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A relativistic kinetic equation (RKE) describing Compton scattering is formulated. Methods are proposed for
calculating the frequency and directional redistribution functions for radiation scattered by relativistic
Mazxwellian electrons. The resdistribution function is represented by series expansions in three limiting cases:
a) low frequencies (hv<mc?); b) nonrelativistic electrons (kT €mc?); and, ¢) ultrarelativistic electrons
(kT>mc?). A method is developed for calculating the redistribution function in the general case. Explicit
expressions are obtained for the redistribution function in the case of scattering by weakly relativistic electrons

and are used to derive the limiting forms of the RKE.

1. Introduction. Compton scattering, i.e., scattering of
radiation by electrons with a change in frequency, plays a
large role in the formation of the spectra of a number of astro-
physical objects. Investigators have been interested in Compton
scattering for a long time. Scattering of x rays or loner-wave-
length radiation by an almost nonrelativistic gas, when the
photon frequency shift in each scattering is small, has been
studied in a large number of works (Zel’dovich, 1975; Syun-
yaev and Titarchuk, 1980; Pozdnyakov et al., 1982). Scatter-
ing of low frequency radiation by relativistic electrons with
power-law (Blumental and Gould, 1970) and Maxwellian
(Poutanen, 1990) energy distributions has also been investigat-
ed.

In several papers (for example, Agaronyan and Atoyan,
1981; Arutyunyan and Dzhrbashyan, 1985; Ribberfors, 1975)
concerning Compton scattering, no restrictions were imposed
on the photon and electron energies. In these works expres-
sions were obtained for the frequency and directional redistri-
bution function for radiation undergoing Compton scattering by
an isotropic electron gas. A detailed derivation of these expres-
sion and citations of preceding works are given in the paper by
Nagirner et al. (1991).

In the present paper we propose methods for calculating
the redistribution function in the case of scattering of radiation
by a Maxwellian electron gas with different ratio of the gas
temperature and photon frequencies. This problem has been
solved correctly for a quite wide range of photon energies and
for any electron temperature only by Kershaw et al. (1986).
We shall extend these limits and increase the accuracy of the
calculation of the redistribution function. We shall also give
explicit expression for the redistribution function in the case of
scattering by an almost nonrelativistic electron gas and we
shall derive from them the limiting forms of the relativistic
kinetic equation (RKE).

In Sec. 2 we give the general form of the RKE and we
present expression for the intensity of singly-scattered radiation
and for the redistribution function in the case of monoenergetic
electrons. In Sec. 3-we propose a new method for calculating
the integrals over the Maxwellian electron velocity distribution
function. In Sec. 4 we consider scattering by an ultrarelati-
vistic gas. In-Sec. 5 we give a method for calculating the
redistribution function for low-frequency radiation scattered by
relativistic electrons. In the last sections, we present for non-
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relativistic electrons the redistribution function in the form of
an asymptotic series, we give explicit expressions for the
redistribution function in the case of scattering by cold elec-
trons, and we derive in terms of these expressions the RKE for
this case.

2. Redistribution function. We assume that the electron
gas is in equilibrium and nondegenerate. Then the electron
momentum distribution in the coordinate system which we call
E and which is embedded in the case is determined by the
relativistic Maxwellian distribution with some temperature 7.
In this case, in the same system E, the relativistically invariant
and dimensionless frequency and directional redistribution
function in the case of Compton scattering is given by the
formula (Kershaw et al., 1986; Nagirner et al., 1991)

R (x, x, p) = mi(%yj} €"R (x, x,, p, 7) d, M

where x; = hv;/mc? and x = hv/mc? are dimensionless photon
frequency before and after scattering; y = mc2/kT is a parame-
ter of the Maxwellian distribution; u is the cosine of the scat-
tering angle; and, K,(y) is a modified Bessel function. The
lower limit in the integral (1) is

Te = To(X, X, B) = (x — x, + Qts)/2. )

Here Q2 = (x — x)2 + 2q, t« = (1 + 2/@)12, ¢ = xxyw, w
= 1 — pu, and the function of four arguments, which appears
in the integrand and is proportional to the redistribution func-
tion in the case of scattering by electrons with fixed energy
ymc? and an isotropic momentum distribution, is given by the
expression

R(x,x,,p,'r)=—é-+gz—_%lq-:—2(l—L)

xtx (y—x_ y+x) rf1 1
S i)

©)]

where @2 = (y = x2 + r,a?2 = (y+x)2+r,r=(1+
w/w. A detailed derivation of the redistribution functions (1)
and (3) is given by Nagirner et al. (1991). The expression for
R(x, x1, p, v) reduces to the following form:

2 up 2, dSv+ud) - QGBrv+d)
R (x, x;, p, 7) Q+ v[l q+ 2P ], (O]
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where u = a; —a = 2y +x; —0)x + x)/(a+ ap),v =
aa;. There is no loss of accuracy in using Eq. (4) for calcula-
tions, as happens, for example, for small x and x,, if Eq. (3)
is used directly.

