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History of the Problem and Results

The Goldbach Conjectures

In 1742, in a letter to L. Euler, C. Goldbach formulated two
conjectures that became later known as the Goldbach conjectures.

Goldbach’s weak (ternary) conjecture

Every odd integer n > 7 is the sum of three primes.

Goldbach’s strong (binary) conjecture

Every even integer n > 4 is the sum of two primes.
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History of the Problem and Results

The Goldbach Conjectures

@ In 1937, using the Hardy—Littlewood circle method,
Vinogradov succeded in proving that every large enough odd
integer is the sum of three primes.

@ A year later, Chudakov, Van der Corput and Estermann
proved (independently) that almost all even n are the sum of
two primes, meaning that the number of exceptional even
numbers n < N is o(N).

@ Montgomery and Vaughan improved in 1975 the number of
exceptional n in the strong Goldbach conjecture to < N—¢
for some ¢ > 0. This estimate has been improved several
times, the latest exponent being Jia's ¢ = 0.121.

@ The weak conjecture was solved for all n > 7 by Helfgott in
2013, but the strong conjecture remains open.

5/21



History of the Problem and Results

Goldbach-type Problems

Strengthening the weak Goldbach conjecture, we may ask the
following.

Goldbach problem

Given an interesting subset P of the primes, is every large enough
odd n of the form n=p + q + r with p,q,r € P?

@ The answer to Goldbach problem depends on how P is
distributed in arithmetic progressions and Bohr sets of the
form {n: |lajn+ Bil| <n, ¥i < M} with aj,n >0, g; € R

e Shao (2014): If P has relative density greater than 2 in the
primes, then the Goldbach problem is true.

e Matomaki and Shao (2015): If P is the set of Chen primes
(primes p such that p + 2 has at most two prime factors),
then the Goldbach problem holds. Also if P is the set of
primes such that [p, p + C] contains two primes, then the
Goldbach problem holds.
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History of the Problem and Results

Primes of the Form x? + y? + 1

o Fermat (1640) asserted: A prime is of the form p = x? + y? if
and only if p=2or p=1 (mod 4). This was proved by Euler
(1755).

o However, the infinitude of primes of the form p = x®> + y? + 1
was only proved in 1960 by Linnik.

e Iwaniec (1972) gave a sieve-theoretic proof of the infinitude of
such primes, based on the semilinear sieve developed by him.

His proof gives the lower bound of > —NX 5 for such primes

(log )2
up to N, which is the correct order of magnitude by Selberg's

sieve.

@ Subsequently, Huxley&lwaniec, Wu and Matomaki considered
the problem of finding primes of the form x? + y? + 1 in short
intervals.
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History of the Problem and Results

Results
Let Z={peP: p=x>+y>+1}.
Theorem 1 (T., 2016)

Almost all even integers n # 5,8 (mod 9) are the sum of two primes
from &2.

Theorem 2 (T., 2016)

All odd integers n > Ny are the sum of the three primes from &2.

As a byproduct of the proof method, we can solve two more additive
problems for the set &2.

Theorem 3 (T., 2016)

The set &2 contains infinitely many three term arithmetic progressions.

Theorem 4 (T., 2016)

Given o € R\ Q and 8 € R, there are infinitely many p € & such that
llap + BIl < p=°*.
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History of the Problem and Results

Remarks

@ The local conditions n # 5,8 (mod 9) in Theorem 1 are necessary.

@ Matomiki (2008): Almost all even n satisfying some local conditions
are of the form n = p 4+ g with p € & and g a generic prime.

@ Several subsets of the primes have been shown to contain infinitely
many three term progressions. Green (2003): any positive density
subset of the primes contains 3-term APs. Green—Tao (2004): The
Chen primes contain infinitely many 3-term APs.

@ The distribution of ap (mod 1) has attracted a lot of attention,
both for generic primes and primes of a special form. Matomaki
(2008) showed that, given & € R\ Q and 5 € R, there are infinitely
many Chen primes p such that ||ap + 8| < p~? for some 6 > 0.

@ We do not get an asymptotic formula for the number of
representations in Theorems 1-2, nor do we get a bound of the form
< (,ogN) for the exceptional set in Theorem 1 (but only o(N)).
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Harmonic Analysis Side of the Problem

Harmonic Analysis Side of the Problem

The Hardy-Littlewood Circle Method
Transference Principle

Transference Type Result for Goldbach Problems

e 6 o6 o

Applying the Transference Type Result for Goldbach Problems
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Harmonic Analysis Side of the Problem

The Hardy—Littelwood Circle Method

@ Consider, as Vinogradov did, the number of solutions to

N = p1 + p2 + p3 in primes. If fy(a) = >, e(ap) is the
exponential sum corresponding to primes, the number of solutions
equals

= /O (o) e(—Na) dar

@ The integrand of / is large when a =~ § with g small (that is, « lies
on a major arc). The contribution of these can be calculated
asymptotically, and is approximately N?(log N)~3 for odd N.

@ If ais not close to any £ with g small (the minor arc case), one can
show that fy(a) < W, so that by Parseval’'s formula the minor

arcs contribute to /
2

N 1 N
_ f 2 _
< (logN)A/o (@)l do < G myA

which is small enough.
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Harmonic Analysis Side of the Problem

Transference Principle

Green and Tao developed an alternative strategy for solving
translation-invariant additive problems in the primes. This
approach (in a much more elaborate form) led to the Green—Tao
theorem on primes in arithmetic progressions.

