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Multiplicative functions

A function g : N→ C is said to be multiplicative if
g(mn) = g(m)g(n) whenever m and n are coprime.
We will mostly restrict attention to multiplicative functions taking
values in D := {z ∈ C : |z | ≤ 1}.
Some key examples:

The Liouville function λ(n) := (−1)Ω(n), where Ω(n) is the
number of prime factors of n (with multiplicities).

Generalized Liouville functions g(n) := e2πiαΩ(n), where
α ∈ R.

Indicator function of smooth numbers: g(n) := 1P+(n)≤y ,
where P+(n) is the largest prime factor of n.

4 / 28



Introduction
Results and applications

Ideas from the proof

Chowla’s conjecture

The Liouville sequence λ(n) looks like a random sequence of signs
±1. In particular, λ(n) and λ(n + 1) should not interact with each
other. This was made precise by Chowla in the 1960s.

Chowla’s conjecture

Let k ≥ 1, and let h1, . . . , hk be distinct shifts. Then

1

x

∑
n≤x

λ(n + h1) · · ·λ(n + hk) = o(1).

Equivalently, the vector (λ(n), λ(n + 1), . . . , λ(n + k − 1)) takes
every sign pattern in {−1,+1}k with asymptotic probability 2−k .
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Chowla’s conjecture

Chowla’s conjecture is closely connected to the famous
Hardy–Littlewood conjecture:

Hardy–Littlewood conjecture

Let h1, . . . , hk be integer shifts. Then we have

1

x

∑
n≤x

Λ(n + h1) · · ·Λ(n + hk) = S(h1, . . . , hk) + o(1),

where S(h1, . . . , hk) is an explicitly computable quantity that
is > 0 whenever (n+h1) · · · (n+hk) has no fixed prime factor.

In fact, if we had a very good error term in Chowla’s conjecture
(say � (log x)−2k−ε), along with some uniformity in the
parameters, then the Hardy–Littlewood conjecture would follow.
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Applications of correlations

Correlations of multiplicative functions, that is expressions

1

x

∑
n≤x

g1(n + h1) · · · gk(n + hk),

have been shown to have numerous applications in recent years.

Tao’s resolution of the Erdős discrepancy problem in combinatorics.

Bounds on the number of sign patterns of λ(n) and other
multiplicative functions.

Classification of all multiplicative functions with bounded partial
sums (Klurman).

Rigidity theorems for multiplicative functions (Klurman–Mangerel).

Partial progress on Sarnak’s conjecture in ergodic theory
(Frantzikinakis–Host).

Work on the largest prime factors of consecutive integers (related to
a conjecture of Erdős and Pomerance).
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Results on logarithmic correlations

In recent years, there has been a burst of research on logarithmically
averaged correlations.

Matomäki–Radziwi l l–Tao (2015): Chowla’s conjecture (and a
generalization of it) holds on average over the shifts hi .

Tao (2015): We have

1

log x

∑
n≤x

g1(n + h1)g2(n + h2)

n
= o(1)

whenever one of the multiplicative functions g1, g2 : N→ D does
not “pretend to be” any twisted character χ(n)nit in a suitable way.

Tao–T. (2017): We have

1

log x

∑
n≤x

g1(n + h1) · · · gk(n + hk)

n
= o(1)

whenever the product g1 · · · gk does not “weakly pretend” to be any
character χ(n) in a suitable sense.
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Applications of logarithmic correlations

Tao–T. (2017): λ(n) takes all sign patterns of length 3 with
logarithmic density 1/8.

T. (2017): The set of n such that P+(n) < P+(n + 1) has
logarithmic density 1/2.

Frantzikinakis–Host (2017): If a(n) has linear block
complexity, then a(n) satisfies the logarithmic Sarnak
conjecture

1

log x

∑
n≤x

λ(n)a(n)

n
= o(1).

Question.

Can we remove logarithmic weights from these results?
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Transferring from logarithmic averages to ordinary ones?

By partial summation, if a : N→ C is bounded, then

1

x

∑
n≤x

a(n) = o(1) =⇒ 1

log x

∑
n≤x

a(n)

n
= o(1).

Getting from logarithmic averages to ordinary ones can be difficult:

The logarithmic statement 1
log x

∑
n≤x

λ(n)
n = o(1) has a short

elementary proof (it essentially corresponds to the statement
that ζ(s) has a pole at s = 1).

The ordinary average 1
x

∑
n≤x λ(n) = o(1) is equivalent to the

prime number theorem and contains the deeper information
that ζ(s) is nonzero for Re(s) = 1.
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Transferring from logarithmic averages to ordinary ones?

