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Abstract. The scattering matrix for the scattering of radiation
by isotropic monoenergetic relativistic electron gas is found.
The expression for the absorption coefficient by such gas is also
given. The relativistic kinetic equation is obtained which de-
scribes the Compton scattering of radiation with arbitrary energy
and polarization for random electron directions. The Compton
scattering matrix (CSM) contains five redistribution functions
(RFs) describing the redistribution of radiation on frequency
and depending also on the scattering angle. The expressions for
these functions are reduced to the forms free of cancellations.
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1. Introduction

Although a large number of papers has been devoted to the
problem of interaction between the radiation and relativistic
electrons (see e.g. Blumenthal & Gould 1970; Zel’dovich 1975;
Illarionov et al. 1979; Lightman & Rybicki 1980; Sunyaev &
Titarchuk 1980; Nishimura et al. 1986; Kershaw et al. 1986;
Nagirner et al. 1991), Compton scattering of polarized light is
studied not enough. In the limiting case of small frequencies and
low temperatures of electron gas (in comparison with the rest
electron energy mec?) Sunyaev & Titarchuk (1985) reduced
the problem of calculation of the spectral polarization to the
calculation of Rayleigh scattering of different orders. That is
possible because in the process of the multiple scattering, the
photon frequency corresponds to the definite mean number of
scattering and the scattering matrix is close to the Rayleigh
matrix. The scattering of the high energy photon on the cool
electron gas was considered by Williams (1984).

The attempts to take into account the effects of the induced
scattering were made in some works. The results of Pomran-
ing (1974) were criticized and corrected for linear polariza-
tion by Stark (1981). The Fokker-Planck equation for the two-
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dimensional radiative transfer equation (two Stokes parameters)
was formulated there for the case of non-relativistic tempera-
ture of the Maxwellian electron gas. This equation is the gen-
eralization of the equations, where the Compton scattering was
interpreted without including the polarization effects, namely
the Kompaneets equation (Kompaneets 1956), where the radi-
ation field is supposed to be isotropic and homogeneous, and
the equation by Babuel-Peyrissac & Rouvillois (1969), where
the dependence of intensity on coordinates and directions is
admitted.

The scattering matrix for the case of the ultrarelativistic
isotropic electron gas with a power energy spectrum was ob-
tained by Bonometto et al. (1970).

In several works the scattering of polarized radiation on the
electrons in magnetic field was considered (see, for example,
Bussard et al. 1986). Naturally, it is necessary to investigate
in some detail the simpler case of the Compton scattering of
polarized light without magnetic field. In the present paper the
relativistic kinetic equation which describes such a scattering is
concretized for the isotropic electron distribution.

We suppose that the non-degenerate electron gas occupies
some volume. We connect with the gas the co-moving frame of
reference I and assume that in this frame the electron distribu-
tion is isotropic. Although, the kinetic equation we consider is
relativistically covariant, all calculations are performed in the
frame E. For simplicity we assume that macroscopic motions
of the gas in the frame F are absent.

So far as we consider the photon scattering only by elec-
trons, we use in calculations in the frame F' the relativistic
quantum system of units. In such a system the main units are
the electron mass m. = m, the speed of light and the Planck
constant m = ¢ = h = 1. Other values are measured in this
system in the following units: length in the Compton wave-
length //mec, energy in mc?, frequency in mc? /. The electron
charge is € = y/e?/hc = 1/4/137.036, the classical electron
radius 7o = €2 /mc? = €?/hc = ¢* = 1/137.036 is equal to the
fine structure constant.

In Sect. 2 and 3 the description of photon and electron gases
and the act of Compton scattering are given. Then, in Sect. 4 we
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formulate the relativistic kinetic equation for Compton scatter-
ing. We average the scattering matrix over directions of electron
momentum in the frame F in Sect. 5 and 6. The formulae for five
redistribution functions are found in Sect. 7. The expressions for
these functions were published in the paper by authors (Nagirner
& Poutanen 1991). We consider limiting cases of the scattering
matrix in Sect. 8.

The definitions and the notations of the vectors in the
Minkowski space, the operations with them, the polarization
bases and parameters describing the polarization of radiation
are given in the Appendices A, B and C. The technical details
of calculations and auxiliary quantities are given in the Appen-
dices D and E.

2. Description of photons and electrons

We choose the arbitrary inertial system and ascribe to any point
of the space-time the four-vector r = {ct, r}. In the same system
the photon is described by the four-momentum k = {k, k}. In
the quasi-classical approximation the photon has definite values
of the coordinates  and momentum k.

The polarization state of radiation is defined relative to two
vectors of some polarization basis either by the polarization
density matrix 72 or by the Stokes parameters connected with
each other by:

ey

= (T na2)
nen Ne

1 TL1+’I’LQ nu—inv
2 ny +iny ny —nQ )

Here 7, AT = (ng, nQ, Ny, ny) is the Stokes vector with the
dimensionless and relativistically invariant components — Sto-
kes parameters, which are related to the usual parameters —
spectral intensities — by multiplying them by ¢k3/4 72 h?. In
the main part of our paper we use so defined Stokes parameters.

Letus choose in the frame F an orthogonal basis Iy, 1,, I3 =
I and set k = 2 w. The direction of the photon propagation w is
defined by the cosine 1 = (w I) and azimuth ¢:

w=+1-—n*cosply+sinpl)+nl.

For this photon we connect with the unit vector I the exter-
nal polarization basis consisting of the four four-vectors ey (k),
which relativistic expressions are given by Egs. (B6) in the Ap-
pendix B. The vectors of this basis eiy(k) and epy(k) in the
frame E have only the space-components — usual unit polari-
zation vectors:

efw =1 —nw)/v1-7n efw)=wxl/\/1-1% ()

The electron is characterized by the four-momentum p=
{po, p}. In the frame E we set p = {, 202} ,v = V1 + 22. Let
the cosine of the angle between the w and Q be ¢ = (w Q).

