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Primes in All Short Intervals

One would expect all intervals of the form [x , x + (log x)2+ε]
to contain a prime for x large (Cramér’s conjecture).

Even under the Riemann hypothesis, one only knows that
[x , x + C

√
x log x ] contains a prime.

Best unconditional result due to Baker, Harman and Pintz
(2001): [x , x + x0.525] contains a prime for all large x .

4 / 33



History of the Problem and Results
The E3 case
The E2 case

Primes in Almost All Short Intervals

We say that a property P(x) holds for almost all x if the number
of integers x ≤ X for which P(x) fails is o(X ).

Best known result on primes in almost all intervals is Jia’s

(1996): [x , x + x
1
20
+ε] contains a prime almost always.

Conjecturally, primes should be exponentially distributed in
short intervals so that [x , x + λ log x ] should have a prime
with probability 1− e−λ.

Therefore, for any ψ(x) with ψ(x)→∞ as x →∞, the
interval [x , x + ψ(x) log x ] should have a prime almost always.
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Primes in Almost All Short Intervals

Gallagher (1976): If a certain uniform version of the
Hardy–Littlewood prime k-tuple conjecture holds, the interval
[x , x + λ log x ] includes a prime with the anticipated
probability.

Goldston-Pintz-Yıldırım (2011): The interval [x , x + λ log x ]
contains a prime with positive probability for any λ > 0 (but
we do not know what happens to the probability as λ→∞).

Selberg (1949): Under the Riemann hypothesis, with ψ(x) as
before, the interval [x , x + ψ(x) log2 x ] contains a prime
almost always.
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Ek Numbers in Almost All Short Intervals

An Ek number is a product of exactly k primes.

Wolke (1979): There exists c such that [x , x + (log x)c ]
contains an E2 number almost always (c = 5 · 106).

Harman (1982): One can take c = 7 + ε above.

Harman’s and Wolke’s proofs utilize sums over the zeros of
the Riemann zeta function and the fact that the density
hypothesis is known to hold in a nontrivial region (σ ≥ 11

14 in
Harman’s case).

The best known density hypothesis region σ ≥ 25
32 by Bourgain

(2000) improves Harman’s exponent to c = 6.86.

For Ek numbers with k ≥ 3, the state of affairs used to be the
same as for E2 numbers.
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Pk Numbers in Almost All Short Intervals

A Pk number is a product of at most k primes.

Mikawa (1989): For any ψ(x) such that ψ(x)→∞ as
x →∞, the interval [x , x + ψ(x)(log x)5] contains a P2

number almost always.

Friedlander&Iwaniec (Opera de Cribro): With ψ(x) as above,
[x , x + ψ(x) log x ] contains a P4 number (a P3 number)
almost always.

The proofs of these results are based on combinatorial sieves,
which are subject to the famous parity problem. One cannot
distinguish between primes and products of two primes using
these methods, so results on Ek numbers must instead be
based on analytic arguments.

The presence of the parity problem makes Ek numbers a much
closer analogue of primes than Pk numbers.
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Results

Theorem 1 (T., 2015)

The interval [x , x + (log x)1+ε] contains an E3 number almost
always.

Theorem 2 (T., 2015)

The interval [x , x + (log x)3.51] contains an E2 number almost
always.
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Results

These are consequences of the following quantitative versions.

Theorem 1’ (T., 2015)

Let P1 = (log logX )6+ε and P2 = (logX )ε
−2

. For h ≥ P1 logX , we have

1

h

∑
x≤p1p2p3≤x+h

Pi≤pi≤P1+ε
i , i≤2

1− 1

X

∑
X≤p1p2p3≤2X

Pi≤pi≤P1+ε
i , i≤2

1 = o

(
1

logX

)

for almost all x ≤ X .

Theorem 2’ (T., 2015)

For P1 = (logX )2.51 and h ≥ P1 logX , we have

1

h

∑
x≤p1p2≤x+h

P1≤p1≤P1+ε
1

1 ≥ ε 1

X

∑
X≤p1p2≤2X

P1≤p1≤P1+ε
1

1

for almost all x ≤ X .
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Results

The dyadic sums in the theorems can be evaluated with the
prime number theorem, and are � 1

logX , so we actually find

� h
logX Ek numbers on almost all intervals [x , x + h] with

h = (logX )(log logX )6+ε for k = 3 and h = (logX )3.51 for
k = 2.

We can find in general Ek numbers on
[x , x + (logX )(logk−1 X )Ck ] almost always with log` the `th
iterated logarithm.