If we fix x;, p, and v, then the redistribution function is
determined by Eq. (3) for values of x such that x~ < x < x*,
where x* are determined from the condition ¥ = v«(x*, xy,

®):

p+oy(y+x)wzwa
14+ 2w+ X2t

xt=x, ¢Y=2+1 &)
For fixed x, p, and + the limits for x; are given by Eq. (5), if
in Eq. (5) the substitutions x; < —x and a; by a are made.
Finally, the expressions for the limits of p are as follows:

px=_xl;l[zz+7(x,_x)zzmﬁ]. (©6)

It is easy to verify that the redistribution function (3) is sym-
metric with respect to frequency:

R(x,, X, K, T) = R(xv X, by ¥+ X — xl)’ (7)

and the complete redistribution function (1) has the symmetry
property, following from Egs. (2) and (7),

R(x,, %, p) = €%~ 9R(x, x,, 1) ®)

which reflects the equilibrium nature of the electron distribu-
tion.

We now find in terms of the redistribution function (1)
the RKE describing the change in the frequency and directional
distribution of the photon gas in the case of Compton scatter-
ing:

10n o1, =
<3 FoVn=—"7[ xdx J do, ©)

X [R(x, %, p) (1 +m)yn, — R(xp, %, ))yn(l +n)l

Here n = n(r, t, xw), n;; = n(r, f, x;, wy) are the average
occupation numbers of the photon states and are related to the
intensity of the radiation by the relation I = 2h#’n/c?; w is a
unit direction vector; p = w'w;; N, is the electron density in
the system E; and, oy is the Thomson scattering cross section.
If the radiation intensity is determined by the Planck function,
then the property (8) of the redistribution function ensures that
the collision integral in the RKE (9) vanishes.

Let radiation with intensity Iy(x, w) be incident on a unit
volume of the electron gas. Then the singly-scattered radiation
in the system E will be characterized by the intensity

I (x, ©) = nox f: %I d*o.R (x, x,, p) I(x, @,). (10)

We now proceed to study the function R(x, xq, p).
3. General case. Following Kershaw et al. (1986), the
redistribution function (1) can be represented in the form

3 e (2 2 er- -
Rxxm=gmrmloty Yy g AL .
+ L) +y 5 (AL - L),
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where p, = (O« £ @ + X))/2, AL = +2 + 29 — ¢%) —
y(x + x;). The quantities L,* are integrals of the form

R Y A (12

Here ¢, = p + A/r, b = »/r. We note that the lower limit
of the integral c, is always positive and c_ is negative only
forx > 1,x;> lLandp_ < p <py,pu, == [(x2 —
1(x,2 — 1)]2)/xx;. Thus c_ > O for the entire photon spec-
trum except for y-rays. For this reason, we confine our atten-
tion first to the case c_ = 0.

In order to calculate the integrals (12), we represent the
root in the expression for L,* as a contour integral using
Cauchy’s formula

Vitp i z-pyVi+z (13)

We take the integration contour to be two rectilinear sections
along the imaginary axis from ooi to i and from —i to — ooi
and a semicircle passing through the points i, —1, and —i.
The sum of the integrals along the rectilinear sections is 1/2(1
+ p2)V2 and we make in the integral over the semicircle the
substitution of variables z = —sin2¢ + icosp(l + sinZp)l’2 (¢
ranges from O to «). This gives

P _2 ¢ de " =
il op_”_l+<’5,,, n=0,1, 14)

where énl is the Kronecker delta. Substituting these expres-
sions into Eq. (12), we obtain

It _zf, Pyl

e Ps
" Yoz —1 8

b L1

e E(b(c, — 2))do +

n=0,1. (15)

Here E; is the exponential integral. The expression for the
quantities L,* presented by Kershaw et al. (1986) were de-
rived by representing the roots (13) in terms of continued

fractions, and are obtained if the integrals over ¢ are repre-

sented as a sum according to the quadrature formula of rectan-
gles. The representation of L,* in the form (15) makes it
possible to use Gauss’ formula and to calculate them with high
accuracy for small orders of the quadrature formulas.

