Y<m be the random variable Y<m := (Ym′)m′<m. We can control the
expectation EFm(Xm,Ym) by the conditional mutual information I(Xm : Ym|Y<m) as follows:

Proposition 4.2. Suppose m obeys (17) and is such that

(19) I(Xm : Ym|Y<m) ≤ ε3 2m

m
.

Then one has
EFm(Xm,Ym) � ε.

Proof. We argue as in [23], which are in turn a modification of the arguments in [21]. Let Um
be drawn uniformly at random from

∏
2m<p≤2m+1 Z/pZ. We first show that for any sign pattern

Xm ∈ {−1,+1}C2m
, one has

(20) P(|Fm(Xm,Um)| ≥ ε) � exp(−cε22m/m)

for an absolute constant c > 0. If we write Um = (np)2m<p≤2m+1 , then the np are jointly independent
in p and uniformly distributed on Z/pZ. If Xm = (bi,r)1≤i≤k;1≤r≤(2aB+1)ai2m , then one can write

Fm(Xm,Um) = E2m<p≤2m+1Wp

where Wp is the random variable

Wp := E j≤2mcpb1,a1 j+apb1 · · · bk,ak j+apbk (p1p|np+ j − 1).
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Observe that the Wp are jointly independent, bounded in magnitude by O(1), and have mean zero.
The claim (20) now follows from Hoeffding’s inequality [14].
Applying the Pinsker-type inequality from [23, Lemma 3.4] (see also [21, Lemma 3.3]), we con-
clude that

P(|Fm(Xm,Y)| ≥ ε) � m
ε22m (H(Um) −H(Y) + 1)

for any random variable Y taking values in
∏

2m<p≤2m+1(Z/pZ); in particular, applying this to the
probability measure P′(E) := P(E|Xm = Xm,Y<m = Y<m), we have

P(|Fm(Xm,Ym)| ≥ ε|Xm = Xm,Y<m = Y<m)

� m
ε22m (H(Um) −H(Ym|Xm = Xm,Y<m = Y<m) + 1).

Averaging over Xm,Y<m, we conclude that

P(|Fm(Xm,Ym)| ≥ ε) � m
ε22m (H(Um) −H(Ym|Xm,Y<m) + 1),

and hence (since Fm is bounded by O(1), and m is large compared to 1/ε)

E|Fm(Xm,Ym)| � m
ε22m (H(Um) −H(Ym|Xm,Y<m)) + ε.

We can write
H(Ym|Xm,Y<m) = H(Ym|Y<m) − I(Xm : Ym|Y<m)

and hence by (19) we have

(21) E|Fm(Xm,Ym)| � m
ε22m (H(Um) −H(Ym|Y<m)) + ε.

Uniformly for 1 ≤ b ≤ q ≤ xε, we have the simple estimate
∑

xε≤n≤x
n≡b (mod q)

1
n

=

(
1
q

+ O
( q

xε

)) ∑

xε≤n≤x

1
n
,

so from the Chinese remainder theorem (and the prime number theorem), we see that the ran-
dom variable Ym, after conditioning to any event of the form Y<m = Y<m, is almost uniformly
distributed in the sense that

(22) P(Ym = Ym|Y<m = Y<m) =
1∏

2m<p≤2m+1 p
+ O

(
exp(O(2m))

xε

)
.

We have for any distinct x, y ∈ (0, 1] the elementary inequality5

∣∣∣∣∣x log
1
x
− y log

1
y

∣∣∣∣∣ ≤ C|x − y| log
2
|x − y| ≤ 2C|x − y| 12

for some constant C > 0, so if X and X′ are any random variables having the same finite range X,
then we can compare their entropies by

(23) |H(X) −H(X′)| ≤ 2C ·max
x∈X
|P(X = x) − P(X′ = x)| 12 · |X|.

From this and (22) we compute that

H(Um) −H(Ym|Y<m) � exp(O(2m))
xε/2

.

5This inequality follows from the mean value theorem applied to x 7→ x log 1
x .
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Inserting this into (21) and using (16), (17) we conclude that

E|Fm(Xm,Ym)| � ε

as required. �

Theorem 3.1 now follows from the preceding proposition and the following estimate.

Proposition 4.3 (Entropy decrement argument). One has
∑

exp(aε−3)≤m≤ 1
100 log log x

1
2m I(Xm : Ym|Y<m) � a.

Proof. For any m obeying (17), consider the quantity

H(Xm+1|Y<m+1).

We can view Xm+1 as a pair (Xm,X′m), where

X′m := (λ(ain′ + r))1≤i≤k;1≤r≤(2aB+1)ai2m

and n′ := n + (2aB + 1)2m. By the Shannon entropy inequalities, we thus have

H(Xm+1|Y<m+1) ≤ H(Xm|Y<m+1) + H(X′m|Y<m+1).

If we write
Y′<m+1 := (n′ mod p)p≤2m+1

then Y<m+1 and Y′<m+1 define the same σ-algebra (each random variable is a deterministic function
of the other), and so we have

H(Xm+1|Y<m+1) ≤ H(Xm|Y<m+1) + H(X′m|Y′<m+1).

The total variation distance between n and n′ can be computed to be O(exp(O(2m))/xε). Since
Y<m+1 takes on O(exp(O(2m))) values, we see from (23) that

H(Y′<m+1) = H(Y<m+1) + O(exp(O(2m))/xε/2).

Similarly, since the random variables (Xm,Y<m+1) and (X′m,Y′<m+1) take on O(exp(O(2m))) values
and are deterministic functions of n and n′, respectively, by (23) we again have

H(X′m,Y
′
<m+1) = H(Xm,Y<m+1) + O(exp(O(2m))/xε/2),

and hence on subtracting

H(X′m|Y′<m+1) = H(Xm|Y<m+1) + O(exp(O(2m))/xε/2).

Thus we have
H(Xm+1|Y<m+1) ≤ 2H(Xm|Y<m+1) + O(exp(O(2m))/xε/2).

But we can write Y<m+1 as a pair (Y<m,Ym), to conclude that

H(Xm|Y<m+1) = H(Xm|Y<m) − I(Xm : Ym|Y<m).

Inserting this identity and rearranging, we conclude that
1

2m I(Xm : Ym|Y<m) ≤ 1
2m H(Xm|Y<m) − 1

2m+1 H(Xm+1|Y<m+1) + O(exp(O(2m))/xε/2)

and thus on summing the telescoping series
∑

m≤ 1
100 log log x

1
2m I(Xm : Ym|Y<m) � H(X1) + 1

(say). Since X1 takes at most exp(O(a)) values, we have H(X1) = O(a), and the claim follows. �
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5. Using the Gowers norms

We now prove Theorem 3.2. As stated previously, we will rely heavily on the theory of the Gowers
norms, which we now recall.

Definition 5.1 (Gowers norms). Given integers k ≥ 1 and N ≥ 1 and a function f : Z/NZ → C,
we define the Gowers norms Uk(Z/NZ) by

‖ f ‖Uk(Z/NZ) :=

En∈Z/NZEh1,...,hk∈Z/NZ
∏

ω∈{0,1}k
C|ω| f (n + ω · h)



2−k

,

where C is the complex conjugation operator, |ω| is the number of ones in ω ∈ {0, 1}k, h =

(h1, . . . , hk), and · denotes the inner product of two vectors. One easily sees that ‖ f ‖Uk(Z/NZ) is
a well-defined nonnegative quantity. We can then define the Gowers Uk[N]-norm of a function
f : {1, . . . ,N} → C defined on a finite interval by

‖ f ‖Uk[N] :=

∥∥∥ f · 1[1,N]
∥∥∥

Uk(ZN′ )∥∥∥1[1,N]
∥∥∥

Uk(ZN′ )

where N′ = 3N, say (one easily sees that the definition is independent of the choice of N′ > 2N)
and f · 1[1,N] is to be interpreted as a function of period N′, and hence as a function on Z′N .

For the basic properties of Gowers norms, see [20, Chapter 11]. The main general fact we will
need about these norms is the following.

Lemma 5.2 (A generalised von Neumann theorem). For k ∈ N, let θ, φ1, . . . , φk : Z → C be
functions with |φ j| ≤ 1. Also let a j, b j, r j ∈ Z for 1 ≤ j ≤ k, and W ∈ N with W ≤ N0.1. Then

∣∣∣∣Ed≤ N
W
En≤Nθ(d)φ1(a1n + Wb1d + r1) · · · φk(akn + Wbkd + rk)

∣∣∣∣ ≤ C‖θ‖Uk[ N
W ] + oN→∞(1)

for some constant C > 0 depending only on k and the numbers a1, . . . , ak, b1, . . . , bk, but indepen-
dent of W and r1, . . . , rk.

Without the W-aspect, this is standard; see for instance [4, Lemma 2]. However, the uniformity of
the bounds in W (and r1, . . . , rk) will be crucial in our arguments.

Proof. We shall adapt the proof of [22, Proposition 3.3]. By splitting the variable n into residue
classes (mod W) and setting N′ := N

W it suffices to show that
∣∣∣Ed≤N′En≤N′θ(d)φ1(W(a1n + b1d) + r′1) · · · φk(W(akn + bkd) + r′k)

∣∣∣
≤ C‖θ‖Uk[N′] + oN′→∞(1)

for all integers r′1, . . . , r
′
k. To simplify notation, we will call N′ just N. By considering the functions

φ̃ j(n) := φ j(Wn + r′j), we see that it suffices to prove for all functions |φ j| ≤ 1 that

|Ed≤NEn≤Nθ(d)φ1(a1n + b1d) · · · φk(akn + bkd)| ≤ C‖θ‖Uk[N] + oN→∞(1).(24)

Since the statement of (24) involves the values of the functions θ and φi only on (−HN,HN),
where H = maxi≤k(|ai| + |bi|) + 1, we may assume that the functions θ and φi are 2HN-periodic,
and hence they can be interpreted as functions on Z2HN . We are then reduced to showing that

∣∣∣∣∣∣∣
Ed∈Z2HNEn∈Z2HNθ(d)1[0,N](d)

k∏

i=1

φi(ain + dbi)1[0,N](n)

∣∣∣∣∣∣∣
≤ C′‖θ‖Uk[N] + oN→∞(1)
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for some constant C′, since one can then set C := (2H)2C′. By approximating 1[0,N](n) with
a Lipschitz function, and then further with a finite Fourier series as in [10, Appendix C], and
redefining the functions φ j, we may eliminate the factor 1[0,N](n). Then, making a change of
variables d = d1 + · · · + dk, n = n′ − d1b1 − · · · − dkbk, we are left with showing that

∣∣∣∣∣∣∣
Ed1,...,dk∈Z2HNθ

′(d1 + · · · + dk)
k∏

i=1

φi

ain′ +
k∑

`=1

d`(bi − b`)



∣∣∣∣∣∣∣
≤ C′′‖θ‖Uk[N] + oN→∞(1),(25)

for all n′ ∈ Z2HN , where θ′(d) := θ(d)1[0,N](d). By the Gowers-Cauchy-Schwarz inequality (see
e.g., [10, (B.7)]), we have

∣∣∣∣∣∣∣
Ed1,...,dk∈Z2HNθ

′(d1 + · · · + dk)
k∏

i=1

φ′i(Li(d1, . . . , dk))

∣∣∣∣∣∣∣
≤ ‖θ′‖Uk(Z2HN )

for any functions θ′ and φ′i bounded by 1 in modulus and any linear forms Li : Zk
2HN → Z2HN ,

with Li independent of the ith coordinate. Applying this to the left-hand side of (25), where each
term involving φi is independent of the variable di, we see that

∣∣∣∣∣∣∣
Ed1,...,dk∈Z2HNθ

′(d1 + · · · + dk)
k∏

i=1

φi

ain′ +
k∑

`=1

d`(bi − b`)



∣∣∣∣∣∣∣
≤ ‖θ′‖Uk(Z2HN ).

Then, by noting that

‖θ(n)1[0,N](n)‖Uk(Z2HN ) = ‖θ‖Uk[N] · ‖1[0,N]‖Uk(Z2HN ) ≤ ‖θ‖Uk[N],

the lemma follows.
�

Next, we need control on the Gowers norms for the primes.

Lemma 5.3 (Gowers uniformity of the primes). Let k ∈ N, and let w ∈ N be a large parameter.
Further, let W =

∏
p≤w p, and let b ∈ [1,W] be coprime to W. Then for any N large enough in

terms of w, the W-tricked von Mangoldt function

Λb,W(n) :=
ϕ(W)

W
Λ(Wn + b)(26)

enjoys the Gowers uniformity bound

‖Λb,W − 1‖Uk+1[N] = ow→∞(1).