Nevertheless, we are not quite able to find find Ek numbers on
[x , x + ψ(x) log x ] for arbitrary ψ(x)→∞ for any fixed k .

11 / 33



History of the Problem and Results
The E3 case
The E2 case

Results

The number of exceptional intervals is poor (but o(X ), of
course!). Earlier arguments, such as Harman’s, bound the
number of exceptions by �A

X
(logX )A

for any A, while the

mentioned theorems allow X
(logX )ε exceptions or more.

The numbers p1p2p3 and p1p2 that we found must have a
specific shape; namely they have very small prime factors.
One could obtain almost equal prime factors if one considered
p1p2p3p4 or p1p2p3 numbers instead.

The limit of the method for E2 numbers is the exponent
c = 3 + ε, which is the same that one gets from Harman’s
method under the density hypothesis for the Riemann zeta
function.
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Reduction to Dirichlet Polynomials

As in the works of Harman, Watt and Jia (and others) on
primes in almost all short intervals, we reduce the problem to
finding cancellation in the mean square of a Dirichlet
polynomial.

We also adapt the ideas of Matomäki and Radziwi l l on
multiplicative functions in short intervals to the setting of
almost primes.

If Sh(x) is the short sum in Theorem 1’ and SX (X ) is the
dyadic sum, Theorem 1’ boils down to showing

1

X

∫ 2X

X

∣∣∣∣1hSh(x)− 1

X
SX (X )

∣∣∣∣2 dx = o

(
1

log2 X

)
.
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Reduction to Dirichlet Polynomials

Denoting

F (s) =
∑

p1p2p3∼X
Pj≤pj≤P1+ε

j , j≤2

(p1p2p3)−s

(n ∼ X means X ≤ n < 2X ), we have the Parseval-type inequality

1

X

∫ 2X

X

∣∣∣∣1hSh(x)− 1

X ′
SX (X ′)

∣∣∣∣2 dx � 1

T0
+

∫ X
h

T0

|F (1 + it)|2dt

+ max
T≥X

h

X

Th

∫ 2T

T
|F (1 + it)|2dt

with T0 = X 0.01,X ′ = X 0.97.
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Reduction to Dirichlet Polynomials

Hence, the essence of the proof is showing that∫ X
h

T0

|F (1 + it)|2dt = o

(
1

log2 X

)
.

Note that we got rid of short sums, and are working with
dyadic sums instead.

We see that the smaller h is, the harder the mean square
becomes to bound.

The more prime variables we have (in this case 3), the more
flexibility we have for factorizing F (s) into a product of
Dirichlet polynomials of various lengths.
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Factorizing Dirichlet Polynomials

When separating the variables in F (s), we cannot even afford
to lose a factor of (logX )ε in some cases.

Therefore, we perform the factorization with the following
lemma that also splits the variables into short intervals.
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Factorizing Dirichlet Polynomials
Factorization lemma

Let H ≥ 1 and

F (s) =
∑
mn∼X

M≤m≤M′

ambn
(mn)s

for some M ′ > M ≥ 1 and for some complex numbers am, bn. Let

Av,H(s) =
∑

e
v
H ≤m<e

v+1
H

am
ms

, Bv,H(s) =
∑

n∼Xe
− v

H

bn
ns
.

Then∫ T

−T

|F (1 + it)|2dt �
(
H log

(
M ′

M

))2 ∫ T

−T

|Av0,H(1 + it)Bv0,H(1 + it)|2dt

+

∫ T

−T

∣∣∣∣∣∣
∑

n∈[Xe−1/H ,Xe1/H ]∪[2X ,2Xe1/H ]

cnn
−1−it

∣∣∣∣∣∣
2

dt,

for some integer v0 ∈ [H logM,H logM ′], and with |cn| ≤
∑

n=k` |akb`|.
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Bounding Dirichlet Polynomials

There are three different approaches to bounding Dirichlet
polynomials: pointwise, large value and mean value estimates.

We will use all three types, and sometimes in forms that are
specific to Dirichlet polynomials over primes or zeta sums.

Pointwise bound: If F (s) =
∑

m∼X
am
ms has as its coefficients one of

the sequences (1), (µ(m)) or (1P(m)), we have
|F (1 + it)| �A (logX )−A for all A > 0 in a wide range of t and X .
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Bounding Dirichlet Polynomials

Mean value theorem

For F (s) =
∑

m∼X
am
ms ,∫ T

−T

|F (1 + it)|2dt � T + X

X

∑
n∼X

|an|2

n
.

