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The Goldbach Conjectures

In 1742, in a letter to L. Euler, C. Goldbach formulated two
conjectures that became later known as the Goldbach conjectures.

Goldbach’s weak (ternary) conjecture

Every odd integer n ≥ 7 is the sum of three primes.

Goldbach’s strong (binary) conjecture

Every even integer n ≥ 4 is the sum of two primes.
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The Goldbach Conjectures

In 1937, using the Hardy–Littlewood circle method,
Vinogradov succeded in proving that every large enough odd
integer is the sum of three primes.

A year later, Chudakov, Van der Corput and Estermann
proved (independently) that almost all even n are the sum of
two primes, meaning that the number of exceptional even
numbers n ≤ N is o(N).

Montgomery and Vaughan improved in 1975 the number of
exceptional n in the strong Goldbach conjecture to � N1−c

for some c > 0. This estimate has been improved several
times, the latest exponent being Jia’s c = 0.121.

The weak conjecture was solved for all n ≥ 7 by Helfgott in
2013, but the strong conjecture remains open.
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Goldbach-type Problems
Strengthening the weak Goldbach conjecture, we may ask the
following.

Goldbach problem

Given an interesting subset P of the primes, is every large enough
odd n of the form n = p + q + r with p, q, r ∈ P?

The answer to Goldbach problem depends on how P is
distributed in arithmetic progressions and Bohr sets of the
form {n : ‖αin + βi‖ < η, ∀i ≤ M} with αi , η > 0, βi ∈ R
Shao (2014): If P has relative density greater than 5

8 in the
primes, then the Goldbach problem is true.
Matomäki and Shao (2015): If P is the set of Chen primes
(primes p such that p + 2 has at most two prime factors),
then the Goldbach problem holds. Also if P is the set of
primes such that [p, p + C ] contains two primes, then the
Goldbach problem holds. 6 / 21
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Primes of the Form x2 + y 2 + 1

Fermat (1640) asserted: A prime is of the form p = x2 + y2 if
and only if p = 2 or p ≡ 1 (mod 4). This was proved by Euler
(1755).

However, the infinitude of primes of the form p = x2 + y2 + 1
was only proved in 1960 by Linnik.

Iwaniec (1972) gave a sieve-theoretic proof of the infinitude of
such primes, based on the semilinear sieve developed by him.
His proof gives the lower bound of � N

(logN)
3
2

for such primes

up to N, which is the correct order of magnitude by Selberg’s
sieve.

Subsequently, Huxley&Iwaniec, Wu and Matomäki considered
the problem of finding primes of the form x2 + y2 + 1 in short
intervals.
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Results
Let P = {p ∈ P : p = x2 + y2 + 1}.

Theorem 1 (T., 2016)

Almost all even integers n 6≡ 5, 8 (mod 9) are the sum of two primes
from P.

Theorem 2 (T., 2016)

All odd integers n ≥ N0 are the sum of the three primes from P.

As a byproduct of the proof method, we can solve two more additive
problems for the set P.

Theorem 3 (T., 2016)

The set P contains infinitely many three term arithmetic progressions.

Theorem 4 (T., 2016)

Given α ∈ R \Q and β ∈ R, there are infinitely many p ∈P such that
‖αp + β‖ < p−0.01.
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Remarks

The local conditions n 6≡ 5, 8 (mod 9) in Theorem 1 are necessary.

Matomäki (2008): Almost all even n satisfying some local conditions
are of the form n = p + q with p ∈P and q a generic prime.

Several subsets of the primes have been shown to contain infinitely
many three term progressions. Green (2003): any positive density
subset of the primes contains 3-term APs. Green–Tao (2004): The
Chen primes contain infinitely many 3-term APs.

The distribution of αp (mod 1) has attracted a lot of attention,
both for generic primes and primes of a special form. Matomäki
(2008) showed that, given α ∈ R \Q and β ∈ R, there are infinitely
many Chen primes p such that ‖αp + β‖ < p−θ for some θ > 0.

We do not get an asymptotic formula for the number of
representations in Theorems 1–2, nor do we get a bound of the form
� N

(logN)A
for the exceptional set in Theorem 1 (but only o(N)).
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The Hardy–Littelwood Circle Method

Consider, as Vinogradov did, the number of solutions to
N = p1 + p2 + p3 in primes. If fN(α) =

∑
p≤N e(αp) is the

exponential sum corresponding to primes, the number of solutions
equals

I =

∫ 1

0

fN(α)3e(−Nα) dα.

The integrand of I is large when α ≈ a
q with q small (that is, α lies

on a major arc). The contribution of these can be calculated
asymptotically, and is approximately N2(logN)−3 for odd N.

If α is not close to any a
q with q small (the minor arc case), one can

show that fN(α)� N
(logN)A

, so that by Parseval’s formula the minor

arcs contribute to I

� N

(logN)A

∫ 1

0

|fN(α)|2 dα� N2

(logN)A
,

which is small enough.
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Transference Principle

Green and Tao developed an alternative strategy for solving
translation-invariant additive problems in the primes. This
approach (in a much more elaborate form) led to the Green–Tao
theorem on primes in arithmetic progressions.

Suppose that, for some δ > 0, A ⊂ [1,N] satisfies

(i) Pseudorandomness: There exists a function ν(n) ≥ δ−11A(n)
such that ν is ”pseudorandom”;

(ii) Fourier uniformity:
∑

ξ∈ZN
|δ−11̂A(ξ)|

5
2 � 1;

(iii) Density: |A| ≥ δN. Then A contains � δ3N2 3-term APs.