Proof. This was proven in [10], subject to conjectures that were later verified in [11], [12]. �

We now prove Theorem 3.2. Let k, a1, . . . , ak, b1, . . . , bk, ε,w,H−,H+, x,W, a,m be as in that the-
orem. Because Λ(p) = log(2m) + O(1) when p is a prime with 2m < p ≤ 2m+1, and Λ is non-zero
for only O(22m/3) (say) other integers in the interval (2m, 2m+1], we have

E
log
2m<p≤2m+1 fx(ap) = E

log
2m<d≤2m+1 fx(ad)Λ(d) + O(ε),

since m is assumed to be sufficiently large depending on ε. The contribution to the right-hand side
of those d that share a common factor with W is negligible (as Λ(d) will then vanish unless n is a
power of a prime less than or equal to w), thus

E
log
2m<p≤2m+1 fx(ap) =

W
φ(W)

E
log
2m<d≤2m+1:(d,W)=1

fx(ad)Λ(d) + O(ε).
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It therefore suffices to show that

E
log
2m<d≤2m+1:(d,W)=1

fx(ad)(
W
φ(W)

Λ(d) − 1) � ε.

Partitioning into residue classes modulo W and using (26), it suffices to show that

E
log
2m/W<d≤2m+1/W

fx(a(Wd + b))(Λb,W(d) − 1) � ε

whenever 1 ≤ b ≤ W is coprime to W.
Fix b. By summation by parts, it will suffice to show that

Ed≤H fx(a(Wd + b))(Λb,W(d) − 1) � ε

whenever 2m/W ≤ H ≤ 2m+1/W. From (4), and replacing the average n ≤ x with the average
xε < n ≤ x, we have

fx(a(Wd + b)) = E
log
xε<n≤xλ(a1n + Wab1d + abb1) . . . λ(akn + Wabkd + abbk) + O(ε),

so it suffices to show that

(27) Ed≤HE
log
xε<n≤x(Λb,W(d) − 1)λ(a1n + Wab1d + abb1) . . . λ(akn + Wabkd + abbk) � ε.

The quantity x (or xε) is large compared with aHW. Thus we can shift n by any quantity 1 ≤
n′ ≤ aHW without affecting the above average by more than O(ε). Performing this shift and then
averaging in n′, the left-hand side of (27) may be written as

E
log
xε<n≤xEd≤HEn′≤aHW(Λb,W(d) − 1)[λ(a1n′ + Wab1d + a1n + abb1) . . .

λ(akn′ + Wabkd + a1n + abbk)] + O(ε).

Applying Lemma 5.2 with N replaced by aHW, W replaced by aW, n replaced by n′, and the r j
replaced by a jn + abb j for 1, . . . , k, we can bound this as

O(‖Λb,W − 1‖Uk[H]) + oH→∞(1) + O(ε),

but by Lemma 5.3 this is O(ε) as required.
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[15] I. Kátai, A remark on a theorem of H. Daboussi, Acta Math. Hungar. 47 (1986), 223–225.
[16] A. Le, Nilsequences and multiple correlations along subsequences, preprint. arXiv:1708.01361
[17] A. Leibman, Nilsequences, null-sequences, and multiple correlation sequences, Ergodic The-

ory and Dynamical Systems 35 (2015), no. 1, 176–191. Corrected version available at
people.math.osu.edu/leibman.1/preprints/msqx.pdf
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Abstract

We study logarithmically averaged binary correlations of bounded multiplicative functions g1 and g2.
A breakthrough on these correlations was made by Tao, who showed that the correlation average
is negligibly small whenever g1 or g2 does not pretend to be any twisted Dirichlet character, in
the sense of the pretentious distance for multiplicative functions. We consider a wider class of
real-valued multiplicative functions g j , namely those that are uniformly distributed in arithmetic
progressions to fixed moduli. Under this assumption, we obtain a discorrelation estimate, showing
that the correlation of g1 and g2 is asymptotic to the product of their mean values. We derive several
applications, first showing that the numbers of large prime factors of n and n + 1 are independent
of each other with respect to logarithmic density. Secondly, we prove a logarithmic version of the
conjecture of Erdős and Pomerance on two consecutive smooth numbers. Thirdly, we show that if
Q is cube-free and belongs to the Burgess regime Q 6 x4−ε , the logarithmic average around x of
the real character χ (mod Q) over the values of a reducible quadratic polynomial is small.

2010 Mathematics Subject Classification: 11N37 (primary); 11N60, 11L40 (secondary)

1. Introduction

Let D = {z ∈ C : |z| 6 1} be the unit disc of the complex plane, and let g1,

g2 : N→ D be multiplicative functions. We consider the logarithmically averaged
binary correlations

1
log x

∑
n6x

g1(n)g2(n + h)
n

, (1.1)

c© The Author 2018. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the
original work is properly cited.
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with h 6= 0 a fixed integer and x tending to infinity. If h < 0 in (1.1), we can
extend g1 and g2 arbitrarily to the negative integers, since this affects (1.1) only
by o(1).

In a recent breakthrough work, Tao [30] showed that the correlation (1.1) is o(1)
as x →∞, provided that at least one of the two functions g j does not pretend to
be a twisted Dirichlet character, in the sense that

lim inf
X→∞

inf
|t |6X

D(g j , χ(n)ni t
; X) = ∞, (1.2)

for all fixed Dirichlet characters χ , with the pretentious distance D(·) measured
by

D( f, g; X) :=
(∑

p6X

1− Re( f (p)g(p))
p

)1/2

. (1.3)

The main theorem in [30] that (1.1) is o(1) under the nonpretentiousness
assumption (1.2) is a logarithmically averaged version of the binary case of a
conjecture of Elliott. Elliott’s original conjecture [7, 8] (in the slightly corrected
form presented in [23]) states that for any integer k > 1, any multiplicative
functions g1, . . . , gk : N→ D and any distinct integer shifts h1, . . . , hk we have
the discorrelation estimate

1
x

∑
n6x

g1(n + h1) · · · gk(n + hk) = o(1) (1.4)

as x → ∞, provided that at least one of the g j satisfies the nonpretentiousness
assumption (1.2). (In the case where the functions g j are allowed to depend
on x , one needs a slightly stronger pretentiousness hypothesis; see [29].) The
k = 1 case of Elliott’s conjecture is known as Halász’s theorem [15]. Already
for k = 2, there is not much progress towards the nonlogarithmic version of
Elliott’s conjecture (see though [7]). However, if one averages (1.4) over the
shifts h1, . . . , hk ∈ [1, H ], with H = H(x) tending to infinity with any speed,
then Elliott’s conjecture holds on average by the work of Matomäki, Radziwiłł
and Tao [23]. This was generalized by Frantzikinakis [11] to averages along
independent polynomials. In the case of logarithmically averaged correlations,
there has been a lot of recent progress, initiated by [30]; see [12, 31, 33].

We study in this paper the same logarithmically averaged correlation (1.1) as
Tao studied in [30], but for a wider class of real-valued multiplicative functions
(in [30] one works also with complex-valued functions). The multiplicative
functions g j : N→ [−1, 1] that we consider are uniformly distributed in residue
classes to fixed moduli. Many of the most interesting bounded multiplicative
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functions have such a uniform distribution property; in particular, the Liouville
function λ and the indicator function of xa-smooth numbers up to x have that
property. Also the real primitive Dirichlet character χQ (mod Q) will be seen to
be uniformly distributed in arithmetic progressions on [x, 2x], provided that the
modulus Q grows neither too slowly nor too rapidly in terms of x . Indeed, many
of the applications of our main theorem concern consecutive smooth (or friable)
numbers or quadratic residues.

The uniformity assumption we require of multiplicative functions is as follows.

DEFINITION 1.1 (Uniformity assumption). Let x > 1, 1 6 Q 6 x and η > 0. For
a function g : N→ D, we write g ∈ U(x, Q, η) if we have the estimate∣∣∣∣1x ∑

x6n62x
n≡a (mod q)

g(n)−
1

qx

∑
x6n62x

g(n)
∣∣∣∣ 6 η

q
for all 1 6 a 6 q 6 Q.

REMARK 1.2. Note that in this definition we do not send x to infinity (but
naturally we want x to be large). The fact that Definition 1.1 is not an asymptotic
relation is important, since later we shall to apply it to g(n) = 1n6x,n is xa -smooth,
which is a function dependent on x .

REMARK 1.3. Let g : N→ [−1, 1] be a nonpretentious multiplicative function,
in the sense that for some small ε > 0 and some large x we have

inf
|t |6x

D(g, χ(n)ni t
; x) > ε−10

for all Dirichlet characters χ of modulus 6 ε−10. By expressing the condition
n ≡ a (mod q) in Definition 1.1 in terms of Dirichlet characters (after reducing
to a coprime residue class), and applying Halász’s theorem, one sees that
g ∈ U(x, ε−1, ε). Therefore, the collection of uniformly distributed real-valued
multiplicative functions g : N → [−1, 1] contains all nonpretentious real
functions.

We use the notation oε→0(1) to denote a quantity depending on ε and tending
to 0 as ε→ 0, uniformly with respect to all other parameters. With this notation,
our main theorem asserts the following.

THEOREM 1.4. Let a small real number ε > 0, a fixed integer h 6= 0, and a
function ω : R>1 → R with 1 6 ω(X) 6 log(3X) and ω(X)

X→∞
−−−→ ∞ be given.

Let x > x0(ε, h, ω). Then, for any multiplicative functions g1, g2 : N→ [−1, 1]
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such that g1 ∈ U(x, ε−1, ε), we have

1
logω(x)

∑
x/ω(x)6n6x

g1(n)g2(n + h)
n

=

(
1
x

∑
x6n62x

g1(n)
)(

1
x

∑
x6n62x

g2(n)
)

+ oε→0(1).

REMARK 1.5. Theorem 1.4 can be viewed as stating that the functions g1 and g2

do not correlate with the shifts of each other. Note that in the case where the mean
values of g1 and g2 on [x, 2x] are not o(1), Theorem 1.4 is not covered by the
logarithmically averaged Elliott conjecture from [30].

REMARK 1.6. In the case where g1 and g2 are complex-valued, one does not
always have the conclusion of Theorem 1.4. Namely, take g1(n) = ni t and
g2(n) = niu for some t, u 6= 0 with t + u 6= 0. One easily sees that g1 and g2

are uniformly distributed in arithmetic progressions, and by partial summation the
shifted product g1(n)g2(n+1)= ni(t+u)

+o(1) has logarithmic mean value o(1) on
[x/ω(x), x]. However, by the simple estimate (1/x)

∑
n6x ni t

= (x i t/(1+ i t))+
o(1), the product of the mean values of g1 and g2 on [x, 2x] is an oscillating
function.

REMARK 1.7. Although the statement of Theorem 1.4 does not hold for all
complex-valued multiplicative functions, one could show that it continues to hold
if g1, g2 : N → D take values in the roots of unity of fixed order. Indeed, the
only places in the proof of the main theorem where real-valuedness plays a role
are Lemmas 2.2, 2.5 and 3.4. The first two lemmas could be proved also for
functions g j taking values in the roots of unity of bounded order by applying
a standard generalization of [23, Lemma C.1] to such functions. For Lemma 3.4,
one would also apply this generalization of [23, Lemma C.1] together with an
extension of [22, Theorem 3] to multiplicative functions taking a bounded number
of complex values. For this last extension, one notes that the only place in the
proof of [22, Proposition 1] where real-valuedness is used is [22, Lemma 3], and
this lemma can also be made to work for functions taking values in the roots of
unity of fixed order. We leave the details to the interested reader.

REMARK 1.8. The bound ω(X) 6 log(3X) in Theorem 1.4 is not restrictive in
reality, since if one wants an asymptotic formula for the logarithmic correlation
over the interval [1, x], say, one can sum together the asymptotics for the
correlations over [y/ log(3y), y] for various y 6 x . It is nevertheless necessary
for technical reasons to have an upper bound on ω(X) in the main theorem, since
otherwise the asymptotic would not be valid for example for the correlations of
the indicator function of xa-smooth numbers.
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REMARK 1.9. One could prove the same correlation bound for the more general
logarithmic averages of g1(a1n+h1)g2(a2n+h2)with (a1, h1) = (a2, h2) = 1 and
a1, a2 > 1 and h1, h2 fixed integers. This is due to the fact that the main theorem
in [30] deals with such correlations. To avoid complicating the notations, however,
we deal with the case a1 = a2 = 1 here.