Now let c_ < 0. The integrals (12) can be represented as
a sum from c_ to 0 and from 0 to oo. The integral over the
second interval can be expressed in terms of the Struve and
Neumann functions (see Gradshtein and Ryzhik, 1962)):

In calculating the first integral, we replace the expression (14)
for the roots by

2 x d —\nt+l
__LW=R!0;%ZL?T_6~H "=0’1’ p<0’ (17)

where z can be expressed in terms of ¢ just as in Eq. (14).
Thus

o 1 =0,1 (16)

o x (— L+
fer—E_ -2 " AT g (b +2)

T g 7tz
18)
1—e™>-
— E, (bz)1do + 2 8,
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Methods for calculating the functions H, and Y, are given
by Luke (1980). Methods for calculating the function E;(2)
itself and related functions are given in the Appendix.

Ifx, x; << 1, 0or b >> 1, then in calculations using Eq.
(11) there is a loss of accuracy. For this reason we shall exam-
ine these cases separately. In the next section, in order to
complete the picture, we present a convenient method, given
by Kershaw et al. (1986), for calculating the redistribution
function in the case of scattering by ultrarelativistic electrons.

4. Ultrarelativistic limit. We assume that b = y/r <<
1. Then we make the substitution p = (u — 1/u)/2 in the
expression for L,*. Expanding e?2% in a Taylor series and
integrating by parts, we obtajned instead of Eq. (12)

. =1 b
L=3%7(2;) B (557).
L 2w 1 * bu,\ e
- 32?(“) ( 2 ) M
where uy = (¢« £ 1)(Q + x + x;)/2\/r. Thus the redistribu-

tion function will be given in the form of a rapidly converging
series:

(19)

3e " 2 2)’&
R (%, %, ) = 3,_:1{0) {Q Sl R Q_},

£ b
: 2 kl (zu ) Ekﬂ (—;i) (Az * an)-

k=0

20)

No loss of computational accuracy occurs with these formulas.

In the next section we present a method for calculating the
redistribution function of low-frequency radiation scattered by
relativistic electrons.

5. Low frequencies. We take as low frequencies x <<
1, i.e., hv << mc2. To simplify the derivation we assume that
x, x; = 0, x;/x = ¢ = const. Since dx; = xd§, as follows
from Eq. (7), the product xR(x, £x, u, ) has a finite limit as x
- 0. We expand it in powers of x:

AR (% b ) = % Ry (& 1) Q1)
An expression for ry was derived by Arutyunyan and Dzhrba-
shyan (1985). It is easy to expand the function with inter-
changed frequency arguments. The expansion coefficients will
be the same as before:

XR (%8, x, 1) = %, (= 2" R, & 1 7). (22)

n=0

A formula for R, is obtained by expanding 1/a and 1/a, for
small values of x and x; in Legendre polynomials:

R =500t g {[1 48, /5] P, ()

@
n+1 I+B§ n+n-—4
]wzﬁzaz wes (D). + wta? [ 2n+$5

+ [1+88

P ®F IO (g ]

where Qg2 = (1 — §)% + 2wk, ag? = 42 + 1, T = ylag, B,
= (—§)". The property of the expansion coefficients

R(/E p, ) = (1)E"R,GE 1w ) (24)
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can be derived from Eq. (22) or from the explicit expression
(23). The fact that the redistribution function R, for low fre-
quencies x and x; depends only on the ratio £ = x;/x was
employed by Arutyunyan and Nikogosyan (1980) and Nishi-
mura et al. (1986) in order to derive some solutions of the
kinetic equation.

In order to calculate the function R(x, x;, u, ) itself, the
expansion (21) is no more advantageous than Eq. (4), but it
does make it possible to calculate easily the redistribution
function averaged over a Maxwellian distribution. We substi-
tute Eq. (21) into Eq. (1). Integrating over v, we obtain

R (x, x, p) = 3'%‘%% *'R, (& p). (25)

Here

-~ n+l
R, (E, p )—}‘Q06 ot A +B/8 1, + (1 +B,E)—5 W Iismea 26

1+ 2 _
+ B,.E[n +n “1‘.,‘z+(,,.,.3)(M nt2, )]'

wE mn+S Tt 2n + 5 32

and the integrals

Iulzl = f:

e p (T)/ a;’i dr. @7

These integrals can be calculated with the help of the recur-
rence relations

==y, .+ P,T)/asVn,
=R@E-11,,,,
+@2n—-1) P, (T4)/as*V/ (n 2n - 3)),

n,u+l

-y2n-1)1

28)

where a2 = 442 + 1, T = valas. If b >> 1 0or yy« >> 1,
then Iy; and I} can be calculated with the help of the Gauss—
Laguerre quadrature formula; otherwise we use Eq. (15) to
calculate Iy; and Iq. It should be noted that for y > 100, a
loss of accuracy occurs in Eq. (28) during subtraction and the
recurrence relations cannot be used. Then the original formulas
(1) and (4) should be used.