The distribution function of the electron gas f.(p) in mo-
menta p is assumed to be relativistically invariant. We suppose
that the distribution is isotropicin E, i.e. fe(p) = ne fo(y)/m3c,

@
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where n. is the electron density in E. The functions f.(p) and
fe(7) are normalized as

d3
d’p LB}
fe@)p— =ne
/ ¢ Do V1=
o0
4w/ Zdzfo(y) = 1, (4)
0
where 3 is the dimensionless (in units of the speed of light)
velocity of an arbitrary frame of reference relative to E.
The polarization matrix and the vector of the Stokes pa-
rameters, as well as the distribution function of electrons, can
depend on the space-coordinates and on time. But we will not

point them out as arguments of these functions because their
values in both sides of the kinetic equation are the same.

3. Description of the scattering act

We consider a scattering of a photon of four-momentum k by
an electron of four-momentum p. Let k; and D, be the four-
momenta of the scattered particles. The conservation laws

&)

p+k=p +k

give a possibility to eliminate the three-dimensional momentum
of the scattered electron p; = p + k — k; from all expressions.
From (5) we obtain

E1P=E

EQ:EI Bl’ El’ EI(Q"-E): (6)

We can find the frequency of the scattered photon &; (Compton
formula, see below) from the last equation in (6).

Let us introduce the designations for the scalar products of
the electron momentum p and the photon momenta & and k;:

pk pk
£ = =1

m2c?’

k k;
Tmre

§= =£— & (N

In the last relation we take into account Egs. (6).
For the considered photons and electrons we introduce the
internal basis g /\)(k) (see Appendix B, Eq. (BS)). In this basis

<
the tensor of rank four T transforming the elements of the matrix
7 due to the scattering of photons on the unpolarized electrons
(in accordance with the rule in Eq. (C7)) has the simplest form
(Berestetskii et al. 1971). Its non-zero elements are

T1111 = [B+2+4A(A+2)]/2,

Ti212 = Toi1 = (B —2)/2,

T = (B+2)/2, 3
T = T =(B+2)(A+1)/2,

T = Tonp = —(B —2)(A+1)/2.

Here we use the notations

A=1/E-1/&, B=E/&+&/¢€. )]
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According to the formulae (C8) the elements of the matrix F',
which describe the transformation of the Stokes parameters due
to the scattering in the same infernal basis, are the following

F A(A+2) 0 0

A |AA+2) A(A+2)+2 0 0

F= 0 0 2(4A+1) 0 » 10
0 0 0 B(A+1)

where F' = A(A+2) + B.

The photon with momentum k; in system F is characterized
by the same quantities as k, but with a subscript 1: wy, 1, @1
etc. Let 4 = w w; and ¢} = 2 w) be the cosines of the angles
between the momenta of the scattered photon and the initial
photon and the electron. The cosine of the photon scattering
angle is

p=mm+ /1= /1 =15 cos(p — ). (1
In the system E the quantities £, £;, g are given by
E=z(y— 20, &G =z1(y—20), gq=zzi(l—p). (12

The Compton formula for the frequency of the scattered photon

can be easily obtained from (6) and (12):
v —2C

y—2G+x(l —p)

T=z (13)
The vectors of the internal basis ef},(k) and 3, (k) in E, if the
scattering is undergoing by the electron at rest, are reduced to the

three-dimensional vectors (see Appendix B) which we denote
as

el(w) = (wy — pw)/v/1 — 2,
e(w) = wxwi/v/1—p?

These two vectors together with w form the three-dimensional
basis, which we name as the main basis. In this basis the direc-
tion of electron propagation is defined by cosine ¢ and azimuth
®:

Q=+1-C[cosP ej(w)+sin P ex(w)] + (w.

The relation connecting various functions of angles between
the vectors w, w, £2, I and others, are given in the Appendix D.
The formulae of transformations from one basis to another are
presented in the Appendix E.

(14)

(15)

4. Kinetic equation

The relativistic kinetic equation describing the scattering of the
polarized radiation by the electron gas in terms of the polariza-
tion density matrices in the linear approximation in the arbitrary
frame of reference may be written as:

6 22 [EPpdp d3k16(p
bo

m- C
2 / pro ki

X [ — fe(P)FR] .

EVi +k—p —k) (16)
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Here

v 0 v e Y ~ v
= f(=x) T (fO) 7 f(=x)) fOO, =7k, (A7)
the matrix f is defined in (C11) and the angles x and
x1 in Egs. (E4) and analogous for the photon k;. The
four-dimensional gradient operator is the following V

10
{ Tt -V } This equation can be derived from the quantum

Liouville equation by the Bogolubov method in the manner by
Silin (1971) for another problem. The same equation was ob-
tained by other authors (e.g. Acquista & Anderson 1974).
Further, from (16) using (1), (C11) and (C12) we obtain the
equation for the Stokes vector also in the linear approximation

2 3, 3. 43
oo [Eodnd
2 po po ki

X [felpDT — fo(P)FT]

EV#

5(1_74'&“]_71 —ky)

(18)

where 7 = fu(k), 71, = 7i(ky), L is given by Eq. (C12) and

i} = L(—x) F Loa) . (19)

The é-function in the integrand reflects the conservation
laws. The matrices f and L transform the polarization matri-
ces and the Stokes parameters from the external polarization
basis to the internal one and backward. In the last term in the
square brackets of both Egs. (16) and (18), the scalar quantity
F is the Klein-Nishina cross-section which is not a matrix. This
fact is the consequence of the isotropy of the medium.

By means of the designation

3.3 3. 43
R(kl_,k,)=imc QM
16w ne Po Pro
6(p, + ki —p— B fe(P)L(—)F L(x1), (20
we rewrite Eq. (18) in the following form
kVn=
oone [ dkp 4 L d’p
——R(k1 — k) — 7 [ 0(€)€ fe(p)—, 21
mce kq Do

where the total Compton cross-section is (cf. Berestetskii et al.