One might wonder at first why in the asymptotic formula in Theorem 1.4 one
side of the formula involves the values of the functions g j on [x/ω(x), x], whereas
the other side only involves the values on [x, 2x]. However, by a result we present
in Appendix A, essentially due to Granville and Soundararajan [13], the mean
value of a real-valued multiplicative function is almost the same over the intervals
[x/ω(x), x] and [x, 2x], explaining the phenomenon.

Owing to Remark 1.3, the main theorem contains as a special case the
logarithmically averaged binary Elliott conjecture from [30]. This is not
surprising, since we use the same proof method. Of course, our interest lies
in those cases where the functions g1 and g2 are pretentious (in the sense that
(1.2) fails) but still satisfy our uniformity assumption.

It was recently shown by Klurman [20] that one can obtain an asymptotic
formula for the k-point correlations

1
x

∑
n6x

f1(n + h1) · · · fk(n + hk)

for any integers h1, . . . hk , when f1, . . . , fk : N → D are pretentious
multiplicative functions, in the sense that D( f j , χ j(n)ni t j ; x) � 1 for some
characters χ j . This result does not imply Theorem 1.4, however, since our
theorem is in a nonasymptotic form, allowing the multiplicative functions g1 and
g2 to strongly depend on x . Indeed, allowing the multiplicative functions g j to
depend on x is crucial for applications to smooth numbers and to Burgess-type
bounds. The asymptotic formula in [20] is a sieve-theoretic product of local mean
values, but one cannot express the density of smooth numbers as such a product.

1.1. Applications of the main theorem. We have a number of corollaries to
Theorem 1.4. To state them, we recall the notion of logarithmic density of a set of
integers.

DEFINITION 1.10. The logarithmic density of a set A ⊂ N is

δ(A) = lim
x→∞

1
log x

∑
n6x
n∈A

1
n
,

whenever it exists.
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We prove using Theorem 1.4 the following theorem about the largest prime
factors of consecutive integers.

THEOREM 1.11 (Independence of the number of large prime factors of n and
n + 1). Let ω>y(n) := |{p > y : p | n}| be the number of prime factors of n
that are larger than y. Then, for any real numbers a, b ∈ (0, 1) and any integers
0 6 k < 1/a, 0 6 ` < 1/b, we have

δ({n ∈ N : ω>na (n) = k, ω>nb(n + 1) = `})
= δ({n ∈ N : ω>na (n) = k}) · δ({n ∈ N : ω>nb(n) = `}).

Moreover, under the same assumptions, the set {n ∈ N : ω>na (n) = k, ω>nb(n +
1) = `} has positive asymptotic lower density.

REMARK 1.12. From the proof of Theorem 1.11 in Section 4, we can easily
deduce a discorrelation estimate for the ‘truncated Liouville function’ λ>y(n),
which is a multiplicative function taking the value +1 at the primes p 6 y and
−1 at the primes p > y. This estimate takes the form

1
log x

∑
n6x

λ>xε(n)λ>xε(n + 1)
n

= oε→0(1), (1.5)

for ε ∈ (0, 1) and x > x0(ε). This result may be compared with that of Daboussi
and Sárkőzy [3] and Mangerel [21], which states that if we define λ<y(n) as the
completely multiplicative function taking the value −1 at the primes p < y and
+1 at the primes p > y (so that λ<y(p) has the opposite sign as λ>y(p)), then

1
x

∑
n6x

λ<xε(n)λ<xε(n + 1) = oε→0(1); (1.6)

moreover, they proved this in a quantitative form. The proof of (1.6) is based on
sieve theory and is very different from the proof of (1.5).

Our next applications concern smooth numbers, so we introduce the function
P+(n), whose value is the largest prime factor of the positive integer n > 2 (and
P+(1) = 1). We say that a number n is y-smooth if P+(n) 6 y. The simultaneous
distribution of the function P+(·) at consecutive integers is the subject of several
conjectures. There is for instance a conjecture of Erdős and Pomerance [10],
asserting that the largest prime factors of n and n + 1 are independent events.
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CONJECTURE 1.13 (Erdős–Pomerance). For any a, b ∈ (0, 1), the asymptotic
density of the set

{n ∈ N : P+(n) 6 na, P+(n + 1) 6 nb
} (1.7)

exists and equals ρ(1/a)ρ(1/b), where ρ(·) is the Dickmann function (see [18,
Section 1]).

What we are able to prove, taking k = ` = 0 in Theorem 1.11, is a logarithmic
version of the conjecture.

THEOREM 1.14. Conjecture 1.13 holds when asymptotic density is replaced with
logarithmic density; that is, for any a, b ∈ (0, 1) we have

δ({n ∈ N : P+(n) 6 na, P+(n + 1) 6 nb
}) = ρ

(
1
a

)
ρ

(
1
b

)
.

A closely related conjecture, formulated in the correspondence of Erdős and
Turán in the 1930s (see [28, pp. 100–101], [9], [26, Section 1]) is that the
distribution of (P+(n), P+(n + 1)) is symmetric.

CONJECTURE 1.15 (Erdős–Turán). The asymptotic density of the set

{n ∈ N : P+(n) < P+(n + 1)} (1.8)

exists and equals 1
2 .

There has been some progress towards this conjecture. Erdős and
Pomerance [10] showed that the lower asymptotic density of the set in (1.8)
is positive (in fact, at least 0.0099). The lower bound for the density was
improved to 0.05544 by de la Bretèche, Pomerance and Tenenbaum [5], to
0.1063 by Wang [35], and a further improvement to 0.1356 was given by Wang
in [36].

We can prove Conjecture 1.15 if asymptotic density is again replaced with
logarithmic density.

THEOREM 1.16. Conjecture 1.15 holds when asymptotic density is replaced with
logarithmic density; that is,

δ({n ∈ N : P+(n) < P+(n + 1)}) = 1
2 .
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In fact, Theorem 1.14 implies Theorem 1.16, via the following theorem,
which was also conjectured by Erdős [9] in the case of asymptotic density.
(Erdős conjectured the existence of the density of integers n for which P+(n +
1) > P+(n) · nα.)

THEOREM 1.17. Let α ∈ [0, 1] be a real number. Let u(x) := ρ((1/x)− 1)/x
for x ∈ (0, 1), where ρ is the Dickmann function. Then we have

δ({n ∈ N : P+(n + 1) > P+(n) · nα}) =
∫

Tα

u(x)u(y) dx dy, (1.9)

where Tα is the triangular domain {(x, y) ∈ [0, 1]2 : y > x + α}. In particular,
the logarithmic density above exists.

REMARK 1.18. The appearance of the function u(·) is to be expected in
Theorem 1.17, since u is the derivative of x 7→ ρ(1/x), with the latter function
expressing the probability that P+(n) 6 nx .

We prove Theorem 1.11, and consequently Theorem 1.14, in Section 4, where
we also see that Theorem 1.17 quickly follows from the latter theorem. With
Theorem 1.17 available, Theorem 1.16 follows by taking α = 0 and noting that
then the integral in (1.9) is symmetric in x and y, implying that its value is 1

2 . For
the details, see Section 4.

We can also prove another approximation to Conjecture 1.13. This was obtained
earlier by Hildebrand [17], using a combinatorial method, in the special case
(a, b) = (c, d) (Hildebrand’s proof also applies to so-called stable sets, with
power-smooth numbers being an example of such a set). The following theorem
also implies a result of Wang [36, Théorème 2] on the integers n 6 x with
P+y (n) < P+y (n+1) having a positive density, where P+y (n) = max{p 6 y : p | n}
and y > x ε.

THEOREM 1.19. Let a, b, c, d ∈ (0, 1) be real numbers with a < b and c < d.
Then the set

{n ∈ N : na 6 P+(n) 6 nb, nc 6 P+(n + 1) 6 nd
}

has positive asymptotic lower density.

Note that Theorem 1.19 is not implied by Theorem 1.14, as there are sets of
positive logarithmic density having zero asymptotic lower density. Nevertheless,
the proof we use for the latter theorem also works for the former, owing to the
presence of an arbitrarily slowly growing function ω(X) in Theorem 1.4.
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Since we can prove satisfactory results for the distribution of the largest prime
factor function P+(·) at two consecutive integers, it is natural to ask about the
distribution of P+(·) also at longer strings of consecutive integers. A conjecture
of De Koninck and Doyon [4] states the following.

CONJECTURE 1.20 (De Koninck and Doyon). Let k > 2 be an integer and
(a1, . . . ak) any permutation of the set {1, 2, . . . , k}. Then the set

{n ∈ N : P+(n + a1) < · · · < P+(n + ak)} (1.10)

has an asymptotic density, and it equals 1/k!.

The case k = 2 of this is the earlier mentioned Conjecture 1.15 of Erdős and
Turán. Little is known about this conjecture for k > 3; it is not even known that
the sets in (1.10) have positive asymptotic lower density. Recently, Wang [36]
proved a result about orderings of P+(·) at consecutive integers, showing that

P+(n + i) < min
j6J
j 6=i

P+(n + j) and P+(n + i) > max
j6J
j 6=i

P+(n + j) (1.11)

hold with positive asymptotic lower density for any J > 3 and 1 6 i 6 J .
The method of [36] is based on the linear sieve and Bombieri–Vinogradov
type estimates for smooth numbers. Applying Theorem 1.4 together with the
Matomäki–Radziwiłł theorem [22] on multiplicative functions in short intervals
(and using the method of [24]), we can give a different proof of the J = 3 case of
Wang’s result. We leave the details of this special case of (1.11) to the interested
reader.

As our last application, we study character sums along the values of a reducible
quadratic polynomial n(n + h). A famous result of Burgess [1] states that for any
nonprincipal Dirichlet character χ modulo Q we have∑

y6n6y+x

χ(n)�r,ε x1−1/r Q(r+1)/4r2
+ε,

whenever r ∈ N and Q is cube-free (that is, p3 - Q for all primes p). In particular,
we have the important special case∑

n6x

χQ(n) = o(x), 3 6 Q 6 x4−ε (1.12)

for cube-free values of Q, where χQ is a real primitive Dirichlet character
modulo Q. Using Theorem 1.4, we can prove that a variant of the estimate (1.12)
continues to hold for character sums over the values of a reducible quadratic
polynomial.
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THEOREM 1.21 (Character sums over n(n+h) in the Burgess regime). Let ε > 0
be small, h 6= 0 a fixed integer, and 1 6 ω(X) 6 log(3X) any function tending to
infinity. For x > x0(ε, h, ω), let Q = Q(x) 6 x4−ε be a cube-free natural number
with Q(x)

x→∞
−−−→ ∞. Then, the real primitive Dirichlet character χQ modulo Q

satisfies the estimate

1
logω(x)

∑
x/ω(x)6n6x

χQ(n(n + h))
n

= o(1).

Moreover, if Q is as before and QNR stands for quadratic nonresidue (that is, an
integer n with χQ(n) = −1), we have

1
log x

∑
n6x

n,n+1 QNR (mod Q)

1
n
=

1
4

∏
p|Q

(
1−

2
p

)
+ o(1) (1.13)

and

1
x
|{n 6 x : n and n + 1 QNR (mod Q)}| �

∏
p|Q

(
1−

2
p

)
. (1.14)

REMARK 1.22. In light of Remark 1.7, we could also prove Theorem 1.21 for
primitive characters χ modulo Q whose order is bounded (that is, characters χ
such that χ k is principal for some k � 1).

This theorem is related to [27, Problem 11], although there one asks for
cancellation in the ordinary average instead of the logarithmic one, and one
wants to take a maximum over h 6 Q (but there Q is restricted to primes and
Q 6 x2+δ for some small δ > 0). We also remark that in the much smaller
range Q = o(x2/(log x)) and with Q prime, one can use the Weil bound [19,
Theorem 11.23] to prove the above estimate. In the same range Q 6 x4−ε as in
Theorem 1.21, it was shown by Burgess [2] that

x −
∑

y6n6y+x

χQ(n(n + h))�ε,h x ε/2,

and the same estimate holds with n(n + h) replaced by any polynomial that
factorizes into linear factors and is not the square of another polynomial.

We note that Theorem 1.21 does not directly follow from the logarithmically
averaged binary Elliott conjecture proved in [30], since if the Vinogradov
quadratic nonresidue conjecture failed, it would be the case that

D(χQ, 1; x)� 1. (1.15)
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The Vinogradov conjecture states that for any q > q(ε), there is a quadratic
nonresidue (mod q) on the interval [1, qε]. We of course do not expect (1.15)
to hold, but it cannot be ruled out with current knowledge. Furthermore, the
correlation asymptotic in [20] does not apply either to Theorem 1.21, since the
function χQ depends heavily on the length x of the sum. Nevertheless, the function
χQ has mean value o(1) by the Burgess bound, and by a slight generalization
of that, it also has mean o(1) in fixed arithmetic progressions, which is what is
required to apply Theorem 1.4. For the details of the proof of Theorem 1.21, see
Section 4.