The implication

1

log x

∑
n≤x

a(n)

n
= o(1) =⇒ 1

x

∑
n≤x

a(n) = o(1)

is even false for some sequences of interest:

We have 1
log x

∑
n≤x n

it/n = o(1) but 1
x

∑
n≤x n

it diverges (it
rotates essentially around a circle of radius 1/|1 + it|).

If A is the set of integers that start with 1 (in base 10), then
1

log x

∑
n≤x 1A(n)/n = log 2

log 10 + o(1), but 1
x

∑
n≤x 1A(n) does

not converge.

If S is the set of n ∈ N for which π(n) < Li(n), then
Rubinstein and Sarnak showed that the logarithmic density of
S is 0.99999973 . . ., whereas the ordinary density of S fails to
exist.
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Transferring from logarithmic averages to ordinary ones?

There are however some results about the convergence of
logarithmic averages implying convergence of ordinary averages
along a subsequence of scales.

Elementary fact: If a : N→ [−1, 1] and
1

log x

∑
n≤x

a(n)
n = o(1), then 1

xi

∑
n≤xi a(n) = o(1) for some

sequence xi →∞.

Tao (2017): If the logarithmic 2k-point Chowla conjecture
holds, then the k-point Chowla conjecture holds without
logarithmic averaging at almost all scales.

Unfortunately, we do not know the 2k-point Chowla
conjecture for any k ≥ 2.
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Non-logarithmic correlations

Ordinary correlations at almost all scales (Tao–T., 2018)

Let g1, . . . . , gk : N→ D be multiplicative functions and h1, . . . , hk
integer shifts. Suppose one of the following holds:
(i) k ≥ 1 and the product g1 · · · gk does not weakly pretend to be
any twisted character χ(n)nit ;
(ii) k = 2 and one of g1 and g2 does not pretend to be any χ(n)nit

uniformly for |t| ≤ x .
Then we have

1

x

∑
n≤x

g1(n + h1) · · · gk(n + hk) = o(1) for x ∈ X

with X ⊂ N some set of logarithmic density 1.

Moreover, the set X even has logarithmic Banach density 1 (if we replace
o(1) by O(ε) above).
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Non-logarithmic correlations

As a consequence, we can remove logarithmic averaging from the
known results on Chowla’s conjecture at almost all scales.

Ordinary Chowla conjecture at almost all scales (Tao–T.,
2018)

There exists a set X ⊂ N of logarithmic density 1 such that

1

x

∑
n≤x

λ(n + h1) · · ·λ(n + hk) = o(1)

for all k ∈ {2} ∪ (2N− 1) and any distinct h1, . . . , hk .
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A structural theorem

While proving the above results, we actually show that for any
multiplicative functions g1, . . . , gk : N→ D and any integers
h1, . . . , hk , a we have

lim
i→∞

1

xi/d

∑
n≤xi/d

g1(n + ah1) · · · gk(n + ahk) = f (a)d−it

for almost all d , where f is an almost periodic function (depending
on xi ), t is a suitable real number, and the sequence xi is chosen
so that the limits in question exist (such sequences can always be
produced with a diagonal argument).
This generalizes our earlier result on the structure of logarithmic
correlations (there the d parameter played no role).
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A structural theorem

For any multiplicative functions g1, . . . , gk : N→ D and any
integers h1, . . . , hk , a we have

lim
i→∞

1

xi/d

∑
n≤xi/d

g1(n + ah1) · · · gk(n + ahk) = f (a)d−it (1)

for almost all d , where f is an almost periodic function (depending
on xi ), t is a suitable real number, and the sequence xi is chosen
so that the limits in question exist.
The intuition behind this theorem goes as follows:

If we had gj(n) = χ(n) for some Dirichlet character χ, then
one could easily show that (1) holds with t = 0 for some
periodic f .

If we had gj(n) = nitj for some real numbers tj , then one could
show that (1) holds with t = t1 + · · ·+ tk for f constant.
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Isotopy formulae

Using our structural theorem, we analyzed dependencies between the
correlations

fa(x) :=
1

x

∑
n≤x

g1(n + ah1) · · · gk(n + ahk).

Isotopy formulae for correlations (Tao–T., 2018)

Let g1, . . . , gk : N → D be multiplicative such that the product
g1 · · · gk weakly pretends to be χ(n)nit . There exists a set X ⊂ N
of logarithmic density 1 such that

f−a(x) = χ(−1)fa(x) + o(1) for x ∈ X

for all a ∈ Z (non-Archimedean isotopy), and

fa(x/q) = q−it fa(x) + o(1) for x ∈ X

for all q ∈ Q and a ∈ Z (Archimedean isotopy).
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Isotopy formulae

The isotopy formulae we proved have some applications as well:
The non-Archimedean isotopy formula tells us something about
even order correlations of λ(n) twisted by χ(n).