In applications we have δ ≤ 1
logN .

The name transference principle comes from the fact that the
problem is transferred to Roth’s theorem.
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Transference Type Result for Goldbach Problems

Matomäki and Shao (2015) formulated a version of the
transference principle that works for Goldbach-type problems:

Suppose that, for some δ > 0, A ⊂ (N3 ,
2N
3 ) satisfies

(i) Well-distribution in Bohr sets: For every Bohr set B ”of finite
complexity”, |A ∩ B| ≥ δ|B|;

(ii) Fourier uniformity:
∑

ξ∈ZN
|δ−11̂A(ξ)|

5
2 � 1;

(iii) Density: |A| ≥ δN. Then there exist � δ3N2 triples

a1, a2, a3 ∈ A such that N = a1 + a2 + a3.

We require a version of this principle that works for binary
problems (this is an easy modification).

The traditional circle method demands proving
equidistribution in Bohr sets, while the above needs only that
every Bohr set contains a fair amount of the elements of A.
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Applying the Transference Type Result for Goldbach
Problems

For the set P of primes of the form x2 + y2 + 1, the density
condition (iii) follows from Iwaniec’s work.

The Fourier uniformity condition (ii) follows from the work of
Ramaré and Rusza, together with the Green–Tao restriction
theory for the primes.

We are left with the Bohr set condition (i), which is the most
central part of the proof. This is proved using sieve theory.
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Applying the Sieves

We want to estimate Σ =
∑

p∼N
p∈P

B(p), where B(·) is (a smoothed

version of) the characteristic function of a Bohr set (and P is
restricted to the progression 3 (mod 8) for simplicity).

Denoting P(z) =
∏

p<z p, Q(z) =
∏

2<p<z
p≡−1 (mod 4)

p, Buchstab’s

identity gives, for any z ,

Σ =
∑
p∼N

(p−1,Q(N
1
2 ))=1

B(p) =
∑
p∼N

(p−1,Q(z))=1

B(p)−
∑
p∼N

z≤p2<N1/2

p−1=2p2k
(k,Q(p2))=1

B(p) := Σ1 − Σ2.

The semilinear sieve gives a lower bound of the form
Σ1 ≥ (A + o(1))N(logN)−

3
2 .

We need an upper bound of the form Σ2 ≤ (B + o(1))N(logN)−
3
2 ,

B < A.
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Applying the Sieves

Since every integer that is ≡ 1 (mod 4) has an even number of
prime factors that are −1 (mod 4) (with multiplicities), we have

Σ2 =
∑
p∼N

p−1=2p1p2m
z<p2≤p1

q|m⇒q≡1 (4)

B(p).

Writing ` = p1m, we obtain, for any w ,

Σ2 ≤
∑
`∈L

∑
n∼N

n=`p2+1
p2≡−1 (4)
(n,P(w))=1

B(n) :=
∑
`∈L

Σ2(`),

where L is some appropriate set.

Estimating Σ2(`) can be dealt with the linear sieve, so we can give a
good upper bound for it.
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Bombieri-Vinogradov Estimates for Major and Minor Arcs

We have obtained a lower bound for Σ1 and an upper bound

for Σ2. Whether we get Σ = Σ1 − Σ2 � N(logN)−
3
2 or not

depends on how large ρ+, ρ− ∈ (0, 12) we can take in the
Bombieri-Vinogradov estimates∑
d≤Nρ±
(d ,c)=1

λ±d

( ∑
p∼N

p≡c (mod d)

e(αp)− 1

ϕ(d)

∑
p∼N

e(αp)

)
� N

(logN)100
,

since B(n) is a linear combination of terms of the form e(αn).
Here λ+d are the upper bound linear sieve weights and λ−d are
the lower bound semilinear sieve weights (with suitable sieving
limits).
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Bombieri-Vinogradov Estimates for Major and Minor Arcs

One considers the Bombieri-Vinogradov estimate separately
for major and minor arcs.

For major arcs, α ≈ a
q with q small, so we can essentially

reduce to the classical Bombieri-Vinogradov theorem and
achieve ρ+ = ρ− = 1

2 − ε.

For minor arcs, we use Vaughan’s identity to decompose the
sums over primes into type I and II averages∑

d≤Nρ±
(d ,c)=1

|λ±d |
∣∣∣∣ ∑

mn∼N
mn≡c (mod d)

m∼M

αmβne(αmn)

∣∣∣∣,
with |αm|, |βm| ≤ 1 (and the average is of type I if αm ≡ 1).

How good estimates we get for these type I and II averages
depends on the combinatorial properties of λ±d .
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The Level of Distribution

The linear sieve weights λ+d are ”well-factorable”, so the
results of earlier authors tell that ρ+ = 1

2 − ε is admissible
(and the best one could hope for).

The lower bound semilinear sieve weights λ−d are not
well-factorable, so existing results would only permit
ρ− = 1

3 − ε, while we need ρ− ≥ 0.385 to succeed.

However, one can study the combinatorial properties of λ−d to
show that it is well-factorable in some specific range, giving us
the exponent ρ− = 3

7 − ε = 0.428 . . .− ε, which is good
enough to prove the transference condition (i), and hence
proves Theorems 1–2 via the transference result.

Applying the same argument with B(n) the characteristic
function of {n : ‖αn + β‖ < N−0.01} gives us Theorem 4.
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