1.2. Structure of the paper. The main theorem, Theorem 1.4, will be proved
in Sections 2 and 3. In the former of these sections, the entropy decrement
argument from [30, 33] is deployed to replace the correlation average with a
simpler, bilinear average. The proof of one lemma in Section 2, concerning
stability of mean values of multiplicative functions, is postponed to Appendix A.
In Section 3, we use circle method estimates and a short exponential sum estimate
for multiplicative functions to show that the bilinear average we mentioned
has the anticipated asymptotic formula, concluding the proof. The proof of this
exponential sum estimate, which is a slight modification of the one by Matomäki,
Radziwiłł and Tao [23], is left to Appendix B. In Section 4, we apply Theorem 1.4
to deduce the applications mentioned in the Introduction. Theorem 1.11 will
be proved first, and then Theorems 1.14 and 1.19 will be deduced from this.
Theorems 1.17 and 1.16 will in turn follow from Theorem 1.14. Theorem 1.21
will be deduced from the main theorem and the Burgess bound.

1.3. Notation. The functions g1, g2 : N → [−1, 1] are always multiplicative
functions. The pretentious distance D( f, g; x) between two multiplicative
functions is given by (1.3). We denote by µ(n) the Möbius function, by ϕ(n)
the Euler totient function, and by P+(n) the largest prime factor of n, with the
convention that P+(1) = 1. By (a, b), we denote the greatest common divisor of
a and b. For a proposition P(n), the indicator 1P(n) is defined as 1 if P(n) is true
and as 0 if P(n) is false. By δ(S) we denote the logarithmic density of S ⊂ N,
not to be confused with δ1, δ2 ∈ [−1, 1], which are the mean values of g1 and g2,
as defined in formula (2.1).

The variables p, p1, p2, . . . will always be primes. We reserve various letters,
such as d, k, `,m, n, q for positive integer quantities. The variables x, y in turn
will be understood to be large, whereas ε > 0 will tend to zero. The integer h 6= 0
is always fixed, and the function ω : R>1 → R is a growth function satisfying
1 6 ω(X) 6 log(3X) and tending to infinity with X .

We use the standard Landau and Vinogradov asymptotic notations O(·),
o(·),�,�, with the convention that the implied constants are absolute unless
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otherwise indicated. Thus for instance oε→0(1) denotes a quantity depending on ε
and tending to 0 as ε→ 0, uniformly with respect to all other involved parameters.
All the logarithms in the paper will be to base e, and the function log j x is the j th
iterate of the logarithm function. The function exp j x is analogously the j th iterate
of x 7→ ex .

2. The entropy decrement argument and some reductions

Given a function ω(X) having the same properties as in Theorem 1.4, we define
for a ∈ Z the correlation sequence

fx,ω(a) :=
1

logω(x)

∑
x/ω(x)6n6x

g1(n)g2(n + a)
n

.

As was noted in the Introduction, one can define this equally well for a < 0. Our
task is then to show that if

δ1 :=
1
x

∑
x6n62x

g1(n), δ2 :=
1
x

∑
x6n62x

g2(n) (2.1)

are the mean values of g1 and g2 (which depend on x), then | fx,ω(h) − δ1δ2| =

oε→0(1) under the assumptions of Theorem 1.4. By replacing ε with 1/ exp2(ε
−2)

in Theorem 1.4, with exp2 the second iterated exponential, we may in fact assume
that

g1 ∈ U(x, exp2(ε
−2), 1/ exp2(ε

−2)); (2.2)

we do this for notational convenience. We may also assume that |h| 6 ε−1, since
h is fixed in Theorem 1.4 and ε is small.

We average fx,ω(h) over the primes belonging to a small scale using
multiplicativity, and then apply the entropy decrement argument to relate
fx,ω(h) to a bilinear analogue (log P/P)

∑
p∼P (g1(p)−1g2(p)−1/p) fx,ω(ph) of

the same sum (this is the same approach as in Tao’s paper [30], and in the later
works [31, 33]). Similarly to [30], we then apply the circle method and establish
a slight variant of the short exponential sum estimate for multiplicative functions,
due to Matomäki, Radziwiłł and Tao [23], to finish the proof. Since Theorem 1.4
involves both pretentious and nonpretentious functions g j , we need to make a
distinction between them in certain parts of the argument. We also separate the
case where |g1(p)g2(p)| is small for many primes p from the opposite case, since
expressions such as g1(p)−1g2(p)−1 naturally appear in the proof. To deal with
these distinctions for g j , we need the fact that the entropy argument works not
only in infinitely many dyadic scales [2m, 2m+1

], but in fact in almost all of them
with respect to some measure. Such a strengthening was presented in [33]. We
begin with this entropy decrement argument.
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LEMMA 2.1 (Entropy decrement argument). Let ε > 0 be small, |h| 6 ε−1 an
integer, x > x0(ε, h, ω), and ω : R>1 → R a function with 1 6 ω(X) 6 X and

ω(X)
X→∞
−−−→ ∞. Let g1, g2 : N → D be 1-bounded multiplicative functions and

cp ∈ D any complex numbers. Then for all m ∈M ∩ [1, log2 ω(x)] we have

m log 2
2m

∑
2m6p<2m+1

cpg1(p)g2(p) · fx,ω(h) =
m log 2

2m

∑
2m6p<2m+1

cp fx,ω(ph)

+ oε→0(1),

with the set M ⊂ N being independent of cp and being large in the sense that∑
m>1

m 6∈M

1
m
� ε−10. (2.3)

Proof. This follows from the proof of [33, Theorem 3.6], but since that argument
uses generalized limit functionals, we outline how it goes through without
them. We also remark that, without the density bound (2.3), Lemma 2.1 follows
from [30, Section 3], and that in [32, Theorem 3.1] the lemma was proved in the
special case of the Liouville function.

We may assume that m > ε−1 for all m ∈ M, since removing the numbers
m < ε−1 from M alters the sum in (2.3) by

∑
m<ε−1 1/m � ε−1. We have the

multiplicativity property g j(p)g j(n) = g j(pn)+ O(1p|n) for any prime p, so for
2m 6 p < 2m+1 with ε−1 6 m 6 log2 ω(x) we have

g1(p)g2(p) · fx,ω(h) =
1

logω(x)

∑
x/ω(x)6n6x

g1(pn)g2(pn + ph)
n

+ O
(

1
logω(x)

∑
x/ω(x)6n6x

p|n(n+h)

1
n

)

=
1

logω(x)

∑
x/ω(x)6n6x

g1(pn)g2(pn + ph)
n

+ O(ε)

=
1

logω(x)

∑
px/ω(x)6n6px

g1(n)g2(n + ph)
n

p1p|n + O(ε)

=
1

logω(x)

∑
x/ω(x)6n6x

g1(n)g2(n + ph)
n

p1p|n + O(ε),

where the last step comes from estimating the terms n ∈ [x/ω(x), px/ω(x)] and
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n ∈ [x, px] trivially. (This is the part of the argument where it is crucial to work
with logarithmic averaging.)

Define the modified functions g(ε)j (n) by rounding g j(n) to the nearest element
of the Gaussian lattice εZ[i]. Then, averaging over p the above formula for
g1(p)g2(p) · fx,ω(h), we get

m log 2
2m

∑
2m6p<2m+1

cpg1(p)g2(p) · fx,ω(h)

=
m log 2

2m logω(x)

∑
2m6p<2m+1

cp

∑
x/ω(x)6n6x

g(ε)1 (n)g
(ε)

2 (n + ph)
n

p1p|n + O(ε).

(2.4)

The concentration of measure argument in [33] tells that we may replace p1p|n

with 1+ O(ε) in (2.4), provided that the random variables

Xm : = (g(ε)r (n+ j))16r62, 06 j6(1+|h|)2m+2,

Ym : = (n (mod p))2m6p<2m+1, Y<m := (Ym′)m′<m

enjoy the conditional mutual information bound

I(Xm : Ym |Y<m) 6 ε4
·

2m

m
. (2.5)

(For the definition of conditional mutual information, see [33, Section 2].) We
thus need to show that the set M of m for which (2.5) holds satisfies (2.3). But
this was shown in [33, Proposition 3.5] (see also Remark 3.7 there), so we obtain
the claim.

Before utilizing Lemma 2.1, we show that the quantities δ1 and δ2 in (2.1) are
the mean values of g1 and g2 also on many other intervals than [x, 2x]. For this
we use a slight generalization of a lemma due to Elliott [6] and Granville and
Soundararajan [13, Proposition 4.1]. Such results are also proved in Matthiesen’s
work [25] in a more general setting.

LEMMA 2.2 (Stability of mean values of multiplicative functions). Let g : N→
[−1, 1] be a real-valued multiplicative function, x > 10, and y ∈ [1, log10 x]
arbitrary. Then, for a, q ∈ N, we have∣∣∣∣1x ∑

x6n62x
n≡a (mod q)

g(n)−
1

x/y

∑
x/y6n62x/y
n≡a (mod q)

g(n)
∣∣∣∣�q (log x)−1/400.
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Proof. We prove this in Appendix A.

Owing to the above lemma, we can show that the uniformity assumption on g1

implies the seemingly stronger assumption that g1 be uniformly distributed also
on intervals [x/ω(x), x]. For this purpose, we need the following definition.

DEFINITION 2.3 (Stronger uniformity assumption). Let 1 6 Q 6 x , η > 0, and
δ ∈ C. Let ω : R>1 → R be a function with 1 6 ω(X) 6 X for all X > 1. For a
function g : N→ C, we write g ∈ Uω(x, Q, η, δ) if we have the estimate∣∣∣∣1y ∑

y6n62y
n≡a (mod q)

g(n)−
δ

q

∣∣∣∣ 6 η

q
for all 1 6 a 6 q 6 Q and

x
ω(x)

6 y 6 x .

With the above notation, if δ1 and δ2 are as in (2.1), by Lemma 2.2 we have

g1 ∈ Uω(x, exp2(ε
−2), 2/ exp2(ε

−2), δ1),

g2 ∈ Uω(x, 1, 2/ exp2(ε
−2), δ2) for ω(X) 6 log10 X.

(2.6)

This property will be used several times in the rest of the proof of the main
theorem. In particular, we have for all y ∈ [x(log x)−10, x] the estimate∑

y6n62y

g j(n) = (δ j + O(ε))y,

where, as always, the O(·) constant is absolute. Summing this over the dyadic
intervals [y/2 j+1, y/2 j

] for j > 0 and assuming that y > x(log(3x))−1, say, we
get ∑

n6y

g j(n) = (δ j + O(ε))y.

Subtracting this formula for two different lengths of summation, we see that∑
y6n6z

g j(n) = δ j(z − y)+ O(εz)

for all x(log(3x))−1 6 y 6 z 6 2x . From this and partial summation, we obtain

1
logω(x)

∑
x/ω(x)6n6x

g j(n)
n
= δ j + O(ε) (2.7)

for 1 6 ω(X) 6 log(3X), which also will be utilized in what follows.
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We return to applying the entropy argument. Defining the normalized
correlation sequence

f̃x,ω(a) :=
1

logω(x)

∑
x/ω(x)6n6x

(g1(n)− δ1)(g2(n + a)− δ2)

n

and using the simple identity XY = δ1δ2+δ1(Y−δ2)+δ2(X−δ1)+(X−δ1)(Y−δ2),
we deduce from Lemma 2.1 that

m log 2
2m

∑
2m6p<2m+1

cpg1(p)g2(p) · fx,ω(h)

= δ1δ2
m log 2

2m

∑
2m6p<2m+1

cp +
m log 2

2m

∑
2m6p<2m+1

cp f̃x,ω(ph)

+ O
(

max
r∈{1,2}

1
logω(x)

∣∣∣∣ ∑
x/ω(x)6n6x

gr (n)− δr

n

∣∣∣∣)+ oε→0(1),

m ∈M ∩ [1, log2 ω(x)]. (2.8)

Formula (2.7) tells that the O(·) error term in (2.8) is oε→0(1). Then (2.8) takes
the form

m log 2
2m

∑
2m6p<2m+1

cpg1(p)g2(p) · fx,ω(h)

= δ1δ2
m log 2

2m

∑
2m6p<2m+1

cp +
m log 2

2m

∑
2m6p<2m+1

cp f̃x,ω(ph)+ oε→0(1)

(2.9)

for m ∈M ∩ [1, log2 ω(x)].
It is natural to predict that the average of the normalized correlation f̃x,ω(h) in

(2.9) is small, and this is indeed what we prove in Section 3. Before we deal with
that term, we consider the main term arising in (2.9). One would like to choose
cp = g1(p)−1g2(p)−1 there, since then the main term becomes just δ1δ2+oε→0(1).
However, it may be that |g j(p)| takes very small values (or even 0), in which case
cp would be unbounded. To avoid this, we prove two lemmas, the first of which
tells that if the correlation average in Theorem 1.4 is not negligibly small, then
|g1(p)g2(p)| > 1

2 for most primes p. The second lemma in turn tells that if |δ1|

and |δ2| are not negligibly small, then g1(p)g2(p) behaves like 1 in most scales.
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LEMMA 2.4 (Dealing with small values of g j(p)). Let the notations be as in
Theorem 1.4. Suppose that∣∣∣∣ 1

logω(x)

∑
x/ω(x)6n6x

g1(n)g2(n + h)
n

∣∣∣∣ > ε2. (2.10)

Let exp2(ε
−1) 6 y 6 log log x be arbitrary. Then there exists a set N ⊂ [1, y]

such that for all m ∈ N we have∑
2m6p<2m+1

|g1(p)g2(p)|>1/2

1 > (1− ε) ·
2m

m log 2
,

with N being large in the sense that

1
log y

∑
n6y
n∈N

1
n
> 1− ε.

