The Goldbach Problem for Primes of the Form $x^2 + y^2 + 1$

Joni Teräväinen

University of Turku

Contents

- 1 History of the Problem and Results
- 2 Harmonic Analysis Side of the Problem
- 3 Sieve Theory Side of the Problem

History of the Problem and Results

- The Goldbach Conjectures
- Goldbach-type Problems
- Primes of the Form $x^2 + y^2 + 1$
- Results
- Remarks

The Goldbach Conjectures

In 1742, in a letter to L. Euler, C. Goldbach formulated two conjectures that became later known as the Goldbach conjectures.

Goldbach's weak (ternary) conjecture

Every odd integer $n \ge 7$ is the sum of three primes.

Goldbach's strong (binary) conjecture

Every even integer $n \ge 4$ is the sum of two primes.

The Goldbach Conjectures

- In 1937, using the Hardy-Littlewood circle method,
 Vinogradov succeded in proving that every large enough odd integer is the sum of three primes.
- A year later, Chudakov, Van der Corput and Estermann proved (independently) that almost all even n are the sum of two primes, meaning that the number of exceptional even numbers $n \leq N$ is o(N).
- Montgomery and Vaughan improved in 1975 the number of exceptional n in the strong Goldbach conjecture to $\ll N^{1-c}$ for some c>0. This estimate has been improved several times, the latest exponent being Jia's c=0.121.
- The weak conjecture was solved for all $n \ge 7$ by Helfgott in 2013, but the strong conjecture remains open.

Goldbach-type Problems

Strengthening the weak Goldbach conjecture, we may ask the following.

Goldbach problem

Given an interesting subset \mathcal{P} of the primes, is every large enough odd n of the form n = p + q + r with $p, q, r \in \mathcal{P}$?

- The answer to Goldbach problem depends on how \mathcal{P} is distributed in arithmetic progressions and Bohr sets of the form $\{n: \|\alpha_i n + \beta_i\| < \eta, \ \forall i \leq M\}$ with $\alpha_i, \eta > 0, \ \beta_i \in \mathbb{R}$
- Shao (2014): If \mathcal{P} has relative density greater than $\frac{5}{8}$ in the primes, then the Goldbach problem is true.
- Matomäki and Shao (2015): If \mathcal{P} is the set of Chen primes (primes p such that p+2 has at most two prime factors), then the Goldbach problem holds. Also if \mathcal{P} is the set of primes such that [p, p+C] contains two primes, then the Goldbach problem holds.

Primes of the Form $x^2 + y^2 + 1$

- Fermat (1640) asserted: A prime is of the form $p = x^2 + y^2$ if and only if p = 2 or $p \equiv 1 \pmod{4}$. This was proved by Euler (1755).
- However, the infinitude of primes of the form $p = x^2 + y^2 + 1$ was only proved in 1960 by Linnik.
- Iwaniec (1972) gave a sieve-theoretic proof of the infinitude of such primes, based on the semilinear sieve developed by him. His proof gives the lower bound of $\gg \frac{N}{(\log N)^{\frac{3}{2}}}$ for such primes up to N, which is the correct order of magnitude by Selberg's sieve.
- Subsequently, Huxley&Iwaniec, Wu and Matomäki considered the problem of finding primes of the form $x^2 + y^2 + 1$ in short intervals.

Results

Let
$$\mathscr{P} = \{ p \in \mathbb{P} : p = x^2 + y^2 + 1 \}.$$

Theorem 1 (T., 2016)

Almost all even integers $n \not\equiv 5,8 \pmod 9$ are the sum of two primes from \mathscr{P} .

Theorem 2 (T., 2016)

All odd integers $n \geq N_0$ are the sum of the three primes from \mathscr{P} .

As a byproduct of the proof method, we can solve two more additive problems for the set \mathscr{P} .

Theorem 3 (T., 2016)

The set ${\mathscr P}$ contains infinitely many three term arithmetic progressions.

Theorem 4 (T., 2016)

Given $\alpha \in \mathbb{R} \setminus \mathbb{Q}$ and $\beta \in \mathbb{R}$, there are infinitely many $p \in \mathscr{P}$ such that $\|\alpha p + \beta\| < p^{-0.01}$.

Remarks

- The local conditions $n \not\equiv 5,8 \pmod{9}$ in Theorem 1 are necessary.
- Matomäki (2008): Almost all even n satisfying some local conditions are of the form n = p + q with $p \in \mathcal{P}$ and q a generic prime.
- Several subsets of the primes have been shown to contain infinitely many three term progressions. Green (2003): any positive density subset of the primes contains 3-term APs. Green—Tao (2004): The Chen primes contain infinitely many 3-term APs.
- The distribution of $\alpha p\pmod 1$ has attracted a lot of attention, both for generic primes and primes of a special form. Matomäki (2008) showed that, given $\alpha\in\mathbb{R}\setminus\mathbb{Q}$ and $\beta\in\mathbb{R}$, there are infinitely many Chen primes p such that $\|\alpha p+\beta\|< p^{-\theta}$ for some $\theta>0$.
- We do not get an asymptotic formula for the number of representations in Theorems 1–2, nor do we get a bound of the form $\ll \frac{N}{(\log N)^A}$ for the exceptional set in Theorem 1 (but only o(N)).