6. Nonrelativistic limit. We now give an expansion in
powers of 1/y of the photon redistribution function in the case
when the photons are scattered by a nonrelativistic electron
gas. We assume that y is large (the temperature T << mc2/k
= 5.93-10° K). We expand 1/a and 1/a, in Legendre polyno-
mials:

G N G KT

+ a=0 »

(29

where ay = [(x + xt« £ Q)/2, P,t = Py(p,/ay). Substi-
tuting Eq. (19) into Egs. (3) and (1) and integrating over 7,

we obtain (Kershaw et al., 1986)
_3e

R %0 ) = 330K, ) % R 0
2 n! 6L +(n+1)gtP,,,
R==8,—-"7{
" Q 0 qz — a_)lH-l
\ G1)
- 0,P + (n+ 1) gtuP},,
a)™ ’
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where ©, = ¢2 — 2 + (n — 1)q. The asymptotic series (30)
must be summed, as usual, until the average term is smaller
than the preceding term. If x, x; << 1, then a loss of compu-
tational accuracy occurs with Eq. (31). Subtracting terms
proportional to ©, analytically, we obtain an expression for
R, without this drawback:

mols _n! A 2045, P}
e A S e oy .
D) g [ )
Here Os = 2 + gs+(q + 2), g« = rq, and the difference A,"
= P,~ — P_,* is calculated using the recurrence relation
(n+ 1) A" = 2n + 1) [p_Aj/a_ + PtAL] — nAr! (33)

with A0 = 0, Ap; = —2rg?t«/Q«. The quantities S, are given
by the following recurrence relation:

So=1, S, =-8/a, + (- a) ™, 34)

If the redistribution function need not be calculated to
high accuracy, then the first three terms in the expansion (30)
are sufficient. These terms give the following relative error (&)
in the calculation of R(x, x;, p): if y = 10, then & = 0.1 with
u = —1, & = 0.015 with p = 0.0, and ¢ = 0.003 with p =
0.8; if y = 100, then ¢ < 2-10~%; for higher values of y, &
behaves as 1/y2.

Next we show, with the help of the representation (30),
how the limiting forms of the RKE are obtained for an almost
nonrelativistic Maxwellian electron distribution.

7. Scattering by cold electrons. For large y, the function
R(x, x1, p) is not small only for those values of x, x;, and u
for which « is close to 1. We represent the difference vy« — 1
in the form

- 2
e (xx,p)—1= (—q%—ﬁ-)—* 395)
where &2 = q(Qt« + 2 + x; — x). The equality ¢ = x; — x
means that scattering electrons are stationary. In this case

X 1- w—l-i
- xw’ b= x x’

A=Y (36)
so that R(x, x;, pn) is a delta function. We take this into ac-
count explicitly. In the limit y - oo, we have the following
expansion of the exponential function in delta functions:
l ”

‘[—"_’l‘z‘,n'«)' 89 + 758" (0, (37)
which can be easily verified by Fourier transforming both
sides of the equation (or performing a two-sided Laplace trans-
form; both sides of the equation (or performing a two-sided
Laplace transform here and below we take into account only
terms of order 1/y). In calculating the x; or u integrals of the
products containing a delta function and its derivatives, we
employ the formula

ISP 0) 8 (O dy
dqn ﬂx)_ _ (38)
( 1) [X’ (y) d}'] [xl (y)]"_’o, n—0,,1,... N
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Here it is assumed that x(y) vanishes only at y = y, (and the
derivatives of x(y) do not vanish anywhere), and that the func-
tion itself and its derivatives are finite everywhere.