Proof. Suppose for the sake of contradiction that such a set N does not exist.
Then by the prime number theorem we have∑

2m6p<2m+1

|g1(p)g2(p)|61/2

1 > ε

2
·

2m

m log 2
(2.11)

for all m ∈ N1 ⊂ [1, y] with N1 being a set with the property∑
m∈N1

1
m

> ε

2
log y. (2.12)

In particular, from (2.11) we have∑
2m6p<2m+1

|g1(p)g2(p)|61/2

1
p
> ε

8m

for m ∈ N1. Summing over m ∈ N1 and using (2.12), we conclude that∑
p62y+1

|g1(p)g2(p)|61/2

1
p
> ε2

16
log y.
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Hence, for at least one of j = 1 and j = 2 we have∑
p62y+1

|g j (p)|61/
√

2

1
p
> ε2

32
log y. (2.13)

Fix such j ∈ {1, 2}. Let

P :=
{
ε−10 6 p 6 2y+1

: |g j(p)| 6
1
√

2

}
,

and let µ2
P(n) be the indicator function of integers n that are not divisible by p2

for any p ∈ P . Note that if µ2
P(n) = 1, then

|g j(n)| 6
(

1
√

2

)ωP (n)

,

where ωP(n) is the number of prime factors of n from P . In particular, we have
|g j(n)| 6 ε10 whenever ωP(n) > ε−1 (and still µ2

P(n) = 1). In conclusion, if we
show that

1
logω(x)

∑
x/ω(x)6n6x
µ2
P (n)=0

or ωP (n)<ε−1

1
n
6 ε3, (2.14)

then (2.10) is violated, giving the desired contradiction. We are now left with
showing (2.14), and for this we use some basic sieve theory. Note that

1
logω(x)

∑
x/ω(x)6n6x
µ2
P (n)=0

1
n
6
∑
p∈P

1
logω(x)

∑
x/p2ω(x)6m6x/p2

1
p2m
�

∑
p∈P

1
p2
� ε10.

Note also that if ωP(n) = M and µ2
P(n) = 1, then we may write n = p1 · · · pM m

with pi ∈ P and ωP(m) = 0. Hence, by the sieve of Eratosthenes and Mertens’
theorem,∑

x/ω(x)6n6x
ωP (n)<ε−1

µ2
P (n)=1

1
n
6 ε−1 max

M<ε−1

∑
p1,...,pM62y+1

∑
x/(ω(x)p1···pM )6m6x/(p1···pM )

ωP (m)=0

1
p1 · · · pM m

� ε−1 max
M<ε−1

∑
p1,...,pM62y+1

1
p1 · · · pM

∏
p∈P

(
1−

1
p

)
· logω(x)
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� ε−1 max
M<ε−1

∑
p1,...,pM62y+1

1
p1 · · · pM

exp
(
−

∑
p∈P

1
p

)
· logω(x)

� ε−1(log y)ε
−1

y−ε
2/32 logω(x)� ε10 logω(x)

by (2.13) and the fact that y > exp2(ε
−1). Combining the above estimates, we

obtain (2.14), and hence also the statement of the lemma.

LEMMA 2.5 (Dealing with pretentious functions). Let the notations be as in
Theorem 1.4. Suppose that |δ1| > ε

2 and |δ2| > ε
2, where δ1 and δ2 are as in (2.1).

Let exp2(ε
−1) 6 y 6 log log x be arbitrary. Then there exists a set N ′ ⊂ [1, y]

such that for all m ∈ N ′ we have

m log 2
2m

∣∣∣∣ ∑
2m6p<2m+1

(1− g1(p)g2(p))
∣∣∣∣ < ε,

with N ′ large in the sense that

1
log y

∑
n6y

n∈N ′

1
n
> 1− ε.

Proof. Note that 1 − g1(p)g2(p) > 0 always holds. Arguing just as in the proof
of Lemma 2.4, we see that if the statement failed, we would have∑

p62y+1

1− g1(p)g2(p)
p

> ε2

8
log y.

In particular, by the inequality (1− a)+ (1− b) > 1− ab for a, b ∈ [−1, 1], for
at least one of j = 1 and j = 2 we would have∑

p62y+1

1− g j(p)
p

> ε2

16
log y. (2.15)

Now, by (2.15) and a version of Halász’s theorem for real-valued multiplicative
functions [16], we have

|δ j | =

∣∣∣∣1x ∑
n6x

g j(n)
∣∣∣∣� exp

(
−

1
10

∑
p62y+1

1− g j(p)
p

)

� exp
(
−
ε2

200
log y

)
� ε10

for y > exp2(ε
−1), and this contradicts |δ j | > ε2, proving the lemma.
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Now we return to (2.9) and consider two cases separately. Suppose first that
|δ1|, |δ2| > ε2. Let y = exp2(ε

−1)2. Then, if N ′ ⊂ [1, y] is the set in Lemma 2.5
and M is the set in Lemma 2.1 (which is independent of cp), taking cp = 1 we
deduce from (2.9) and Lemma 2.5 that

fx,ω(h) =
m log 2

2m

∑
2m6p<2m+1

g1(p)g2(p) fx,ω(h)+ oε→0(1)

= δ1δ2 +
m log 2

2m

∑
2m6p<2m+1

f̃x,ω(ph)+ oε→0(1) (2.16)

for m ∈M ∩N ′. We can pick some m ∈M ∩N ′ with m ∈ [
√

y, y], since we
have the lower bound∑

m∈M∩N ′
m∈[
√

y,y]

1
m

> log y −
1
2

log y − ε−100
− ε log y > 1

3
log y

for y = exp2(ε
−1)2.

Consider then the case where either |δ1| 6 ε2 or |δ2| 6 ε2. We may suppose that
(2.10) holds, since otherwise Theorem 1.4 holds by the fact that δ1δ2+oε→0(1) =
oε→0(1) in this situation. Let y = exp2(ε

−1)2. Taking m ∈M∩N (with N ⊂ [1,
y] as in Lemma 2.4) and cp = g1(p)−1g2(p)−11|g1(p)g2(p)|>1/2 in (2.9), we see from
Lemma 2.4 that

fx,ω(h)+ oε→0(1) =
m log 2

2m

×

(
δ1δ2

∑
2m6p<2m+1

|g1(p)g2(p)|>1/2

(g1(p)g2(p))−1
+

∑
2m6p<2m+1

|g1(p)g2(p)|>1/2

(g1(p)g2(p))−1 f̃x,ω(ph)
)
.

for m ∈ M ∩ N , which again contains an element m ∈ [
√

y, y] by the same
argument as above. We know that |(g1(p)g2(p))−1

| 6 2 for all 2m 6 p < 2m+1,
except for at most 10ε(2m/m) exceptions. Since by assumption δ1δ2 = O(ε), we
deduce that

fx,ω(h) = δ1δ2 +
m log 2

2m

∑
2m6p<2m+1

2ap f̃x,ω(ph)+ oε→0(1)

for m ∈ M ∩ N , where ap :=
1
2 (g1(p)g2(p))−11|g1(p)g2(p))|>1/2. In conclusion,

regardless of the values of δ j , Theorem 1.4 will follow once we prove that



Binary correlations of multiplicative functions 21

m
2m logω(x)

∑
2m6p<2m+1

ap

∑
x/ω(x)6n6x

(g1(n)− δ1)(g2(n + ph)− δ2)

n
= oε→0(1)

(2.17)

for arbitrary ap ∈ D and m ∈ [exp2(ε
−1), exp2(ε

−1)2].

3. Circle method estimates

We proceed to prove (2.17) by applying the circle method and (slightly
modified versions of) the short exponential sum estimates for multiplicative
functions due to Matomäki, Radziwiłł and Tao [23]. We start with two lemmas,
the first of which reduces (2.17) to bounding a short exponential sum and the
second of which shows that the set of large frequencies of the exponential sum
has small cardinality.

LEMMA 3.1 (A circle method estimate). Let η > ε > 0 be small, h an integer with
1 6 |h| 6 ε−1, and exp2(ε

−1) 6 H 6 log y. For any complex numbers ap ∈ D,
introduce the exponential sum

SH (θ) :=
∑

P6p<2P

ape(pθ),

where P := ε10 H. Let ΞH be the set of residue classes ξ ∈ Z/HZ that satisfy∣∣∣∣SH

(
−

hξ
H

)∣∣∣∣ > η2 P
log H

. (3.1)

Then, for any functions g′1, g′2 : N→ C with |g′1(n)|, |g
′

2(n)| 6 2, we have∣∣∣∣ log P
P

∑
P6p<2P

ap

∑
y6n6y+H

g′1(n)g
′

2(n + ph)
∣∣∣∣

6 ηH + 10
∑
ξ∈ΞH

∣∣∣∣ ∑
y6n6y+H

g′1(n)e
(
−
ξn
H

)∣∣∣∣.
Proof. This follows from [30, Lemma 3.6], writing it using different notation.

In order to make use of Lemma 3.1, we must know that the exceptional set ΞH

in that theorem is not too large. Indeed, we have the following bound.

LEMMA 3.2 (Cardinality of large Fourier coefficients). Let the notations be as in
Lemma 3.1, and assume that H is a prime. Then we have |ΞH | � η−20.



J. Teräväinen 22

Proof. Since 1 6 |h| 6 ε−1 and H is a prime, the number of those ξ that
satisfy (3.1) remains unchanged when h is replaced by 1 in that formula. In [30,
Lemma 3.7], it was proved using a fourth moment bound and the Selberg sieve
that |SH (−ξ/H)| > η2 P/ log H for�η 1 values of ξ ∈ Z/HZ, but the same proof
gives the claimed quantitative bound.

To make use of the two lemmas above, we split in (2.17) the sum over n into
sums of length H , where H is a prime belonging to [ε−10

· 2m, 2ε−10
· 2m
], and

approximate the sum with an integral, after which (2.17) is reduced to

1
logω(x)

∫ x

x/ω(x)

m
2m

∑
2m6p<2m+1

ap

H

∑
y6n6y+H

(g1(n)− δ1)(g2(n + ph)− δ2)
dy
y

= oε→0(1). (3.2)

By Lemmas 3.1 and 3.2, it suffices to show that

sup
α∈R

1
logω(x)

∫ x

x/ω(x)

1
y

∣∣∣∣ 1
H

∑
y6n6y+H

(g1(n)− δ1)e(αn)
∣∣∣∣ dy = oε→0(1), (3.3)

for H ∈ [exp3(
1
2ε
−1), exp3(2ε

−1)], where exp3 is the third iterated exponential.
Indeed, if the left-hand side of (3.3) is 6 F(ε), where F(u) → 0 as u → 0 is
a slowly decaying function, one can take η = F(ε)0.01 in Lemma 3.2 to deduce
(3.2). Covering the interval [x/ω(x), x] with dyadic intervals, (3.3) will follow
from

sup
α∈R

1
X

∫ 2X

X

∣∣∣∣ 1
H

∑
y6n6y+H

(g1(n)− δ1)e(αn)
∣∣∣∣ dy = oε→0(1) (3.4)

for all X ∈ [x/ω(x), x/2] and all H ∈ [exp3(
1
2ε
−1), exp3(2ε

−1)]. This is what we
set out to prove, following [23].