Harmonic Analysis Side of the Problem

- The Hardy-Littlewood Circle Method
- Transference Principle
- Transference Type Result for Goldbach Problems
- Applying the Transference Type Result for Goldbach Problems

The Hardy-Littelwood Circle Method

• Consider, as Vinogradov did, the number of solutions to $N=p_1+p_2+p_3$ in primes. If $f_N(\alpha)=\sum_{p\leq N}e(\alpha p)$ is the exponential sum corresponding to primes, the number of solutions equals

$$I = \int_0^1 f_N(\alpha)^3 e(-N\alpha) d\alpha.$$

- The integrand of I is large when $\alpha \approx \frac{a}{q}$ with q small (that is, α lies on a major arc). The contribution of these can be calculated asymptotically, and is approximately $N^2(\log N)^{-3}$ for odd N.
- If α is not close to any $\frac{a}{q}$ with q small (the minor arc case), one can show that $f_N(\alpha) \ll \frac{N}{(\log N)^A}$, so that by Parseval's formula the minor arcs contribute to I

$$\ll \frac{N}{(\log N)^A} \int_0^1 |f_N(\alpha)|^2 d\alpha \ll \frac{N^2}{(\log N)^A},$$

which is small enough.

Transference Principle

Green and Tao developed an alternative strategy for solving translation-invariant additive problems in the primes. This approach (in a much more elaborate form) led to the Green–Tao theorem on primes in arithmetic progressions.

Suppose that, for some $\delta > 0$, $A \subset [1, N]$ satisfies

- (i) Pseudorandomness: There exists a function $\nu(n) \geq \delta^{-1} 1_A(n)$ such that ν is "pseudorandom";
- (ii) Fourier uniformity: $\sum_{\xi \in \mathbb{Z}_N} |\delta^{-1} \widehat{1_A}(\xi)|^{\frac{5}{2}} \ll 1$;
- (iii) Density: $|A| \ge \delta N$. Then A contains $\gg \delta^3 N^2$ 3-term APs.
 - In applications we have $\delta \leq \frac{1}{\log N}$.
 - The name transference principle comes from the fact that the problem is transferred to Roth's theorem.

Transference Type Result for Goldbach Problems

Matomäki and Shao (2015) formulated a version of the transference principle that works for Goldbach-type problems:

Suppose that, for some $\delta > 0$, $A \subset (\frac{N}{3}, \frac{2N}{3})$ satisfies

- (i) Well-distribution in Bohr sets: For every Bohr set B "of finite complexity", $|A \cap B| \ge \delta |B|$;
- (ii) Fourier uniformity: $\sum_{\xi \in \mathbb{Z}_N} |\delta^{-1} \widehat{1_A}(\xi)|^{\frac{5}{2}} \ll 1$;
- (iii) Density: $|A| \ge \delta N$. Then there exist $\gg \delta^3 N^2$ triples
- $a_1, a_2, a_3 \in A$ such that $N = a_1 + a_2 + a_3$.
 - We require a version of this principle that works for binary problems (this is an easy modification).
 - The traditional circle method demands proving equidistribution in Bohr sets, while the above needs only that every Bohr set contains a fair amount of the elements of A.

Applying the Transference Type Result for Goldbach Problems

- For the set \mathscr{P} of primes of the form $x^2 + y^2 + 1$, the density condition (iii) follows from Iwaniec's work.
- The Fourier uniformity condition (ii) follows from the work of Ramaré and Rusza, together with the Green-Tao restriction theory for the primes.
- We are left with the Bohr set condition (i), which is the most central part of the proof. This is proved using sieve theory.