1971)
_ ﬁ m2 02 /d3p1 d3k1 _ _
o(§) = 2 ok oo Fr bp+k—p, —k)DF (22)
_ 3 g 5, 1+¢&
= 00@ [4+ (5—2—€>ln(1+2§)+2§ 7(1+2€)2

and o = 8 w3 /3 is the Thomson cross-section.

The three-dimensional integral in (20) over p disappears
due to the d-function. In the other quantities one can substitute
p = p; + k1 — k. Using (5) and the identity

8(pro+ ki —po — k) =pob (ky(p+k) —kp), (23)
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we reduce (20) to the following

A _ 3 m d*p;
Ry — k)= o / o (k(p +ky) — )
X fop) (=) FL(x1). (24)

Now, let us pass to the frame F and take into account the
isotropy of the electron distribution. Then we can write Eq. (21)
in the usual form of the radiative transfer equation:

0 N
(57E +wV)n =

—Ne 0(T)Th

opTe

(25)
z

o0
/ l‘ldxljdzwlR(fEl,wl — T, w)fiy,
0

where the scattering cross-section is (Nagirner et al. 1991)
— 1 d3z
w@ = [o©6fn

T 8

3 [ 9 2
s /1 fundy Km o 57) In

2
2xz+z<x— —> 1n(1+4x'y+4x)

z(y+2z)
»2/ i In(1 +2§)%} . (26)

14+ 2x(y+ 2)
14 2x(y — 2)

2, YtZ
1 +4xy + 422 (r—2) 13
The scattering matrix (24) in the frame £ takes the form:

R($1,W1 —>£13,(.¢J) = _:}—

43
& | renkeobLon)
s

dxm+z — 21w — 2w w) — 21 (71 — 21 w1 21)) .(27)

Next we want to reduce this triple integral to a single one
through the calculation of the integrals over the directions of
unit vector €21, i.e. on azimuth @, and cosine (;.

5. Calculation of the integral over the azimuth

In Sect. 3 we considered the scattering act k,p — ki, p;. All
bases and angles were introduced for this process. The scattering
matrix (27) as the whole incoming term (the first term in the
right hand side of the kinetic equation (21)) corresponds to the
process ki,p; — k,p. But this fact does not demand large
changing of our formulae. We can not change the vectors of the
external basis because the angles x and x, enter through the
transformation matrices in a definite order. At the same time,
we can-change the order of the electron momenta by making the
change p < p p,=p+ k, — k. If we make this change without
changing the photon momenta, the quantities £ and &; will be
replaced by £ — ¢ and & + g, respectively, i.e. £ and & will
exchange their places. The last equation in (7) can be rewritten
in the form &; = £ +¢. The corresponding changes in the matrix
(10) will be limited by changing the sign of the quantity A.
But the vectors of the internal basis (as can be seen from the
Eqgs. (B8) of the Appendix B) stay invariable.
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Keeping in mind all what was mentioned above, we rewrite
the three-dimensional integral in (27) in new variables and sub-
stitute instead of scalar products in the argument of §-function
their explicit expressions through the introduced angles. We thus
arrive at the following expression:

N 3 ® 22dz
Rz, w) — z,w) = ———/ fe()
167T 0

1 27
[ o[ eotorionsm. 28)
~1 0
Here we have introduced the quantity
=y — ) — ¢ — z(x1G — z0), (29
where

G=Qw;=Cu+V1 -1 — p2cosd.

Our next task is to calculate the integrals over ¢ and ®. We shall
make this in two steps.

At first we calculate the integral over the azimuth ® of the
direction of the electron momentum. The matrix in the integrand
is

F F! F/ 0
. a F. F, F,._ 0
L _ FL — c c+ s 30
0 0 0 B(A+1D
where
. = A(A+2)cos2y,
F, = A(A+2)sin2y,
F! = A(A+2)cos2xq,
F! = A(A+2)sin2yy, (3D
A? 2)?
Fq = i? cos2(X+X1)+( *2) cos 2(x — x1)s
A? A+2)?
Fo = ‘2_Si“2(x+xl)i( t2) sin 2(x — X1)-

Here the cosines and sines depend on ® through the quantity ¥:
x=x"—T,x1=x}+Pand x — x1 = x° — x¥ — 2. This
quantity is defined in the Appendix E by the formulae (ES).

To calculate the integral over ®, we note the following. The
argument of the é-function becomes equal to zero if cos ® =
cos &g, where

z1(y — 2Cu) — x(y — 20) — q
2124/ 1 — C2\/1 — 2
(T1p — )€+ q(y — )

1= O

and 7 = (1 + u)/(1 — p). The integral (28) is not equal to zero
if the absolute value of the cos ¢ defined by (32) is not larger
than 1, or

21— Py

cos O,

(32

[z1(y — 2¢p) — z(y — 2¢) — q)* > 0. (33)

1
231 — p)?
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This inequality demands the value ( to be between the roots of
D?%ie. (. < (¢ < ¢, where

_ @i —2) = ql@p —2) £ 21(1 — b

C:i: - zQz ]
b= ViVEQ @ — 1)~ qF (34)
Q* = (z—71)* +2¢.

For the existence of the real roots (1 of D2, the satisfaction of
the condition

QP ~ [y —x)—q* >0

is necessary. If this inequality satisfies, it is easy to prove that
-1<¢- <G <T.