It is natural to split the supremum over α in (3.4) to major and minor arcs,
defined using Dirichlet’s approximation theorem as

M :=

{
θ ∈ R :

∣∣∣∣θ − a
q

∣∣∣∣ 6 W
q H

with a ∈ Z, q < W, (a, q) = 1
}

and

m := R \M ⊂

{
θ ∈ R :

∣∣∣∣θ − a
q

∣∣∣∣ 6 W
q H

with a ∈ Z, q ∈
[

W,
H
W

]
, (a, q) = 1

}
,

with W := log5 H 6 exp(5 exp(2ε−1)).

(3.5)

In the case of the major arcs, the exponential e(αn) can essentially be replaced
with e(an/q), and this will lead us to study the distribution of the multiplicative
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function g1 in arithmetic progressions over short intervals. For that purpose, we
prove a lemma that is closely related to [22, Theorem 1] and [23, Theorem A.1].
For this lemma, we need to introduce the same ‘nicely factorable’ set as in [22,
Section 2] and [23, Definition 2.1].

DEFINITION 3.3. Let 10 < P1 < Q1 6 X and
√

X 6 X0 6 X , with Q1 6
exp(

√
log X0). For j > 1, set

Pj := exp( j 4 j(log Q1)
j−1 log P1), Q j := exp( j 4 j+2(log Q1)

j).

Letting J be the largest integer such that Q J 6 exp(
√

log X0), we define
SP1,Q1,X0,X as the set of those 1 6 n 6 X that have at least one prime factor
from each of the intervals [Pj , Q j ] for all 1 6 j 6 J .

For a specific choice of the parameters, present in the next lemma, we denote

S := SP1,Q1,X0,X , where P1 = W 200, Q1 =
H

W 3
, X0 =

√
X . (3.6)

LEMMA 3.4 (Uniform distribution of multiplicative functions in short intervals).
Let ε > 0 be small, X > 100 large, and H ∈ [exp2(

1
10ε
−1), log log X ]. Let g :

N→ [−1, 1] be a real-valued multiplicative function. Further, let b, q ∈ N with
1 6 b 6 q 6 W ∈ [log5 H, log10 H ]. Then, if S is as in (3.6), we have

1
X

∫ 2X

X

∣∣∣∣ 1
H

∑
y6n6y+H

n≡b (mod q)

g(n)1S(n)−
1
X

∑
X6n62X

n≡b (mod q)

g(n)1S(n)
∣∣∣∣ dy � W−10.

(3.7)

REMARK 3.5. If the bound on the right-hand side of (3.7) was replaced with
W−0.001, the proof of the lemma would work even when g(n)1S(n) is replaced
with g(n). However, for larger values of q we need to introduce the nicely
factorable set S to get better error terms.

Proof of Lemma 3.4. We first reduce to primitive residue classes b (mod q). Let
d0 = (b, q), b0 = b/(b, q) and q0 = q/(b, q). Then we have

1
H

∑
y6n6y+H

n≡b (mod q)

g(n)1S(n) =
1
H

∑
y/d06n′6(y+H)/d0

n≡b0 (mod q0)

g(d0n′)1S(n′), (3.8)

since 1S(d0n′) = 1S(n′) for d0 6 q 6 W < P1. Since the residue class b0

(mod q0) is primitive, we may use a Dirichlet character expansion to write the
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right-hand side of (3.8) as

1
H

1
ϕ(q0)

∑
χ (mod q0)

χ̄(b0)
∑

y/d06n′6(y+H)/d0

g(d0n′)1S(n′)χ(n′)

=
1
H

1
ϕ(q0)

∑
χ (mod q0)

χ̄(b0)
∑
t |d∞0

∑
y/d06n′6(y+H)/d0

t |n′
(n′/t,d0)=1

g(d0n′)1S(n′)χ(n′), (3.9)

where t | d∞0 means that t | dk
0 for some k. Since we have the condition

(n′/t, d0) = 1, we may use multiplicativity to write this as

1
ϕ(q0)

∑
χ (mod q0)

χ̄(b0)
∑
t |d∞0

g(d0t)χ(t)
d0t

d0t
H

∑
y/(d0t)6m6(y+H)/(d0t)

g(m)1S(m)χψ0(m),

(3.10)

where ψ0(m) = 1(m,d0)=1 is the principal character (mod d0) and we used the fact
that 1S(tm) = 1S(m) for t having no prime factors that are larger than d0 6 q 6
W < P1. By crude estimation, the contribution of the terms t > H ε to (3.10) is
� H−ε, so we may assume that t < H ε. We now wish to compare the short sums
in (3.10) to the corresponding long sums.

Suppose first that χ is real-valued. Then we may apply the Matomäki–
Radziwiłł theorem [22, Theorem 3] to the real-valued multiplicative function
gχψ0 conclude that

d0t
H

∑
y/(d0t)6m6(y+H)/(d0t)

g(m)1S(m)χψ0(m)

=
d0t
X

∑
X/(d0t)6m62X/(d0t)

g(m)1S(m)χψ0(m)+ Eχ,H (y), (3.11)

for y ∈ [X, 2X ], with the error Eχ,H (y) satisfying the L2 bound

1
X

∫ 2X

X
|Eχ,H (y)|2 dy �

(log H)1/3

P1/10
1

+ (log X)−1/50
� W−19, (3.12)

since W ∈ [log5 H, log10 H ], and P1 = W 200 in our definition of S .
Suppose then that χ is complex-valued. We again write (3.11), and want to

obtain an L2 bound for the error Eχ,H (y). By an argument of Granville and
Soundararajan (see [23, Lemma C.1]), the fact that gψ0 is real and χ is complex
(and that q 6 (log3 X)10) leads to

inf
|t |6x

D(gχψ0, ni t
; x) > 1

10

√
log log x . (3.13)
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Now we appeal to a variant of the Matomäki–Radziwiłł theorem, established by
Matomäki, Radziwiłł and Tao in [23, Theorem A.2]. This result (applied with
h = H and h = X separately) gives

1
X

∫ 2X

X
|Eχ,H (y)|2 dy � exp

(
− inf
|t |6X

D(gχψ0, ni t
; X)2

2

)
+
(log H)1/3

P1/10
1

+ (log X)−1/50, (3.14)

which is� W−19 by (3.13).
Now, for all characters χ (mod q0), we have (3.11) with the error bound (3.12).

Note also that
∑

t |d∞0
1/d0t = 1/d0

∏
p|d0
(1 + 1/p + 1/p2

+ · · · ) � log d0/d0.
Hence, applying the triangle inequality, and summing over χ and t | d∞0 , we see
that (3.10) equals

1
ϕ(q0)

∑
χ (mod q0)

χ̄(b0)
∑
t |d∞0

g(d0t)χ(t)
d0t

d0t
X

∑
X/(d0t)6m62X/(d0t)

g(m)1S(m)χψ0(m)

+ E(y), (3.15)

with the error term E(y) satisfying

1
X

∫ 2X

X
|E(y)|2 dy � W−10.

We can then reverse the deduction that led to (3.10) to conclude that (3.15) (and
hence (3.8)) equals

1
X

∑
X6n62X

n≡b (mod q)

g(n)1S(n)+ E(y).

This completes the proof.

The major arc case α ∈M of (3.4) is dealt with the following Lemma, whose
proof uses Lemma 3.4 as an ingredient.

LEMMA 3.6 (Major arc estimate). Let ε > 0 be small, x > 100 large, ω(X) as
in Theorem 1.4, and H ∈ [exp3(

1
2ε
−1), exp3(2ε

−1)]. Let g1 : N → [−1, 1] be a
multiplicative function satisfying g1 ∈ Uω(x, exp2(ε

−2), 2/ exp2(ε
−2), δ1). Then

we have

sup
α∈M

1
X

∫ 2X

X

∣∣∣∣ 1
H

∑
y6n6y+H

(g1(n)− δ1)e(αn)
∣∣∣∣ dy = oε→0(1)

for all X ∈ [x/ω(x), x/2], with the major arcs M as in (3.5).
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Proof. This is proved in Appendix B.

The minor arc case α ∈ m of (3.4), in turn, is taken care of by the next lemma.

LEMMA 3.7 (Minor arc estimate). Let ε > 0 be small, x > 100 large, and suppose
that H ∈ [exp3(

1
2ε
−1), log log x]. Then, for any multiplicative function g1 : N→

[−1, 1] and for any δ1 ∈ [−1, 1] we have

sup
α∈m

1
X

∫ 2X

X

∣∣∣∣ 1
H

∑
y6n6y+H

(g1(n)− δ1)e(αn)
∣∣∣∣ dy � (log H)−1/10 (3.16)

for all X ∈ [
√

x, x], with the minor arcs m as in (3.5).

Proof. This is proved in Appendix B.

With these lemmas available, Theorem 1.4 quickly follows.

Proof of Theorem 1.4. We reduced the proof of the theorem to proving (3.4).
As was observed after Lemma 2.2, we may assume that we have g1 ∈ Uω(x,
exp2(ε

−2), 2/ exp2(−ε
−2), δ1). Now, if α ∈ M in the supremum present in that

formula, we appeal to Lemma 3.6. In the opposite case α ∈ m, we appeal to
Lemma 3.7. In both cases, we get a bound of oε→0(1) for the left-hand side of
(3.4). This finishes the proof.

4. Proofs of the applications

Proof of Theorem 1.11. Given any real numbers z, w ∈ [−1, 1], define the
multiplicative functions g1, g2 : N→ [−1, 1] by setting at prime powers

g1(p j) =

{
1 if p 6 xa

z if p > xa,
g2(p j) =

{
1 if p 6 xb

w if p > xb.

We apply Theorem 1.4 to g1 and g2, and then use a generating function argument
to deduce Theorem 1.11. In order to use Theorem 1.4, we must verify that g1 ∈

U(x, ε−1, ε) for all x > x0(ε).
First observe that g1(n) = zω>xa (n), so for any c, q ∈ N we have

1
x

∑
x6n62x

n≡c (mod q)

g1(n) =
∑

06k<1/a

zk
·

1
x

∑
x6n62x

n≡c (mod q)

1ω>xa (n)=k .
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From this we see that g1 ∈ U(x, ε−1, ε) for all x > x0(ε) will follow, once we
show that

1
x

∑
x6n62x

n≡c (mod q)

1ω>xa (n)=k =
1

qx

∑
x6n62x

1ω>xa (n)=k + oq(1)

as x →∞ for all fixed c, q, k ∈ N. Write d0 = (c, q), c′ = c/d0, q ′ = q/d0. Then
we have

1
x

∑
x6n62x

n≡c (mod q)

1ω>xa (n)=k =
1
x

∑
x/d06n′62x/d0
n′≡c′ (mod q ′)

1ω>xa (n′)=k := Sk, (4.1)

because ω>xa (d0n′) = ω>xa (n′) for all d0 < xa . Let b−1 (mod q) denote the
inverse of b modulo q . Using the fact that 1ω>xa (n)=0 = 1P+(n)6xa , we have

Sk =
∑

xa<p1<···<pk6x
p1···pk6x

1
x

∑
x/d0 p1···pk6m62x/d0 p1···pk

m≡c′(p1···pk )
−1 (mod q ′)

1P+(m)6xa + oq ′(1),

with the o(1) term coming from those numbers n′ 6 x such that p2
| n′ for some

p > xa . As is well known, smooth numbers are uniformly distributed in arithmetic
progressions to fixed moduli (see for instance [18, Formula (6.1)]), in the sense
that

1
y
|{y 6 n 6 2y : P+(n) 6 yu, n ≡ c (mod q ′)}| =

1
q ′
ρ

(
1
u

)
+ oq ′(1), (4.2)

for u ∈ [0, 1] and y →∞, with ρ(·) being the Dickmann function. Therefore,

Sk =
1

q ′d0

∑
xa<p1<···<pk6x

p1···pk6x

1
p1 · · · pk

(
ρ

( log x
d0 p1···pk

a log x

)
+ oq ′(1)

)
. (4.3)

One easily sees that x 7→ ρ(x) is a Lipschitz function, so that |ρ(u) − ρ(v)| 6
C |u − v| for all u, v > 0 with some constant C > 0. Hence, we can use the
prime number theorem in the form that the nth prime is asymptotic to n log n and
approximate the term involving ρ(·) in (4.3) to deduce that

Sk =
1

q ′d0k!

∑
xa<n1,...,nk6x

n1···nk6x

1
n1 · · · nk(log n1) · · · (log nk)

ρ

( log x
n1···nk

a log x

)
+ oq ′(1).

(4.4)
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Here we have estimated trivially as oq ′(1) the contribution of the tuples (n1, . . . ,

nk) with two of the ni equal, or with ni ∈ [xa/2 log x, xa
] ∪ [x/2 log x, x] for

some i , as for them it is not necessarily the case that the ni th prime belongs to
[xa, x]. Approximating the expression (4.4) with an integral, again using the fact
that ρ(·) is Lipschitz, it equals

Sk =
1

q ′d0
·

1
k!