Twists of even order Chowla (Tao–T., 2018)

Let k ≥ 2 be even. Let χ (mod k − 1) be an odd Dirichlet
character. Then

1

log x

∑
n≤x

χ(n)λ(n)λ(n + 1) · · ·λ(n + k − 1)

n
= o(1).

It is crucial in the proof that we twist by a suitable character χ(n).
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Isotopy formulae

The isotopy formulae we proved have some applications as well:
The Archimedean isotopy formula tells that if g1 · · · gk pretends to
be χ(n)nit with t 6= 0, the argument of the correlation

arg

1

x

∑
n≤x

g1(n + h1) · · · gk(n + hk)


equidistributes on [0, 2π) when conditioned on those x where the
correlation is ≥ ε in modulus (and after performing some technical
smoothing).
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Applications

Using our non-logarithmic correlation results, we can almost
remove logarithmic averaging from our earlier applications.

Sign patterns of the Liouville function (Tao–T., 2018)

There exists a set X ⊂ N of logarithmic density 1 such that

1

x
|{n ≤ x : λ(n + i) = εi for all 1 ≤ i ≤ 3}| =

1

8
+ o(1)

for x ∈ X and any εi ∈ {−1,+1}.

Largest prime factors of consecutive integers (Tao–T., 2018)

There exists a set X ⊂ N of logarithmic density 1 such that

1

x
|{n ≤ x : P+(n) < P+(n + 1)}| =

1

2
+ o(1) for x ∈ X .
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Can we completely remove logarithmic averaging?

Let s(K ) be the number of sign patterns of length K that the
Liouville function takes.

Under Chowla’s conjecture, it follows that S(K ) = 2K .

Unconditionally, S(K )/K →∞ (Frnatzikinakis–Host).

We can show that either s(K ) grows rapidly, or we can completely
remove logarithmic averaging from two-point and odd order
Chowlas.

Sign patterns and correlations (Tao–T., 2018)

Either (i) Number of length K sign patterns of λ(n) is �
exp( cK

log K ) for some c > 0 and infinitely many K ;
or (ii) Binary and odd order Chowla conjectures hold without
logarithmic weights.
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The entropy decrement argument

As in previous work on correlations, we use the entropy decrement
argument. For logarithmic correlations, it gives the approximate identity
(where G := g1 · · · gk)

G(p)

log x

∑
n≤x

g1(n + h1) · · · gk(n + hk)

n
=

1

log x

∑
n≤x

g1(n + ph1) · · · gk(n + phk)

n
+ o(1)

for “most” p ≤ log x .
However, there is also a variant of this for ordinary averages:

G(p)

x

∑
n≤x/p

g1(n + h1) · · · gk(n + hk) =
1

x

∑
n≤x

g1(n + ph1) · · · gk(n + phk) + o(1)

for “most” p ≤ log x .
The entropy decrement is based on some inequalities from information
theory, combined with an elaborate pigeonholing argument.
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Reducing to approximate functional equations

Let

fd(a) := lim
i→∞

1

xi/d

∑
n≤xi/d

g1(n + h1) · · · gk(n + hk).

Then the entropy argument gives us a relation (G := g1 · · · gk)

fd(ap) = G (p)fdp(a) + o(1)

for “most” primes p. By iterating this, we have

fd(ap1p2) = G (p1)G (p2)fdp1p2(a) + o(1)

for “most” primes p1, p2.
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Reducing to approximate functional equations

We have

fd(ap1p2) = G (p1)G (p2)fdp1p2(a) + o(1)

for “most” primes p1, p2.
Using some deep results from ergodic theory, as in our previous
paper, we can approximate f1(a) by a nilsequence, Fnil(a), which
splits into rational and irrational parts: Fnil(a) = Frat(a) + Firrat(a).
It turns out that Firrat(a) cancels out in the bilinear average over
p1, p2, so we get

fp1p2(a) = G (p1)G (p2)Frat(ap1p2) + o(1)

for “most” primes p1, p2.
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Approximate homomorphisms

Analyzing the approximate functional equation

fp1p2 (a) = G (p1)G (p2)Frat(ap1p2) + o(1)

gives us a lot of information on fd(a). In the end, we can show that
fd(a) = d−it f (a) + o(1) for “most” d and for some almost periodic f .
This is our structural theorem, and it eventually leads to our results
about correlations at almost all scales.
For showing fd(a) = d−it f (a) + o(1), a key step is:

Lemma (approximate homomorphisms)

Suppose that α : (0,∞) → C is a function such that α(xy) =
α(x)α(y) + O(ε) for all x , y > 0 with ε > 0 small but fixed.
Suppose also that α(x) = O(1) and α(x) = 1+O(ε) for |x−1| ≤ ε.
Then there exists a real t such that α(x) = x it + O(ε).

This in turn is proved by using some standard tools from functional
analysis.
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