Suppose that, for some 6 > 0, A C [1, N] satisfies

(i) Pseudorandomness: There exists a function v(n) > 6~114(n)
such that v is " pseudorandom”’;

(ii) Fourier uniformity: >Z..7 \(Tla(f)]% < 1;

(iii) Density: |A| > 6N. Then A contains >> 63N? 3-term APs.

1
log N~

@ The name transference principle comes from the fact that the
problem is transferred to Roth’s theorem.

@ In applications we have § <
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Harmonic Analysis Side of the Problem

Transference Type Result for Goldbach Problems

Matomaki and Shao (2015) formulated a version of the
transference principle that works for Goldbach-type problems:

Suppose that, for some § >0, A C (%, %) satisfies
(i) Well-distribution in Bohr sets: For every Bohr set B "of finite
complexity”, |AN B| > §|Bj;

(ii) Fourier uniformity: > ..z |5_1ﬁ(§)]% <1
(iii) Density: |A| > 6N. Then there exist > 63N? triples

ai, ap,as € Asuch that N = a; + a» + a3.

@ We require a version of this principle that works for binary
problems (this is an easy modification).

@ The traditional circle method demands proving
equidistribution in Bohr sets, while the above needs only that
every Bohr set contains a fair amount of the elements of A.
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Harmonic Analysis Side of the Problem

Applying the Transference Type Result for Goldbach
Problems

@ For the set & of primes of the form x% + y? + 1, the density
condition (jii) follows from lwaniec's work.

@ The Fourier uniformity condition (ii) follows from the work of
Ramaré and Rusza, together with the Green—Tao restriction
theory for the primes.

e We are left with the Bohr set condition (i), which is the most
central part of the proof. This is proved using sieve theory.
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Sieve Theory Side of the Problem

Sieve Theory Side of the Problem

o Applying the Sieves
@ Bombieri-Vinogradov Estimates for Major and Minor Arcs
@ The Level of Distribution
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Sieve Theory Side of the Problem

Applying the Sieves

@ We want to estimate ¥ = >,y B(p), where B(-) is (a smoothed
peP
version of) the characteristic function of a Bohr set (and &2 is

restricted to the progression 3 (mod 8) for simplicity).
@ Denoting P(z) =[],.,p, Q(z) =] 2<p<z p, Buchstab’s

p=—1 (mod 4)
identity gives, for any z,

Y= Y Blp= >, BlP-Y Blp=%1-%.

p~N p~N p~N
(p—1,Q(N?))=1 (P—1,Q(2))=1 2<pr<NV/2
p—1=2pk
(k,Q(p2))=1

@ The semilinear sieve gives a lower bound of the form
Y1 > (A4 o(1))N(log N) 2.

@ We need an upper bound of the form ¥, < (B + o(1))N(log N)~3
B <A
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Sieve Theory Side of the Problem

Applying the Sieves

@ Since every integer that is =1 (mod 4) has an even number of
prime factors that are —1 (mod 4) (with multiplicities), we have

Y= Y Bp)

p~N
p—1=2p1pom
z<p2<p1
qlm=q=1(4)

@ Writing £ = pym, we obtain, for any w,

<Y > B(n)=> %),

el n~N el
n=£p>+1
p2=—1(4)
(n,P(w))=1

where L is some appropriate set.
@ Estimating X,(¢) can be dealt with the linear sieve, so we can give a

good upper bound for it.
17/21



Sieve Theory Side of the Problem

Bombieri-Vinogradov Estimates for Major and Minor Arcs

@ We have obtained a lower bound for ¥; and an upper bound
for X5. Whether we get ¥ = X3 — X5 > N(log N)fg or not
depends on how large p+, p_ € (0, %) we can take in the
Bombieri-Vinogradov estimates

1 N
> (X g D eon) < i

d<NPE p~N pN
(d,c)=1 p=c (mod d)

since B(n) is a linear combination of terms of the form e(an).
Here )\j are the upper bound linear sieve weights and A are
the lower bound semilinear sieve weights (with suitable sieving
limits).
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Sieve Theory Side of the Problem

Bombieri-Vinogradov Estimates for Major and Minor Arcs

@ One considers the Bombieri-Vinogradov estimate separately
for major and minor arcs.

@ For major arcs, a =~ 2 with g small, so we can essentially
reduce to the classical Bombieri-Vinogradov theorem and
achieve py = p_ = % — €.

@ For minor arcs, we use Vaughan's identity to decompose the
sums over primes into type | and Il averages

Z |)‘di’ Z O‘mﬁne(amn) s

d<NP* mn~N
(d,c)=1 mn=c (mod d)
m~M

with |apml, |Bm| < 1 (and the average is of type | if o = 1).
@ How good estimates we get for these type | and Il averages
depends on the combinatorial properties of )\di.
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Sieve Theory Side of the Problem

The Level of Distribution

@ The linear sieve weights )\; are "well-factorable”, so the
results of earlier authors tell that p; = % — € is admissible
(and the best one could hope for).

@ The lower bound semilinear sieve weights A are not
well-factorable, so existing results would only permit

p_ = % — ¢, while we need p_ > 0.385 to succeed.

@ However, one can study the combinatorial properties of A to
show that it is well-factorable in some specific range, giving us
the exponent p_ = % —e=0.428... — ¢, which is good
enough to prove the transference condition (i), and hence

proves Theorems 1-2 via the transference result.

@ Applying the same argument with B(n) the characteristic
function of {n: |lan+ B < N=%01} gives us Theorem 4.
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