∫
xa6xi6x
x1···xk6x

ρ
( log x

x1 ···xk
a log x

)
x1 · · · xk(log x1) · · · (log xk)

dx+ oq ′(1)

=
1

q ′d0
·

1
k!

∫
a6u1,...,uk61
u1+···+uk61

ρ
( 1−u1−···−uk

a

)
u1 · · · uk

du+ oq ′(1),

where the last integral comes from a change of variables ui = log xi/ log x .
Combining (4.1) with the previous equation, we have shown that

1
x

∑
x6n62x

n≡c (mod q)

1ω>xa (n)=k =
Ia,k + oq(1)

qk!
,

1
x

∑
x6n62x

n≡c (mod q)

1ω
>xb (n)=` =

Ib,` + oq(1)
q`!

,

where

Iα,m :=
∫
α6u1,...,um61
u1+···+um61

ρ
( 1−u1−···−um

α

)
u1 · · · um

du. (4.5)

This implies that g j ∈ U(x, ε−1, ε) for all x > x0(ε).
Now that we have shown that g1 and g2 satisfy our uniform distribution in

arithmetic progressions assumption, Theorem 1.4 with ω(X) = log(3X) gives

1
log2 x

∑
x/ log x6n6x

g1(n)g2(n + 1)
n

=
1

log2 x

∑
x/ log x6n6x

zω>xa (n)wω
>xb (n+1)

n

=

(
1
x

∑
x6n62x

zω>xa (n)

)(
1
x

∑
x6n62x

wω
>xb (n)

)
+ o(1). (4.6)

Note that the numbers n ∈ [x/ log x, x] with ω>xa (n) 6= ω>na (n) have a prime
divisor on the interval [(x/ log x)a, xa

], so their contribution to the left-hand side
of the above sum is bounded by∑

(x/ log x)a6p6xa

1
log2 x

∑
x/ log x6n6x

p|n

1
n
= o(1).
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We can do a similar computation to exclude the terms with ω>xa (n) 6= ω>na (n) on
the right-hand side of (4.6). Applying the same arguments also to ω>xb(n), (4.6)
takes the form

1
log2 x

∑
x/ log x6n6x

zω>na (n)wω
>nb (n+1)

n
=

(
1
x

∑
x6n62x

zω>na (n)

)(
1
x

∑
x6n62x

wω
>nb (n)

)
+ o(1). (4.7)

By the preceding considerations,

1
X

∑
X6n62X

zω>na (n)
=

∑
06k< 1

a

zk
·

Ia,k

k!
+ o(1) (4.8)

as X →∞, with Ia,k as in (4.5), so summing this dyadically we find that (4.8) also
holds with the summation range being 1 6 n 6 X . Thus, by partial summation,

1
log x

∑
n6x

zω>na (n)

n
=

∑
06k<1/a

zk Ia,k + o(1)
k!

,

1
log x

∑
n6x

wω
>nb (n)

n
=

∑
06`<1/b

w` Ib,` + o(1)
`!

.

(4.9)

Based on (4.7) and (4.9), if we put

ck,`(x) : =
1

log2 x

∑
x/ log x6n6x

1ω>na (n)=k1ω
>nb (n+1)=`

n
,

ak(x) : =
1

log x

∑
n6x

1ω>na (n)=k

n
, b`(x) :=

1
log x

∑
n6x

1ω
>nb (n)=`

n
,

then we have∑
06k<1/a
06`<1/b

ck,`(x)zkw`
=

( ∑
06k<1/a

ak(x)zk

)( ∑
06`< 1

b

b`(x)w`

)
+ o(1)

for all z, w ∈ [−1, 1]. Expanding out, we see that∑
06k<1/a
06`<1/b

(ck,`(x)− ak(x)b`(x))zkw`
= o(1). (4.10)
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We show that ck,`(x) = ak(x)b`(x)+ o(1). Suppose for the sake of contradiction
that this is not the case. Then, by compactness, we can find a sequence xi tending
to infinity such that the numbers Dk,` := limi→∞(ck,`(xi) − ak(xi)b`(xi)) exist,
and at least one of them is nonzero. Taking limits in (4.10), we infer∑

06k<1/a
06`<1/b

Dk,`zkw`
= 0

for all z, w ∈ [−1, 1]. We now have a polynomial in two variables vanishing in an
open set, so its coefficients Dk,` must all be zero, which is a contradiction. Thus
we have

ck,`(x) = ak(x)b`(x)+ o(1) = δ∗1δ
∗

2 + o(1) (4.11)

for all 0 6 k < 1/a, 0 6 ` < 1/b, with δ∗1 := Ia,k/k! and δ∗2 := Ib,`/`!.
Using (4.11) for x ∈ {y1, y2, . . . , yJ−1}, where y1 = x , y j+1 = y j/ log y j and

yJ ∈ [
√

log x, log x], it follows that

1
log x

∑
n6x

1ω>na (n)=k1ω
>nb (n+1)=`

n
=

1
log x

J−1∑
j=1

log log y j · (δ
∗

1δ
∗

2 + o(1))

= (δ∗1δ
∗

2 + o(1))
1

log x

J−1∑
j=1

log
y j

y j+1

= δ∗1δ
∗

2 + o(1) = ak(x)b`(x)+ o(1)

by telescopic summation. Taking limits as x → ∞ from this, we reach the
statement of the theorem about logarithmic densities.

For the part of the theorem involving asymptotic density, we apply the same
argument as above, but with 1 6 ω(X) 6 log(3X) an arbitrary function tending
to infinity (instead of ω(X) = log(3X)). We again have

1
logω(x)

∑
x/ω(x)6n6x

1ω>na (n)=k1ω
>nb (n+1)=`

n
= δ∗1δ

∗

2 + o(1). (4.12)

In particular, we get

1
x

∑
n6x

1ω>na (n)=k1ω
>nb (n+1)=` >

1
2
δ∗1δ
∗

2
logω(x)
ω(x)

(4.13)

for all large enough x (where large enough depends on the function ω(X)). Now,
supposing that the part of Theorem 1.11 concerning asymptotic density fails, there
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is a function ψ(x) tending to infinity such that the left-hand side of (4.13) is
6 1/ψ(x) for infinitely many integers x . However, taking ω(x) = ψ(x) in (4.13),
we get a contradiction as x →∞. Hence, there exists some c0 > 0 such that the
left-hand side of (4.13) is > c0 for all large enough x , which was to be shown.

Our theorems on smooth numbers follow rather quickly from Theorem 1.11. In
fact, one could also deduce these applications directly from Theorem 1.4, using
the fact that smooth numbers are uniformly distributed in arithmetic progressions.
We leave the details of this alternative argument to the interested reader.

Proof of Theorem 1.14. It follows from (4.2) with q ′ = 1 and partial summation
that the set {n ∈ N : P+(n) 6 na

} has logarithmic density ρ(1/a). Taking k =
` = 0 in Theorem 1.11 and noticing that ω>y(n) = 0 if and only if P+(n) 6 y,
the conclusion is immediate.

Theorem 1.16 is a corollary to Theorem 1.14, as we see next.

Proof of Theorems 1.16 and 1.17. As mentioned in the introduction, taking α = 0
in Theorem 1.17 implies Theorem 1.16, since by symmetry∫

(x,y)∈[0,1]2
x>y

u(x)u(y) dx dy =
1
2

∫
(x,y)∈[0,1]2

u(x)u(y) dx dy =
1
2
,

where the last equality comes from the fundamental theorem of calculus and the
fact that u(x) = (d/dx)ρ(1/x). Thus it suffices to prove Theorem 1.17. Let
0 < a, b, c, d < 1 be given real numbers with a < c and b < d . Applying
the inclusion–exclusion formula to the sets {n ∈ N : P+(n) 6 na

}, . . . , {n ∈
N : P+(n) 6 nd

} and employing Theorem 1.14 and the fundamental theorem of
calculus, we see that

δ({n ∈ N : na < P+(n) < nb, nc < P+(n + 1) < nd
})

= ρ

(
1
b

)
ρ

(
1
d

)
− ρ

(
1
a

)
ρ

(
1
d

)
− ρ

(
1
b

)
ρ

(
1
c

)
+ ρ

(
1
a

)
ρ

(
1
c

)
=

(
ρ

(
1
d

)
− ρ

(
1
c

))(
ρ

(
1
b

)
− ρ

(
1
a

))
=

∫ b

a

∫ d

c
u(x)u(y) dx dy.
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In other words, for any rectangle R ⊂ [0, 1]2 parallel to the coordinate axes we
have

δ

({
n ∈ N :

(
log P+(n)

log n
,

log P+(n + 1)
log n

)
∈ R

})
=

∫
R

u(x)u(y) dx dy.

(4.14)

Now, if S ⊂ [0, 1]2 is any set such that 1S is Riemann integrable, we can
approximate S from the inside and outside with finite unions of rectangles, so
by the monotone convergence theorem we see that (4.14) continues to hold for
such sets S. Taking S = Tα, Theorem 1.17 is proved.

Proof of Theorem 1.19. Let 1 6 ω(X)6 log(3X) be a function tending to infinity.
Defining Fu(n) := 1P+(n)6nu , by the inclusion–exclusion principle we have

∑
x/ω(x)6n6x

1P+(n)∈[na ,nb]1P+(n+1)∈[nc,nd ]

n

=

∑
x/ω(x)6n6x

Fb(n)Fd (n + 1)− Fa(n)Fd (n + 1)− Fb(n)Fc(n + 1)+ Fa(n)Fc(n + 1)
n

.

From (4.12) (with k = ` = 0), it follows that the previous expression is logω(x)
times

ρ

(
1
b

)
ρ

(
1
d

)
− ρ

(
1
a

)
ρ

(
1
d

)
− ρ

(
1
b

)
ρ

(
1
c

)
+ ρ

(
1
a

)
ρ

(
1
c

)
+ o(1)

=

(
ρ

(
1
d

)
− ρ

(
1
c

))(
ρ

(
1
b

)
− ρ

(
1
a

))
+ o(1). (4.15)

In particular, as in (4.13), we get∑
n6x

1P+(n)∈[na ,nb]1P+(n+1)∈[nc,nd ]

n
> 1

2
c0(a, b, c, d)

logω(x)
ω(x)

, (4.16)

where c0(a, b, c, d) > 0 is the constant in (4.15), and since ω(X) was allowed
to tend to infinity as slowly as we please, the left-hand side of (4.16) is lower-
bounded by some positive constant, as asserted.

Lastly, we deduce our quadratic character sum bound from the main theorem.

Proof of Theorem 1.21. The first part of the theorem will follow directly from
Theorem 1.4, once we show that for any fixed a, q ∈ N we have∑

x6n62x
n≡a (mod q)

χQ(n) = o(x)
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as x → ∞. Denoting d0 = (a, q), a′ = a/d0, q ′ = q/d0, and using complete
multiplicativity, it suffices to show that∑

x/d06m62x/d0
m≡a′ (mod q ′)

χQ(m) = o(x).

Expanding the congruence condition in terms of Dirichlet characters, we are left
with showing that ∑

x/d06m62x/d0

χQ(m)ψ(m) = o(x) (4.17)

for all Dirichlet characters ψ (mod q ′). Note that the character χ∗ := χQψ has
modulus Q∗ := Qq ′ 6 x4−ε/2 if x is large enough. In addition, the character χQψ

cannot be the principal character, since then χQ would be induced byψ , which has
modulus q ′ < Q (since Q(x) is assumed to tend to infinity with x), contradicting
the assumption that χQ is primitive. The number Q∗ is not necessarily cube-
free, but we can apply a slight generalization of the Burgess bound from [19,
formula (12.56)] to bound the left-hand side of (4.17) with

�r,ε

(
x
d0

)1−(1/r)

q1/r (Q∗)((r+1)/4r2)+ε2
= o(x)

for r = 10bε−2
c, say. Now the first part of the theorem has been proved.