Taking into account these conditions, one can find two va-
lues of the argument @ in the interval [0, 27] where I" vanishes:
® = ¢y = arccos cos Py and ¢ = 27 — ®. The values of sin ®
in these points differs in sign sin ® = = sin @y, and

(35)

sin &y = (36)

D ..
21=Cyr
Owing to these facts, the integrals over @ from all quantities
proportional to cos ® must be taken into account twice, but those
proportional to sin ® enter with opposite signs and annihilate.
It is easy to calculate the integral over @ of the §-function:

27

o) de =

2 2z
0 sin®gza/1 — (2/1— 2 Dq’
After calculating integrals over @, the structure of the matrix
L(—x)F L(x1) simplifies immensely. Indeed,

(37

21 R o 200 . . .
/ M L(—FL(x1)d® = BI&L(—XO) < F> LD, (38)
0

where
F F,0 0
A _ | Fa Fr 0 0
<EF>=10"0 F_ o0 (39)
0 0 0 BA+D
Here we denote
A+2)? A?
F:tz( ; ) cos4\I'oi7,
Fip = B = A(A+2)cos 20y, (40

and Uy, is the value of ¥ for ® = ®,. Thus the matrix R can be
presented in the form

R(z1,wy — z,w)

3, o0 ) .
= gL(—xo) fendyR(z, xy, 1, LGS,
Y

(41)

where 7, is the root of the left hand side of the inequality (35),
which is equivalent to

Y2y =@ o) = o -+ QVI+2d] /2, @)
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and

2z [ d¢

™ Je_

<bF>.

D (43)

R(x’ L1y My ’Y) =
We have one integral left to calculate, namely the integration
over (. This will be done in the next section.

6. Integration over ¢

We show that the variable ( enters the integrand in (43) only
through £ = z(y — 2¢) and &; = £ + q. Indeed, quantities A and
B are expressed by Egs. (9) through £ and &; (note that we must
take A with the opposite sign). Further, D? depends on ¢ and &;
as follows:

2 2d
D? = —Q—2§2+ —¢—a?
q q
Q? 2d,
= _q_zgf n i a; (44)
2 2 2 2, .2
_ai—a Q.. a+a
= 2q (é + gl q2 551 > 3
where
a* = (fy—x)2+7", a%:(fy+a:1)2+7', 45)

d=(af —a®—Q"/2,dy=d+ Q"

Therefore all elements of the matrix < £ > can be written
as a sum of terms involving either £ or &;. It is very simple to
express in such a manner the corner elements on the principal
diagonal:

@?—-2¢-2/(1 1 1 1
F=2+"""2 " (- - — )+ +=, 46
A— (5 a)%f’&% o
1 1 1 1

Now, using Egs. (36), (E8) we find the expression for sin ¥y:

A D
A+2r

Other elements of matrix (39) containing cos 2¥, and cos 4¥,
can be easily obtained from (44) and (48):

sin Uy = + (48)

_ 1 [r—2a2 7‘—2&%
A(A+2)cos2¥, = ;{ & 5%
rq+7’+Q2—a2—aﬂ
-2 , 49
€, )
(A +2)?cos? 20 -1 i( +Q2)Z+M
cos 0= 3 7 rq &
. (r —2a3)? _4rq+Q2 <T—2a2 B 7‘—2(1%)
& q 13 &
(r —2a%)(r — 2a%)}
- 2 ) 50
& 0
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Next we choose a new variable of integration. The quantity
D, which is in the denominator in the integral (43), involves
under a square root the quadratic function on £. The limits of
variation of £ can be obtained from (12) and (34). At these limits
the quantity D becomes zero. Therefore, it is naturally to do the
trigonometric substitution

€= a(y—20) = Z5’3(d+bcosoc). (51)

The quantity &; depends on cos « as

£ = @(J'E(d1 +bcos a). (52)

Then we write (43) as follows

o 1 i N

R(x, 21, 4,7) = ~——/ < F > da. (53)
mQ Jo

Furthermore, we use the following equations to integrate
over a:
and =

/ Tda  7Q do
o & aq o &
The integrals for £; can be obtained from (54) adding the sub-
script 1 to £, a and d.

T do

Q)

Pl (54)

7. Redistribution functions (RFs)

After the integration over o, we obtain from (53)

R R 0O O
A _|RBi R O O
R(UJ,iElaMa’Y)— 0 0 RU 0 9 (55)
0 0 0O Ry
where we introduce five functions as follows:
2 ¢ -2q-2(1 1 1 /d d
R=—s+"—"n— [ ——— )+ |5+ 56
e A G
1 2a% — Za% —r
RI = —EE { a3 d+ a% d]
2 2 21 (1 1
+2[Q@+r@@+)—a*—af] (- —— ¢, (56b)
a ay
4 3 7”2612 2
Ry = 7"_2(? {Q +2Q7"q+z2—+2(Q +rq)a— ay)
1 1 2
+ (— — —) [r(az +a3 — Q% — 2d%a? — E]
a 2
2 2
A le}, (56¢)
a ai
d d 2 2
RQ—RU+ 2<3 a—%—a a—]), (56d)
2 1 1 1/d d
Ry =—+————— — 56
V70 e a1 ¢ <a3 a?) (56e)
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Function R was obtained by Aharonian & Atoyan (1981). It is
the RF of intensity and has been studied in detail in the works
by Kershaw et al. (1986) and Nagirner et al. (1991).

The expressions (56) are useful to obtain various asymptotic
and approximate formulae. However, when z and z; are small
the values a and a; are close to each other. Then the loss of
accuracy appears in the differences a — ay, 1/a — 1/a; etc. This
happens also when p is close to 1. To prevent this, it is convenient
to use different forms of the functions (56). Let

_(@+z)@y+x — )

u=a; —a , v=aa (57)
a+ap
and
R = (u? — QH)(u? + 5v) Q?
a = U 240 “qzvz’
2w 2
Ry = =+—-{(1—-— 58
b Q+’U< q)) ( )
2 2
R, = E(“ @ ~2>.
vq rq

Using (57) and (58) we obtain

R =R, +R,,
R =R, +R,,
- - 2
Ry = 242479 [9——@(2@+u)—4] + =% 4 2R, (59)
Q rq rq vg
RQ =Ru+Ra7
Rv =Rb—qRa.