The substitutions (36) greatly simplify the functions (32):

Fy
R{|‘|_1¢q = m—, Fy = w, + wg, Wy = 1+ p,z,
wF,
R{Ix-x-& =—|*yp
1= Vg (g +2)

Fa=2Q+p-5p)) - pQ2=-3p+3p)g+p(l-pd,

(39

since Q2 = q(q + 2), O« = 2q(q + 2)/w, d = /2Q. From
the quantities (39) we must eliminate either p, if the integral is
over u, or xy, if the integral of the delta function is calculated
over x; according to Eq. (36). The quantity ¢ must be replaced
either by x; — x or by x2w/(1 — xw). In the first case, x;
ranges from x to x/(1 — 2x) for x < 1/2 and to o for x >
1/2; in the second case w ranges from 0 to min{2, 1/x}. Using
the asymptotic expression ¢~ Y/K,(y) ~ (y/m)12(1 — 15/8y)
fory >> 1, we obtain from Eq. (30), to order 1/y,

15)

R (% X ) = g {b(x, x—q)[F.(l—s—y

(40)
wF,y

5 o B X=q
}’(¢1+2)]+ 77y6< d )}'

If the expression (40) is substituted into the RKE, then the
term with 6" leads to very complicated expressions. For this
reason we shall not do this here. At y = o, i.e., in the case
of scattering by stationary electrons, the kinetic equation is
quite simple:

10n

6 .
L rovn= '"f A po, n, (1

é41)

+ n) Fy lxl-x/(l—xv) —n(l+n)Fel xymx/ (1420) I

For the case when n = n(z, x) does not depend on either
r or w, i.e., the radiation field is homogeneous and isotropic,
an equation of the type (41), as well as the differential equa-
tion of the Fokker—Planck type following from it, were de-
rived for low frequencies by Ross et al. (1978) [see also
(Nagirner, 1984)].

We now consider the case when the energies of the non-
relativistic electrons and soft photons are of the same order of
magnitude (~ k7).

8. Nonrelativistic limit and low frequencies. We set £
= h/kT, i.e., x = hv/mc? = %/y. Then

0=‘07yz, ‘h=a'c/)'2, E=x—;|Wy E.=x'7x',(2—w),

Q=0/y, F=F-5y+2% 0~ (F+2y2. 42

In the low-frequency limit, different ratios of the characteristic
energy lost (or acquired) by a photon in a single scattering
event and the characteristic frequency scale over which n
varies significantly must be distinguished. If the broadening of
an atomic line in the visible or ultraviolet region is studied in
the case of scattering by nonrelativistic electrons, then the

D. I. Nagirner and Yu. |. Poutanen 265

© American Institute of Physics * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1993AstL...19..262N&db_key=AST

St1- ©.C107 TZ62N0

1
[s2]]

!

profile of the absorption coefficient in the line is obviously
much narrower than the average frequency shift of the photon
scattered by an electron, and the recoil effect and the differ-
ence between £ and X¥; can be neglected, i.e., we can set £; =
X = x, everywhere except the difference £; — %. Dropping
corrections of order 1/y, we obtain the redistribution function

3wyVy

% — ¥ )2
Ty v 0 (= s

(- ) =
Such a redistribution function was obtained by Hummer and
Mihalas (1967) [see also Mihalas (1982)], who averaged it
over angles, and also obtained a redistribution function close to
(43) corresponding not to a Rayleigh but rather a spherical
scattering phase function (i.e., containing the factor 1/4w
instead. of 3wy/167).

Conversely, if one is calculating the formation of the
continuous spectrum over a range much wider than the photon
frequency shift occurring in each scattering event, and the
spectrum itself is smooth enough, then the integral RKE can be
replaced by a differential equation in the frequency. Substitut-
ing (42) in Eq. (40), expanding once again all functions in
powers of 1/y, and confining attention to terms of order 1/y,
we obtain the following expression for the redistribution func-
tion in this approximation:

R (x, x,, p) dx, ~ (43)

R, %, p) = R(x, %, 1)/, (44

where

R T ) = 1o (g (L4 wi/5) = 20 (1 + 4 = 3p2)/31 8 (5

— B+ ww/y [ (B -D) + (F+ DY E - D,

and a not too complicated expression is obtained after the
effect of 8” is calculated.

Substituting the redistribution function (45) into the RKE
and using the rule (38), we arrive at the equation '

1 ~

?%%+mvn=°r”.%faqwl{(nl“”) [wo (l _2%" }’)

v
¥y

+%(1 — -3+ 2 ] + TE (4 n (L4 2n)

+4(n/ +n (1 +n)l} (46)
Here n = n(r, ¢, w, £) and n; = n(r, ¢, w, %), and the deriva-
tives are calculated with respect to the frequency %.