In many cases this is not good enough for us, since if an is supported on
the primes, it gives the bound � 1

log X
and not � 1

log2 X
.

For that reason, we use an improved mean value theorem.

Improved Mean Value Theorem

Let F (s) be as above. We have∫ T

−T

|F (1 + it)|2dt � T

X

∑
n∼X

|an|2

n
+

T

X

∑
1≤h≤ X

T

∑
m−n=h

m,n∼X ,m 6=n

|am||an|
X

. (1)

In the first sum, we gain a crucial factor of logX since T
X
≤ 1

log X
. In the second

term, we count solutions to p − q = h in primes on average over h, and hence
get the bound � (logX )−2. 20 / 33
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Bounding Dirichlet Polynomials

We also need a bound for the number of large values of very short
Dirichlet polynomials with coefficients supported on primes,
coming from the paper of Matomäki and Radziwi l l.

Large value estimate for Dirichlet polynomials over primes

Let P ≥ 1, α ∈ R and

F (s) =
∑
p∼P

ap
ps

with |ap| ≤ 1. Let T ⊂ [−T ,T ] be a well-spaced set of points
(any two points have distance ≥ 1) such that |F (1 + it)| ≥ Pα for
each t ∈ T . Then we have

|T | � T−2αP−2α exp

(
(1 + o(1))

logT

logP
log logT

)
.
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Decomposing the Integral

As in the result of Matomäki and Radziwi l l on multiplicative
functions, a key ingredient in the proof is splitting the integration
domain according to whether certain Dirichlet polynomials are
small or large there. We write, for suitable α1, α2 > 0,

T1 = {t ∈ [T0,T ] : |P1(1 + it)| ≤ P−α1
1 },

T2 = {t ∈ [T0,T ] : |P2(1 + it)| ≤ P−α2
2 } \ T1,

T = [T0,T ] \ (T1 ∪ T2),

where, roughly speaking,

P1(s) =
∑
p∼P1

1

ps
, P2(s) =

∑
p∼P2

1

ps
.

We bound the mean square of F (s) separately over T1, T2 and T .
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Decomposing the Integral

In the T1 case, the improved mean value theorem produces a

bound of o
(

1
log2 X

)
for the mean square of F (s).

In the T2 case, we make use of the fact that
|P1(1 + it)Pα1

1 |2` ≥ 1, |P2(1 + it)| ≤ P−α2
2 to estimate∫ X

h

T0

|F (1 + it)|2dt � P−2α2
2 P2α1`

1

∫ X
h

T0

|P1(1 + it)`F̃ (1 + it)|2dt,

where, roughly speaking, F̃ (s) =
∑

p∼ X
P1P2

1
ps . This high

moment can be bounded for ` = b logP2
logP1

c.
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Decomposing the Integral

In the T case, we first use Heath-Brown’s identity to see that,
essentially F̃ (s) is a sum of polynomials of the form
N1(s)N2(s) or M1(s)M2(s)M3(s), where N1(s) and N2(s) are
zeta sums and M1(s),M2(s) and M3(s) have essentially
Möbius function as their coefficients.

If the zeta sums dominate, we may use Watt’s twisted fourth
moment of the Riemann zeta function to see that∫
T
|F (1 + it)|2dt �P2α1`

1

∫ X
h

T0

|P1(1 + it)`N1(1 + it)N2(1 + it)|2dt

�T−ε.
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Decomposing the Integral

If the polynomials Mi (s) dominate, we may use the pointwise saving in
these polynomials and the Halász-Montgomery inequality to see that∫

T
|F (1 + it)|2dt �

∑
t∈U

|M1(1 + it)M2(1 + it)M3(1 + it)|2

� (logX )−100
∑
t∈U

|M1(1 + it)M2(1 + it)|2

� (logX )−90

(
1 +
|U|T

1
2

X
2
3
−ε

)
for a suitable well-spaced U ⊂ T .

We inspect that for α1 = 100ε, α2 = 1
12
− 10ε the mean value theorem

for short Dirichlet polynomials over primes yields |U| � T
1
6
−ε for our

choices of P1 and P2, and we arrive at the result for E3 numbers.