Sieve Theory Side of the Problem

- Applying the Sieves
- Bombieri-Vinogradov Estimates for Major and Minor Arcs
- The Level of Distribution

Applying the Sieves

- We want to estimate $\Sigma = \sum_{\substack{p \sim N \\ p \in \mathscr{P}}} B(p)$, where $B(\cdot)$ is (a smoothed version of) the characteristic function of a Bohr set (and \mathscr{P} is restricted to the progression 3 (mod 8) for simplicity).
- Denoting $P(z) = \prod_{p < z} p$, $Q(z) = \prod_{p \equiv -1 \pmod{4}} p$, Buchstab's identity gives, for any z,

$$\begin{split} \Sigma &= \sum_{\substack{\rho \sim N \\ (\rho-1, Q(N^{\frac{1}{2}})) = 1}} B(\rho) = \sum_{\substack{\rho \sim N \\ (\rho-1, Q(z)) = 1}} B(\rho) - \sum_{\substack{\rho \sim N \\ z \leq p_2 < N^{1/2} \\ \rho-1 = 2p_2k \\ (k, Q(p_2)) = 1}} B(\rho) := \Sigma_1 - \Sigma_2. \end{split}$$

- The semilinear sieve gives a lower bound of the form $\Sigma_1 \geq (A + o(1))N(\log N)^{-\frac{3}{2}}$.
- We need an upper bound of the form $\Sigma_2 \leq (B+o(1))N(\log N)^{-\frac{3}{2}}$, B < A.

Applying the Sieves

• Since every integer that is $\equiv 1 \pmod{4}$ has an even number of prime factors that are $-1 \pmod{4}$ (with multiplicities), we have

$$\Sigma_{2} = \sum_{\substack{p \sim N \\ p-1=2p_{1}p_{2}m \\ z < p_{2} \leq p_{1} \\ q \mid m \Rightarrow q \equiv 1(4)}} B(p).$$

• Writing $\ell = p_1 m$, we obtain, for any w,

$$\Sigma_2 \leq \sum_{\substack{\ell \in \mathcal{L} \\ n = \ell p_2 + 1 \\ p_2 \equiv -1 \, (4) \\ (n, P(w)) = 1}} B(n) := \sum_{\ell \in \mathcal{L}} \Sigma_2(\ell),$$

where \mathcal{L} is some appropriate set.

• Estimating $\Sigma_2(\ell)$ can be dealt with the linear sieve, so we can give a good upper bound for it.

Bombieri-Vinogradov Estimates for Major and Minor Arcs

• We have obtained a lower bound for Σ_1 and an upper bound for Σ_2 . Whether we get $\Sigma = \Sigma_1 - \Sigma_2 \gg N(\log N)^{-\frac{3}{2}}$ or not depends on how large $\rho_+, \rho_- \in (0, \frac{1}{2})$ we can take in the Bombieri-Vinogradov estimates

$$\sum_{\substack{d \leq N^{\rho_{\pm}} \\ (d,c)=1}} \lambda_d^{\pm} \left(\sum_{\substack{p \sim N \\ p \equiv c \pmod{d}}} e(\alpha p) - \frac{1}{\varphi(d)} \sum_{\substack{p \sim N}} e(\alpha p) \right) \ll \frac{N}{(\log N)^{100}},$$

since B(n) is a linear combination of terms of the form $e(\alpha n)$. Here λ_d^+ are the upper bound linear sieve weights and λ_d^- are the lower bound semilinear sieve weights (with suitable sieving limits).

Bombieri-Vinogradov Estimates for Major and Minor Arcs

- One considers the Bombieri-Vinogradov estimate separately for major and minor arcs.
- For major arcs, $\alpha \approx \frac{a}{q}$ with q small, so we can essentially reduce to the classical Bombieri-Vinogradov theorem and achieve $\rho_+ = \rho_- = \frac{1}{2} \varepsilon$.
- For minor arcs, we use Vaughan's identity to decompose the sums over primes into type I and II averages

$$\sum_{\substack{d \leq N^{\rho_{\pm}} \\ (d,c)=1}} |\lambda_d^{\pm}| \left| \sum_{\substack{mn \sim N \\ mn \equiv c \pmod{d} \\ m \sim M}} \alpha_m \beta_n e(\alpha mn) \right|,$$

- with $|\alpha_m|, |\beta_m| \le 1$ (and the average is of type I if $\alpha_m \equiv 1$).
- How good estimates we get for these type I and II averages depends on the combinatorial properties of λ_d^{\pm} .

The Level of Distribution

- The linear sieve weights λ_d^+ are "well-factorable", so the results of earlier authors tell that $\rho_+ = \frac{1}{2} \varepsilon$ is admissible (and the best one could hope for).
- The lower bound semilinear sieve weights λ_d^- are not well-factorable, so existing results would only permit $\rho_-=\frac{1}{3}-\varepsilon$, while we need $\rho_-\geq 0.385$ to succeed.
- However, one can study the combinatorial properties of λ_d^- to show that it is well-factorable in some specific range, giving us the exponent $\rho_- = \frac{3}{7} \varepsilon = 0.428 \ldots \varepsilon$, which is good enough to prove the transference condition (i), and hence proves Theorems 1–2 via the transference result.
- Applying the same argument with B(n) the characteristic function of $\{n: \|\alpha n + \beta\| < N^{-0.01}\}$ gives us Theorem 4.