When the radiation field is homogeneous and isotropic,
the equation (46) becomes the well-known equation derived by
Kompaneets (1956),

l?ﬁ_ﬂd_'l_‘?. [;"4 (n+n’+a—n)],

coat y Xox 0%, 47

which corresponds to the directionally averaged redistribution
function (45)

FEEH={1+EF-2/)8F-5

+ERE-H-F+)Y F DD/ A (48)

Equations like (46) and (47) have been derived by a more
traditional method, namely, by means of Taylor expansions in
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powers of n (Babuel-Peyrissac and Rouvillois, 1969). We,
however, have obtained explicit expressions for the redistribu-
tion function for these cases.

9. Conclusions. We have presented well-known repre-
sentations, and given new ones, for redistribution functions in
the case of scattering of radiation by a Maxwellian electron
gas, which make it possible to calculate the redistribution
function for any values of the parameters. If the electron tem-
perature is such that y = 10, then the redistribution function
can be calculated using Eqs. (1) and (4) with the help of the
Gauss—Laguerre formula. If the gas is ultrarelativistic, i.e., y
<< 1, then the expansion (20) must be used. If both frequen-
cies are small, then the redistribution function is best calculat-
ed using the series (25). In the case y >> 1, the calculations
can be performed using Eqs. (30)—(32). Finally, the expres-
sion (11) must be used in the intermediate case. These ranges
of values of x, x;, and y overlap. A program for calculating
the redistribution function to a fixed degree of accuracy has
been written on the basis of the formulas presented in this
paper.

For limiting values of x, x;, and y the redistribution func-
tion was represented by expansions which can be used not only
to calculate the function but also to investigate different quanti-
ties analytically. As an example, we demonstrated how the
limiting forms of the kinetic equations can be obtained with the
help of such representations.

In studying different astrophysical objects in which Comp-
ton scattering plays a large role (for example, the accretion
disks of binary x-ray sources and the nuclei of active galaxies),
the polarization of the x-rays from these sources could become
an important source of additional information, so that it is of
great interest to investigate the scattering matrix of polarized
radiation scattered by a relativistic electron gas. The scattering
matrix for radiation scattered by an isotropic monoenergetic
electron gas was derived by us in Nagirner and Poutanen,
1991). The next step in the construction of a reliable apparatus
for interpreting polarization observations in x rays is to trans-
fer the methods given in the present paper to a matrix describ-
ing the frequency, directional, and polarization redistribution
of radiation. This will be done in a separate work.

APPENDIX

In order to calculate the value of the exponential integral
E;(z) with complex argument z = ¢ + id, the complex plane
is divided into two regions: In the first region |z| < 8, and in
the second region |z| > 8. In these two cases we employed
rational approximations and the Padé approximations, respec-
tively. We calculated the coefficients for approximations of
order 20 (Luke, 1980). Such approximations give high compu-
tational accuracy over the entire complex plane, except for the
region near the negative real axis within the annulus 8 < |x|.
In this region, E;(z) can be represented by the from

dz'

zZ

E () = E,(c) - insign (arg2) + [ e (49)

The function E; with negative real argument can be calculated
in terms of its expansions in Chebyshev polynomials [see Luke
(1980)]. We write the integral on the right-hand side in the
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form of the series

.Z e-z’ de,r = e-c"‘io (_ i%)u-l le
(50)

1
J.=f we*du, d=i(c- z).
. .

The value of the integral J,, can be calculated using the recur-
rence relations

Jo=i(e™~1)/d, J,=i(e™ - nd,_)/d, 1)

if d is not very small. In the case |d| < 1, the quantities J,
can be calculated with the help of the series

@ _ik

L= FTg sy (52)

k=0

We now consider the function e*[E (z + Az) — E;(2)],
employed in the expression (18). For small values of Az (] Az|
< 0.01), loss of accuracy can occur on subtraction. If |z| is
not too small (|z] > 0.1), then this can be avoided by repre-
senting this function in the form

€ lE (z+42) - E (9)]1=AE,(29) — E,(z + Az) (e7* — 1), (53)

where E (2) = €*E (2), AE,(z) = E/(z + Az) — E,(2). We
write the difference AE,(z) in the form of the series

AE, (z) = i (A2)'d,,

n=1
1 1 54
dy=E, (), dy =737 (7= )
If, however, |z| < 0.1, then the function AE(2) = E,(z
+ Az) — E;(2) is best calculated using the series

cll
n'n’

AE,(z) = —In (1 +%) +Az§: (-1
(55)

¢=1, ¢c,=@+Az)c, +2.
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We have thus examined the question of calculating the function
E;(2) and the functions associated with it for any value of z.
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