25 / 33



History of the Problem and Results
The E3 case
The E2 case

The E2 case

Application of Buchstab’s Identity

Sums Σ1(h) and Σ2(h)

Sum Σ3(h)

Reversing Buchstab’s Identity

Buchstab Integrals

26 / 33



History of the Problem and Results
The E3 case
The E2 case

Application of Buchstab’s Identity

If we define

F (s) =
∑

p1p2∼X
P1≤p1≤P1+ε

1

(p1p2)−s ,

Theorem 2’ reduces to bounding the mean square of F (s).

However, we have too few variables to use the same method
as for E3 numbers, so we need to create some additional
variables.

If we use Heath-Brown’s identity, we get one additional
variable, and going through the proof of Theorem 1’ we arrive
at the exponent c = 5 + ε for E2 numbers which is the same
as Mikawa’s exponent for P2 numbers. To outperform the E3

approach, we need several additional tools.

27 / 33



History of the Problem and Results
The E3 case
The E2 case

Application of Buchstab’s Identity

We use the theory of exponent pairs, which gives us small pointwise
power savings in zeta sums of various lengths.

We use Buchstab’s Identity to extract an additional variable, arriving at

Sh(x) =
∑

x≤p1n≤x+h

P1≤p1≤P1+ε
1

(n,P(w))=1
n>1

1−
∑

x≤p1q1n≤x+h

P1≤p1≤P1+ε
1

w≤q1<
√

x
(n,P(q1))=1

n>1

1

=
∑

x≤p1n≤x+h

P1≤p1≤P1+ε
1

(n,P(w))=1
n>1

1−
∑

x≤p1q1n≤x+h

P1≤p1≤P1+ε
1

w≤q1<
√
x

(n,P(w))=1
n>1

1 +
∑

x≤p1q1q2n≤x+h

P1≤p1≤P1+ε
1

w≤q2<q1<
√
x

(n,P(q2))=1
n>1

1

=: Σ1(h)− Σ2(h) + Σ3(h)

with w = X o(1).
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Sums Σ1(h) and Σ2(h)

In Σ1(h) and Σ2(h), we have an integer variable n with the
restriction (n,P(w)) = 1.

The condition on n can essentially be disposed of with some
sieve theory, so n becomes a free integer variable, and we can
apply the same method as in T1 and T cases for E3 numbers.

We conclude that 1
hΣ1(h) = 1

X Σ1(X ) + o( 1
logX ),

1
hΣ2(h) = 1

X Σ2(X ) + o( 1
logX ) almost always.
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Sum Σ3(h)

The sum Σ3(h), in turn, splits into several sums depending on
the sizes of q1 and q2.

If q1 is a small power of X , we can use the method for E3

numbers, applying in the end Jutila’s large value theorem to
bound the size of the exceptional set. However, we can no
longer take c = 1 + ε, but we must take c = 1 + 1

2(α2−α1)
, so

that we want α2 to be as large and α1 as small as possible.
With this value of c , we see that this part of 1

hΣ3(h) is
asymptotic to its dyadic version almost always.

If q1 and q2 are relatively small, but not as small as above,
and q1 and q2 satisfy certain dependencies, we may use
Watt’s theorem to deal with that part. We see that this part
of 1

hΣ3(h) is asymptotic to its dyadic version almost always.

The part of Σ3(h) where neither of the above holds can only
be discarded.
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Reversing Buchstab’s Identity

Denote by Σ′3(h) the parts of Σ3(h) that can be evaluated
asymptotically, and denote by Σ′′3(h) the remaining part.

We now find that

1

h
Sh(x) =

1

h
(Σ1(h)− Σ2(h) + Σ′3(h) + Σ′′3(h))

=
1

X
(Σ1(X )− Σ2(X ) + Σ′3(X )) +

1

h
Σ′′3(h) + o

(
1

logX

)
=

1

X
SX (X ) +

1

h
Σ′′3(h)− 1

X
Σ′′3(X ) + o

(
1

logX

)
≥ 1

X
SX (X )− 1

X
Σ′′3(X ) + o

(
1

logX

)
≥ ε · 1

X
SX (X ),

provided that Σ′′3(X ) ≤ (1− ε)SX (X ).
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Buchstab Integrals

The dyadic sum Σ′′3(X ) can be computed as a Buchstab
integral.

There is a tradeoff between the size of the integration domain
(and hence the size of the Buchstab integral) and the
efficiency of Jutila’s large value theorem (and hence the size
of α2 − α1).

Optimizing all the parameters involved, we indeed have
Σ′′3(X ) ≤ (1− ε) · SX (X ) for c = 3.51, and this finishes the E2

case.
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