Another loss of accuracy will arise when calculating v — @
if v is close to ~y,. In order to avoid this, we can use the following
formulae

u* — Q* = 2rqCD,,
Dy = (y+z1 — 2 +7)(7 — V), (60)
C =2/[v(y+z — )+ 7+ T+ V]

8. Boundaries and limiting cases

As it was mentioned above, the integrals over azimuth & differ
from zero (and, therefore, RFs are not zero) only if the inequal-
ity (35) satisfies. The limits for the quantities, which RFs depend
on, follow from this inequality. These limitations have different
forms, depending on what values are fixed. If we fix z, | and p,
then from (35) we have v > v.(z, z1, ) (see Egs. (41), (42)).

If we calculate RFs (56) for the fixed electron energy v > 1,
then for the fixed initial photon frequency z; and the scattering
angle arccos p the frequency of the scattered photon is limited
by the roots of Eq. (35): z_ < z < z,, where

u+y(y+z)w £ zwag

T4 =T , (61)

1+2y 2w+ ziw?

and w = 1 — p. If the frequency of the scattered photon is fixed,
we can obtain the limitations for the frequency of the initial
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photon, but they are more complex, because the coefficient at
z? in Eq. (35) can be positive and negative. Namely, for 0 <
zw < 7y — z the inequalities z; < z; < x] must satisfy, where

+ - +
xf::xu YOy — 2)w zwa

62
1 -2vzw+z2w? (62)
If zw is limited by v & 2, then z; > z.

At last, for the fixed x, 1,y values of u do not fill out the
whole interval [—1, 1] and pyy < p < py, where

-1, |z — 2| > 2z 2,
_17 II—$1| §233x1, 727*(1‘):{;17—1);
u—, lw—x1|§2ma:1, Ymin <7 < Y@, 1, —1).

Hm =

Quantities 14 are roots of the equation v, (x, 1, 1) = 7:
(64)

where

Dm=22+7@ —2)+2V/22+27(z1 — z) + (z1 — 7). (65)

Let us present here the expressions for RFs in such cases,
when all operations of Sect. 5 and 6 can not be performed,
namely when the co-multiplier of cos ® in the argument of -
function in Eq. (28) is zero. Then the integral over ® is equal to
2 7 and we must calculate the integral over ¢ in the other way.
We do not present the calculation and give at once the results.

For the case of the scattering by immovable electrons

R(waxlaﬂav)/zl’)’:l = 2(5(7)1 - — Q)
p—1+B p*—-10 0

2 2
-1  @2+10 0
“ 1o 0 wo |’ (66)
0 0 0 Bpu

where B = 1 —zw+1/(1 — zw). In the Thomson limit (z < 1)
B =2 and matrix R is proportional to the Rayleigh matrix. If we
pass to the limit z — 0, v — 1 in the expressions (56) — (58)
we obtain that the limiting value of R is equal to the Rayleigh
matrix devided by zv/2w.

If the energy of the initial photon is formally zero, then
the frequency of the scattered photon is zero as well, and the
scattering matrix takes the form:

R*Rf 0 O
R _ Rf R0 O
0 0 0 Ry
where
R* = 2In(y + 2) + wyz[w(? + 22) — 2],
}( = _(1 _NZ),YZ>
Ry = [—3u% + 24+ 3] In(y + 2) + R}, (68)
o = 20247 = 1]In(y + 2) - R},
Ry = 2In(y + 2) — 2wz,

(63)
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and R = v2[2u® +2u — 4 — w?(2y* — 5)/3].
The scattering forward is the special case as well, because
the photon frequency does not change:

R(z,z1,1,7) = 46(z — z) In (7 + 2). (69)

The scattering matrix in that case degenerates to unit matrix.
At last, for ¢ — —1 all functions are continuous, function
Ri(z,z1,—1,7) =0 and other RFs have finite limits. Formulae
(66) — (69) are consistent.

9. Conclusions

We have obtained the analytical expressions for the Compton
scattering matrix for an isotropic distribution of the monoener-
getic electrons (Eqgs. (55) and (56)). In other words, the Klein-
Nishina scattering matrix averaged over an isotropic electron
distribution is analytically reduced to a single integral over the
electron energy (Eq. (41)). The expression for the absorption
coefficient is also given (formula (26)).

For the particular case of the Maxwellian electron distribu-
tion, methods to compute integrals of type (41) for the func-
tion R (see (56a)) are proposed in the works of Kershaw et
al. (1986) and Nagirner & Poutanen (1993). Using the results
of the present paper and the works mentioned above, it is possi-
ble to compute CSM with arbitrary values of z, 21 and p. Such
calculations are performed by Poutanen (1993). In his work
various expansions of the redistribution functions are obtained.
Differences between exact CSM and Rayleigh matrix were stud-
ied by Poutanen & Vilhu (1993). They have shown that CSM
predicts a much smaller degree of polarization for high electron
temperature (K7, > 50 keV) than the Rayleigh matrix.

For the power-law distribution of ultrarelativistic elec-
trons, the scattering matrix was deduced and investigated by
Bonometto et al. (1970). The same results can be easily ob-
tained by expanding (56) in a power seriesin 1/yify > 1,7 >
x > 1 and xzx; < 1 and integrating over the electron distri-
bution in Eq. (41). Let us show it. We assume that the electron
distribution is

—1-p .