For the proof of (1.13), note that the quantity on the left-hand side of that
formula is

1
log x

∑
n6x

(n(n+1),Q)=1

1
n
·

1− χQ(n)
2

·
1− χQ(n + 1)

2

=
1

4 log x

∑
n6x

(n(n+1),Q)=1

1
n
−

1
4 log x

∑
n6x

χQ(n)χ0(n + 1)
n

−
1

4 log x

∑
n6x

χ0(n)χQ(n + 1)
n

+
1

4 log x

∑
n6x

χQ(n)χQ(n + 1)
n

,

where χ0 stands for the principal character (mod Q). Here the first term equals
the right-hand side of (1.13) by elementary sieve theory. The other three terms
are seen to be o(1) just as in the first part of the theorem (in order to apply
Theorem 1.4, it suffices that one of χQ and χ0 is uniformly distributed in
arithmetic progressions).
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For the last part of the theorem, namely proving (1.14), we apply the same
argument as in the second part to show that

1
logω(x)

∑
x/ω(x)6n6x

1n,n+1 QNR (mod Q)

n
=

1
4

∏
p|Q

(
1−

2
p

)
+ o(1).

Since ω(X) is any function tending to infinity slowly, we can apply exactly the
same argument as at the end of the proof of Theorem 1.11 to conclude that (1.14)
holds.
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Appendix A. Stability of mean values of multiplicative functions

We prove Lemma 2.2, which was used in the proof of Theorem 1.4 and tells
that mean values of the functions g j over the arithmetic progression a (mod q)
vary very slowly in terms of the interval over which the mean value is taken. The
case q = 1 of the lemma was proved by Elliott [6] and refined by Granville and
Soundararajan [13, Proposition 4.1] (see also [14, Theorem 4]). Also Matthiesen’s
work [25] contains estimates of the type of Lemma 2.2, but for the sake of
completeness we give a proof here. We have not aimed to optimize the error terms
in the lemma.

Proof of Lemma 2.2. By writing

1
x

∑
x6n62x

n≡a (mod q)

g(n) =
1
x

∑
n62x

n≡a (mod q)

g(n)−
1
x

∑
n6x

n≡a (mod q)

g(n)
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and the same with x/y in place of x , we see that it suffices to show that∣∣∣∣1x ∑
n6x

n≡a (mod q)

g(n)−
1

x/y

∑
n6x/y

n≡a (mod q)

g(n)
∣∣∣∣�q (log x)−1/400. (A.1)

for y ∈ [1, 2 log10 x]. Putting d0 := (a, q), a′ := a/d0 and q ′ := q/d0, (A.1)
becomes∣∣∣∣1x ∑

n′6x/d0
n′≡a′ (mod q ′)

g(d0n′)−
1

x/y

∑
n′6x/d0 y

n′≡a′ (mod q ′)

g(d0n′)
∣∣∣∣�q (log x)−1/400.

Making use of the orthogonality of Dirichlet characters and the triangle inequality,
it suffices to show that∣∣∣∣1x ∑

n′6x/d0

g(d0n′)χ(n′)−
1

x/y

∑
n′6x/d0 y

g(d0n′)χ(n′)
∣∣∣∣�q (log x)−1/400.

for all Dirichlet characters χ (mod q ′). Writing n′ = rm, where (m, d0) = 1
and r | d∞0 (meaning that r | dk

0 for some k), and using the fact that g(d0rm) =
g(d0r)g(m), the previous bound will follow from

∑
r |d∞0

1
d0r

∣∣∣∣d0r
x

∑
m6x/d0r
(m,d0)=1

g(m)χ(m)−
d0r
x/y

∑
m6x/d0r y
(m,d0)=1

g(m)χ(m)
∣∣∣∣�q (log x)−1/400.

(A.2)

The terms r > log x can be discarded, since∑
r |d∞0

r>log x

1
rd0

6 (log x)−1/2 1
d0

∏
p|d0

(
1+

1
p1/2
+

1
p
+ · · ·

)
�q (log x)−1/2,

since d0 6 q . Writing x ′ := x/d0r �q x/ log x and applying the triangle
inequality to (A.2), together with the simple fact that

∑
r |d∞0

1/r �q 1, it suffices
to show that∣∣∣∣ 1

x ′
∑
m6x ′

g(m)χ(m)ψ0(m)−
1

x ′/y′
∑

m6x ′/y

g(m)χ(m)ψ0(m)
∣∣∣∣�q (log x)−1/400

(A.3)
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for all x/ log x �q x ′ 6 x , 1 6 y′ 6 2 log10 x and for all characters χ (mod q),
with ψ0 the principal character (mod d0). Note that

D(gχψ0, f ; x ′) = D(gχ, f ; x ′)− Oq(1) (A.4)

for any function f : N→ D, so we may replace ψ0 with 1 in any computations
involving the pretentious distance.

Consider the character χ (mod q) for which the left-hand side of (A.3)
is maximal. If χ is complex, we may apply an argument of Granville and
Soundararajan (see [23, Lemma C.1]) and the assumption that g is real-valued
to obtain the pretentious distance bound

√
M := inf

|t |6x
D
(

gχψ0, ni t
;

x ′

y′

)
= inf
|t |6x

D(gχ, ni t
; x)− Oq(log3 x)

> 1
10

√
log log x

by (A.4), since q is fixed and x is large enough. Thus by Halász’s theorem [34,
Ch. III.4], we may bound (A.3) by� Me−M

� (log x)−1/200.
In the opposite case that χ is real in (A.3), we appeal to [13, Proposition

4.1], provided that D(gχψ0; 1; x) 6 2
3

√
log log x holds. This gives a bound of

� (log x)−1/10 for (A.3), so we may assume that D(gχψ0; 1; x) > 2
3

√
log log x .

But since gχ is real-valued, again by [23, Lemma C.1] we have

√
M : = inf

|t |6x
D
(

gχψ0, ni t
;

x ′

y′

)
= inf
|t |6x

D(gχ, ni t
; x)− Oq(log3 x)

> 1
10

D(gχ, 1; x)− Oq(log3 x) > 1
16

√
log log x

for all large enough x . Now, again applying Halász’s theorem, (A.3) is bounded
by� Me−M

� (log x)−1/400. This shows that (A.3) always holds, which proves
the lemma.

Appendix B. Short exponential sum bounds for multiplicative functions

We prove the short exponential sum estimates over major and minor arcs that
were employed in the proof of Theorem 1.4 in Section 3. The proofs of both
lemmas follow the ideas of Matomäki, Radziwiłł and Tao [23] for estimating short
exponential sum bounds weighted by a multiplicative function, but require some
small modifications to the arguments.
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Proof of Lemma 3.7. Since α ∈ m, we have the trivial estimate∣∣∣∣ ∑
y6n6y+H

e(αn)
∣∣∣∣� 1
‖α‖
�

H
W
� H(log H)−1/10,

so by the triangle inequality we may assume that δ1 = 0 in (3.16). We introduce
the same nicely factorable set S := SP1,Q1,X0,X as in (3.6). By a simple sieve
estimate [23, Lemma 2.3], we have∑

n6X+H

(1− 1S(n))�
log log H

log H
X. (B.1)

Hence, by the triangle inequality,

1
X

∫ 2X

X

∣∣∣∣ 1
H

∑
y6n6y+H

g1(n)(1− 1S(n))e(αn)
∣∣∣∣ dy �

log log H
log H

� (log H)−1/10.

This means that (3.16) has been reduced to

sup
α∈m

1
X

∫ 2X

X

∣∣∣∣ 1
H

∑
y6n6y+H

g1(n)1S(n)e(αn)
∣∣∣∣ dy � (log H)−1/10. (B.2)

This estimate would follow directly from [23, Section 3] (with d = 1 there), if the
function g1 was completely multiplicative, but we show that the argument goes
through even without that assumption.

Let S ′ be the set of those n 6 X that have a prime factor from each of the
intervals [Pj , Q j ] (defined in Definition 3.3) for j > 2. We have the Ramaré
identity

g1(n)1S(n) =
∑

n=mp∈S
P16p6Q1

g1(mp)1S(mp)
|{P1 6 p1 6 Q1 : p1 | n}|

=

∑
n=mp

p-m
P16p6Q1

g1(m)g1(p)1S ′(m)
1+ |{P1 6 p1 6 Q1 : p1 | m}|

+ O
( ∑

P16p6Q1

1p2|n

)

=

∑
n=mp

P16p6Q1

g1(m)g1(p)1S ′(m)
1+ |{P1 6 p1 6 Q1 : p1 | m}|

+ O
( ∑

P16p6Q1

1p2|n

)
.

By trivial estimation,∑
n6X+H

∑
P16p6Q1

1p2|n �
∑
p>P1

X
p2
� X W−200

� X (log H)−1/10,
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so proving (B.2) has been reduced to proving∑
P16p6Q1

∑
m

1S ′(m)g1(m)g1(p)e(mpα)
1+ |{P1 6 p1 6 Q1 : p1 | m}|

∫
R
θ(x)1x6mp6x+H dx

� H X (log H)−1/10

for all measurable functions |θ(x)| 6 1 supported on [0, X ]. This is same
expression as in [23, Section 3], so the proof continues from here in an identical
manner (since the rest of the argument does not use multiplicativity).

Proof of Lemma 3.6. We follow the proof of the major arc exponential sum in [23,
Section 4]. However, here we need to be a bit more careful when approximating
the exponential e(αn) with e(an/q), as we do not want to lose a factor of W/q
that would come from a partial summation approximation of e(αn).

By our assumption g1 ∈ Uω(x, exp2(ε
−2), 2/ exp2(ε

−2), δ1) and formula (B.1),
it suffices to show that

1
X

∫ 2X

X

∣∣∣∣ 1
H

∑
x6n6x+H

(g1(n)1S(n)− δ′1)e(αn)
∣∣∣∣ dx = oε→0(1), (B.3)

where the nicely factorable set S is as in (3.6) and

δ′1 :=
1
X

∑
X6m62X

g1(n)1S(n).

Let H ′ := H/W 3. By exchanging the order of integration and summation, we
have

1
H

∑
x6n6x+H

an =
1
H

∫ x+H

x

1
H ′

∑
y6n6y+H ′

an dy + O
(

H ′

H

)

for any an ∈ D. Applying this, we see that the left-hand side of (B.3) is

=
1
X

∫ 2X

X

∣∣∣∣ 1
H

∫ x+H

x

1
H ′

∑
y6n6y+H ′

(g1(n)1S(n)− δ′1)e(αn) dy
∣∣∣∣ dx + O

(
1

W 2

)

�
1

H X

∫ 2X

X

∫ x+H

x

∣∣∣∣ 1
H ′

∑
y6n6y+H ′

(g1(n)1S(n)− δ′1)e
(

an
q

)∣∣∣∣ dy dx + O
(

1
W 2

)
,

where we used the fact that any n ∈ [y, y + H ′] obeys
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e(αn) = e(αy) e(α(n − y))

= e(αy) e
(

a
q
(n − y)

)
+ O

(
1

W 2

)
= e

((
α −

a
q

)
y
)

e
(

an
q

)
+ O

(
1

W 2

)
by the inequality∣∣∣∣e(α(n − y))− e

(
a
q
(n − y)

)∣∣∣∣ 6 2π
∣∣∣∣α − a

q

∣∣∣∣|n − y| 6 2πW
q H
· H ′ 6 2π

W 2
.

By exchanging the order of integration above, it suffices to show that

1
X

∫ 2X

X

∣∣∣∣ 1
H ′

∑
x6n6x+H ′

(g1(n)1S(n)− δ′1)e
(

an
q

)∣∣∣∣ dx � ε. (B.4)

for all 1 6 a 6 q 6 W = log5 H , and with H ′ = H/W 3, as before. By splitting
into residue classes (mod q), (B.4) would follow from

1
X

∫ 2X

X

∣∣∣∣ 1
H ′

∑
x6n6x+H ′

n≡b (mod q)

g1(n)1S(n)−
1

q X

∑
X6n62X

g1(n)1S(n)
∣∣∣∣ dx �

ε

q
(B.5)

for all 1 6 a 6 q 6 W . Applying the triangle inequality and Lemma 3.4 (and the
fact that q 6 W ), it suffices to show that∣∣∣∣ 1

X

∑
X6n62X

n≡b (mod q)

g1(n)1S(n)−
1

q X

∑
X6n62X

g1(n)1S(n)
∣∣∣∣� ε

q
. (B.6)

As in [23, Section 2], the fundamental lemma of sieve theory gives for q 6 W the
estimate ∑

X6n62X
n≡a (mod q)

(1− 1S(n))�
X
q
·

log log H
log H

�
ε

q
X.

Taking this into account on both sides of (B.6), that claim is reduced to∣∣∣∣ 1
X

∑
X6n62X

n≡b (mod q)

g1(n)−
1

q X

∑
X6n62X

g1(n)
∣∣∣∣� ε

q

for X ∈ [x/ω(x), x], and this follows immediately from our uniform
distribution assumption g1 ∈ Uω(x, exp2(ε

−2), 2/ exp2(ε
−2), δ1) and the fact

that q 6 log5 H 6 exp2(10ε−1). The proof is complete.
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