’Y /Z, 1« Ymin <Y,
=c

fe(’Y) ¢ {07 Y < Ymin;

where the normalization constant ¢, can be easily found from
Eg. (4). Denoting

(70)

(e o]

. 3 .
S(x,zi,pw)= 3 Je(MdvyR(z, z1, 1, 7)), (71)

Y

—1)2 . .4 -
where now v, = (2z1w/z) / , we obtain (matrices S and R
have the same structure)

2 2¢?
g=p 1 2 L% ,
p+1 p+3 p+5
SI=O’
S i
Sn = —Si = ) 72
Q U PES (72)
1 2e
=pl-—_ _ )
Sv <p+1 p+3>
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Here
3c —(p+1) .
P= 4—; (max{'y*,»ymin}) P e =min {l,yf/ﬁﬁn} (73)

The solution of the kinetic equation for the Compton scatter-
ing (see Eq. (25)) will give rich possibilities to interpretations of
X-ray and gamma-ray spectra of various astrophysical objects.
However the methods to solve this equation in the general case
are not developed yet. Only individual attempts have been made
so far.

Nevertheless, using the redistribution functions above, it is
possible to compute immediately the polarization of the radia-
tion of optically thin objects in the single scattering approxi-
mation. Such computations were made for a 2-phase model of
accretion disc by Poutanen & Vilhu (1993).

Acknowledgements. We would like to thank Dr. O. Vilhu for care-
fully reading the manuscript and numerous comments. This work was
supported in part by a grant from the Academy of Finland (J.P.).

Appendix A: some geometrical relations in the Minkowski
space

In this appendix we introduce a set of the designations for the
four-dimentional quantities and ascertain the relations between
them.

Instead of the usual enumeration of the contravariant o* or
covariant a,, (1t = 0, 1, 2, 3) coordinates of the four-vector g, we
will write @ = {ag,a}, where ay = a° and three-dimensional
vector a = (a',a?,a®) = —(a1, az, az). Then the scalar product
of two vectors g and bis a b = a*b, = a,b* = agby — ab.

In the frame of reference moving with dimensionless ve-
locity B (in units of the speed of light c) relative to the initial
frame with the same directions of the coordinate axes the com-
ponents of the vector @ are defined according to the Lorentz
transformation:

, ag — Ba
Qo

VI—E

- mpB 1L Bx(Bxa) (A1)
V- \J1-p3 5 '

Let us define the vector product of three vectors a, b and ¢ by
equation

axbxc={(abc)ab xc+byecxa+ca xb}. (A2)

It is the alternative expressions for the components of the pseu-
dovector e"?""a, b,c,, where e”?"* is completely antisymmet-
ric unit tensor (cf. Landau & Lifshits 1951). It is easy to prove
two identities for this product. The first one expresses the scalar
product of two vector products in terms of the determinant of
the dyad matrix:

._.
fay

(axbxo-(@g xb x¢)=—det

S

o 1o I
e e e

0 Io IR

o Io e
1o 1o

—

= —det ((Q, ba Q)T(Ql 9 bl ’ Q1)> : (A3)
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The second identity expresses the quadruple vector product of
five four-vectors through its co-multipliers and their scalar prod-
ucts:

(axbxcyxdxe=allbd)ce)— (be)Xcd]
+ bllae)cd)~(ad)(ce)l+cllad)(be) — (ae)bd)].(A4)

This equation is the generalization of the well-known formula
for the double vector product of three 3-dimensional vectors. At
last, one can introduce the scalar-vector product of four vectors:

(abcd)=(axbxcd=dylabc)—aybcd)

a® o' a? d?

bO bl b2 b3
+ by(a ¢ d) — cp(a b d) = —det O o2 B

& d & &#

(A5)

This product satisfies the identity similar to (3)

(abcd)- (a1 by ¢ dy) = —det ((Q; b, ¢, C_l)T(QlaZ_)laghd])) -(A6)
It is easy to deduce one more identity

a(focd) +bafed)+clabfd)+d(abef) = flabed). (A7)

Appendix B: polarization bases

Let k be a 4-vector of photon momentum. In some frame of
reference we introduce four vectors (one time- and three space-
like) ey, A = 0, 1,2, 3 with a usual condition of orthonormality

ENEN) T I (BD)

Here gy = diag(l,—1,—1,—1) — the metric tensor of the
Minkowski pseudoeuclidean space-time.

These vectors can form usual basis, but in order to be a
polarization basis of the photon with the momentum £, it has to
satisfy the transversality condition

ek =eqk=0. (B2)

Then vector k£ has components only along two vectors and these
components are equal to each other because & is zero-vector, i.e.
kk=0:

(B3)

k=Ekeg - legtegl, Eeg=—keg.

The transition to another polarization basis is equivalent to the
linear transformation
AI
e = X ey (B4)
Let us assume that transformation of bases is only four-
dimensional rotation and does not contain reflection. Then only
four components of matrix f are independent. Only the transver-
sal components of the vectors e}, and e, and, therefore, only
one parameter of the transformation have a physical sense. This
parameter is the rotation angle x:

! /
—E€E&1) = —E€n)Er)»

cos X

7 /
€€e) = ~Emée)- (BS)

sin y
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All the others connect longitudinal and scalar components of
the vectors of the polarization basis.

Now we concretize the polarization bases we use. Let some
inertial frame of reference F be connected with considered
medium. Choose there three-dimensional unit vector  and form
the four-vector [ = { 0, I }. This vector as well as the vector of
the photon momentum k = { k, kw } must be transformed to
the other inertial frames by usual rules in accordance with the
Lorentz transformation (A1). Now we introduce four vectors

_ L. 11,8}
€0y = ﬁ = 7\/1—_?;
o k— (kBB
§(3)(k) = ‘*W):_»
(k Ig)l +( k)e(3)(k)
Hk) = ; (B6)
o N
IxBxk
Q?;)(k) = —

N

They form the polarization basis for the photon of momentum
k. In the frame E they are reduced to (note that n = w)

€ = {1,0},

Q?;)(k) = {O,QJ},
l —

k) = {0%} (B7)
w x 1

Qg)(k) = {Oa \/—1_—~7}

We use the external basis for the description of the polarization
in the frame of reference connected with a medium. At the same
time, to describe the scattering act, it is convenient to introduce
the internal basis for which matrix of transformation of the
photon polarization characteristics under the scattering is sim-
pliest. For the scattering k, p — k,, p, following Berestetskii et
al. (1971) we choose the basis in the following manner:

8 (k) = §ik +Eky
€ V&)
in (k) = §1k — &k
& NI
n §ik+&k; —qp
(1)("7) = —"———q A T; B = (B8)
in p X E X kl
cok) = = A
Here the quantities £, &1 and g are defined by (7), and
A?=286/q— 1. (BY)

The introduced internal basis is convenient because if we re-
place k < k, the first two vectors (0 and 1) do not change at
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all, whereas two others (2 and 3) only change their signs. Note
also that vectors e(l)(k) and 6(2)(k) do not change if we replace
in the expressions for them p to p,=p+ k — k. In the labo-
ratory frame of reference where the incoming electron is at rest
(i.e. p = {mc,0}), the components of the vectors become very
simple. In particular, in the frame F they are following:

{2,w+w;}
_(())(k) - —2(1 "y )
in _ {07w - wl}
§(3)(k) = —2(1 — )
. 1
el (k) = {’Lﬁ?“_’;f} (B10)
k) = {0,w x wl}'

V1= p?

If we add proportional to £ term (unessential for the description
of polarization) to e}, then this vector will have only space
components:

i 1+’U, E {Oawl —,U/Ld}
ety (k) — i sty (B11)
(1) 1— L L /—_1 — M?_

Note that vectors g, and g,, of the internal and external bases
have the analogous structure.

Appendix C: transformations of the Stokes parameters

Various reasons lead to transformation of parameters describing
the polarization state of radiation field. The scattering changes
the polarization state of photons and so the polarization pa-
rameters change, as well. The parameters are transformed also
when we rotate the vectors of the polarization basis. We limit
ourselves with these two kinds of transformation and consider
them separately.

C.1. Transformation under the scattering

The simpliest case of changing the photon’s polarization state
occurs when the photon and the electron before and after scat-
tering are in so called pure states, i.e. in the definite quantum
states with complete polarization. Then it is possible to write
the transformation of the components of the two-dimensional

vector-potential:
A\ g (A 2 (T T\ (A
A Ay Ty Tn ) \A2
Here the elements of the matrix 7" may be complex. The density

matrix of the correspondent electromagnetic field is transformed
with the same matrix 7"

(&)

v v

=TnTt (C2)

or
Ta,a Ty Maary- (C3)

/ —
n(a,a{) =
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The Stokes vectors corresponding to the polarization matrices
in (C2) are transformed with 4 x 4 matrix:
i’ = P, (C4)
and 16 real elements of the matrix /" are expressed through 4
complex elements of matrix 7" (see e.g. Dolginov et al. 1979;
Hovenier et al. 1986).

If the interacting particles are not in the pure states, for ex-
ample, if their polarization states are some mixtures of quantum
states, then the equations connecting the density matrices be-
fore and after scattering are to be averaged over all pure states.
The transformation coefficients in (C3), after such averaging,
are not anymore the products of the elements of one matrix and
the Eq. (C3) takes more general form:
Ma,afy = Ta aafa Maa)- (C5)
Here the transformation coefficients are the components of the
two-dimensional tensor of rank 4:
Talaa;a/ = Ta] a T;;a" (C6)
Briefly one can write the relation (C5) by means of tensor des-
ignation

v/

<
n' =T n. (C7
Transformation formula (C4) for the Stokes parameters
does not change its form. The elements of the matrix F' can
be expressed through the averaged products of the elements of
the matrix 7" (i.e. through the elements of tensor (C6)) by for-

mulae analogous to mentioned above, namely:

Fy

EQ ) = % [Tllll + T2121 + (T1212 + T2222)] s

F
QI = % [Tllll — T2121 + (T{212 - T2222)] )
1;;QQ
FIU =Re (T'112 £ o),
Qu
A
F(I;\// =Im (71112 F Ta221) s
F (CB)
FUI =Re (T1121 £ T12),
U
F
FUU =Re (Th122 = Tha21),
Vv
Fi
FUV = —Im (T1221 F T122),
VU
AL T Y
. = —Im (Th1121 = Tm12) .
vVQ

Thus, the transformation law (C4) for the Stokes parameters
is more general than (C3) and it is more convenient. Let us
consider now the transformations of the second type.

D.I. Nagirner & J. Poutanen: Compton scattering of polarized light

C.2. Transformation under the basis rotation

As it was mentioned in the Appendix B, when bases are trans-
formed, only the angle x connecting the transversal components
of the vectors ¢;) and ¢, has a physical meaning. When we
choose a new polarization basis, # is transformed as an usual
matrix:

”fa/b') = £ nan Sy s (C9)
or by means of the matrix designation
' = f7 confoo, (C10)

where quantities faa/ form the matrix

¥oono [ €osX sin x FloN = F_ay = FT Cl1

Jeo (_ cin COSX) . F00 = =0 ="00. €1D)
This matrix connects the transversal components of the poten-
tial vectors as well. The corresponding transformations of the
Stokes parameters 7' = L#i may be obtained by the same way
as above. The resulting transformation matrix (Chandrasekhar

1960) has the form:

1 0 0 O
0 cos2y sin2y O
0 —sin2y cos2y 0
0 0 0 1

Ly = (C12)

Appendix D: relationships between vectors of different bases

In the text of the paper there were introduced several three-
dimensional bases in the frame F. The first basis 1y, 15,1 con-
nects only with the frame F, i.e. with the electron gas as a whole.
The second one is formed by the polarization bases together
with a photon momentum vector. Namely, the external basis
ef*(w), e5*(w), w for the photon w (Eq. (3)) and the analogous
basis for the photon wj, and internal bases (14) for the same
photons. To obtain the expressions for the scalar products of
both three-dimensional and four-dimensional vectors, we need
the relations connecting the vector coordinates in mentioned
bases. We give such relations in this Appendix.

The directions of the photon propagations before and after
scattering can be expressed by the vectors l1, I, ! in the follow-
ing manner

vV 1—nt(cosply +sinply)+nl,
1 —n2(cospr by +singi L) +mi l,

w =
wp = (D1)

and the external polarization basis for the photon w

l—nw .
e w) = \/_1%‘? =4/ 1 —=n*l—n(cospl; +sinply),
e (w) = w x1 =(sinpl; — cosply), (D2)

V1—1n?
and analogously for the photon w1, if we replace 1, ¢ to 1, ¢1.
The cosine of the scattering angle is given by (11). The vectors
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of the internal basis for w in the laboratory frame are defined
by (14) and analogously for w;. Note that e;(w;) = —es(w).
At the same time, though the four-vectors eff, (k) = ef},(k1), the
correspondent to them space-vectors in the laboratory frame
differ, because in order to reduce four-vectors into the three-
dimensional ones we must add to them the different vectors
(proportional to k and k,, correspondently).
It is easy to obtain the relations

el(wy) = —peiw)+ V1 - p?w,
w; = V1—ple(w)+pw (D3)

and similar equations with replacing w < w;.

The basis e;(w), e;(w) is the most important for us, and
we call it the main basis.

Now we give coordinates of the electron momentum in the
frame F in different bases. Let its expression in the basis I}, 15,1
be the following

Q=ﬂ(cos¢l1+sind}l2)+nl. (D4)
Then the cosines of its angles with w and w; are

¢ =w=nr+V1 -7 V1- K cosw — ),

G =w =K+ Mﬂ cos(p —p1).  (DS)

The azimuth of the vector €2 in the main basis was denoted in
Eq. (15) as ®. Then

G = puC+V1—p?y/1—¢*cos?,
/1= 2
K = ?7C+\/17—<2[(m—/u7)cos®+0l sin @]. (D6)
— K
Many indentities are following from the given formulae, but we

omit them. Let us give here the expressions for the four mixed
products:

C=(lww)=+1-17? \/1—77% sin(p — ¢1),
Cao = Quww)=+1—p2/1-(%sind,
N

\/T—Mz [Ci cos ® — (1 — pn) sin @],
Coy = Qw1 ) =-Ci ¢
L Vi=¢
1— p?

C, = (lw))=
(D7)

[k Cy cos® — (n — pmr) sin @].

Their squares are expressed by means of introduced cosines:

Cl=1-n"—mn —p’+2nmp,

Ch=1-C =G -p’+200p,

C2 = 1-1n* - —rK*+2nCk, (D8)
Cf)l =1-n =G — K420 (k.

These products satisfy also the identity
CQ-Col+C,,w—-C,w; =0. (D9)
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From this equation we may obtain many others. Note at last that
in the main basis vector [ is presented as:

[ = m—un

- = e(w)+
— M

er(w) +nw. (D10)

C
V1= p?
Appendix E: rotation angles of the polarization basis

To describe the scattering of the photon and electron of momenta
k, p before and k, P, after scattering, we need the set of the
polarization bases. It is the external basis gf;)(k) defined by
Eq. (B6), and gfz)(kl) for the photon of momentum k,, and
also two internal bases: Q}Z)(kﬁ) defined by (B8) and Q}Z)(kl),
which have two identical vectors (0 and 1). Two others (2 and
3) differ by a sign. In this Appendix we give the rotation angles
between the internal and external vectors for each photon. First
of all, we find these angles in the frame F for the scattering
by the electron at rest. Let denote x the rotation angle of the
internal polarization basis for photon w to the external:

0 8% (w) + sin x° e (w),

0 G?X

ej(w) = cosy

e)(w) = —siny (w) + cos x° et (w). (ED)

Finding the scalar product of vectors (3) and (14) one obtains

cos’ = (m — pm/V1-17 V1= 2

siny? = —C/v/ 1 —m2 /1 — 2. (E2)
In the same manner for the photon w:

cosxi = (7 — un/\/1 =1 V1 - p?,

siny] = Ci/y/1 -2 /1 —p2, (E3)

that is obtained from (E2) by replacing w < w;.

Let us now find the transformation angles for the scattering
by electron of an arbitrary momentum in the arbitrary frame of
reference. For the photon k£ we have:

—cos x = e'(k) e (k) = el'(k) e5* (k)
_ ElEP k) — Uk G P - qlkf) @D — LK) @ )]

J kB — Uk g Ame ’

—sinx = ef' (k) €5" (k) = —3' (k) e* (k) (E4)
_ 9UPkp —EUBEE)
\/ (kPP — Uk qAme
These expressions in the frame E are simplified:
_ v —pn) — 2l -k + 0 —n)(C]
cosy = )
VIi=n(l—pA
. (Y=20C —2(1-pC,
siny = — (ES)
VIl —mA

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1993A%26A...275..325N&db_key=AST

TIO3AEA - 22757 J3Z5N

(]

336
where now
A RO-200 -0 (-l A+2 Lo

1—p A

For the photon w; all expressions are obtained by replacing
w < wy. In particular, in the frame F

vy —pm)—z[(1 —wrK+M—mn)]

cos X1 = )
VIi-n(Q-mA
SinX1 - (’Y_ZCI)CZ-FZ(]- _N)Cwl . (E7)

V- -pmA

Substituting the expressions for &, C,, and C,, to the (E5) and
(E7) and denoting

cosU = [(y— 20T~ 21— (2 cos®/A,

sin¥ = z4/1—¢?sin®/A (E8)
one can find that in the frame F

x=x"-9¥, xi=x{+V. (E9)

Note that in order to verify the basic identity between sines
and cosines of this Appendix we must use the relations of the
Appendices A and D.
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