
Pergamon 

J. Quatar. Specaosc. Rodiar. Transfer Vol. 51, No. 6, 813-822, 1994 pp. 

00224073@4)EOO13-V 
Copyright 0 1994 Elscvier Science Ltd 

Printed in Great Britain. All rights reserved 
0022-4073/94 $7.00 + 0.00 

COMPTON SCATTERING MATRIX FOR RELATIVISTIC 
MAXWELLIAN ELECTRON DISTRIBUTION 

JURI POUTANEN 
Observatory and Astrophysics Laboratory, SF-00014 University of Helsinki, Finland 

(Received 5 November 1993) 

Abstract-The Compton scattering matrix (CSM) describing the scattering of polarized 
radiation by electrons is reduced to the form of a single integral over electron distribution. 
Different methods of calculation of this integral for the Maxwellian electrons are proposed. 
Series expansions of CSM are found in the limiting cases (ultrarelativistic and non-relativistic 
electrons, and small photon frequencies). 

1. INTRODUCTION 

Compton scattering is one of the important mechanisms of the energy exchange between the 
electron and photon gases in the case of small electron density and sufficiently high temperature. 
The problems of radiative transfer taking Compton scattering into account are reduced in general 
to the integro-differential equation where the kernel is the Compton scattering kernel (CSK). In 
the case of small electron and photon energies (hv, kT, 4 m,c’) this equation in the Fokker-Planck 
approximation reduces to the diffusion (in frequency) equation well known as Kompaneets 
equation,’ which gives a possibility to solve many problems where the evolution of photon spectra 
due to the interaction with the electron gas is studied. 

The first investigation in the general case without any limits on the photon and electron energy 
gave a presentation of the CSK in the form of a complicated multiple integral which then is 
calculated by means of Gaussian quadrature, but this gives an incorrect result in a wide interval 
of scattering angles where the cross-section itself is large. Only a few years ago the first paper 
appeared where the correct computational scheme for the CSK was presented. The CSK was 
reduced to a single integral which can be evaluated with a high accuracy.2 Other methods of 
calculation of this integral are given in Ref. 3. 

When we solve the general relativistic radiative transfer equation taking polarization into 
account, we meet with the same difficulties as in the unpolarized case, and the problems of the 
Lorentz transformation of rotation angles are added. The relativistic kinetic equation taking into 
account induced scattering and polarization was formulated by Nagirner.* Fokker-Planck 
approximation of the general equation was considered by Stark’ and Wilson.6 In the frame of 
double diffusion approximation (in the optical depth and frequency) Sunyaev and Titarchuk’ 
calculated frequency dependence of intensity using the solution of Kompaneets equation, and the 
angular and polarization structure of radiation field was obtained by iteration procedure based on 
an expansion in scattering orders using Rayleigh matrix [which is quite different from the exact 
Compton scattering matrix (CSM) for high electron temperature].**9 

The analytical expressions of the scattering matrix for the isotropic monoenergetic electrons 
obtained by Nagirner and Poutanen’O (see also Refs. 8, 11 where the detailed deduction is 
presented) gave a possibility to represent the kinetic equation in a form of the radiative polarization 
transfer equation, where the kernel is a product of the CSM and two usual rotation matrices, and 
the CSM is presented as a single integral over the electron distribution. If we consider the equation 
only for intensity (for the unpolarized radiation) then this product reduces to the CSK. The CSM 
for the power-law distribution of relativistic electrons was deduced by Bonometto et alI2 (see also 
Ref. 11). The aim of this paper is to give the effective methods of calculation of the CSM averaged 
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over the Maxwellian electron distribution. Methods we are using here were proposed for the 
calculation of the CSK (unpolarized case) in Refs. 2, 3. 

In Sec. 2, the radiative transfer equation for the Compton scattering of polarized radiation is 
formulated and the general expressions of the scattering matrix for mononenergetic electrons are 
given. In Sec. 3, we consider different limiting cases of the CSM. The representation of the CSM 
through the set of integrals, which can be calculated in different ways, is given in Sec. 4. In the 
following sections we derive power and asymptotic series for the CSM in limiting cases 
(ultrarelativistic and non-relativistic electrons, and small photon frequencies). 

2. THE RADIATIVE TRANSFER EQUATION AND THE SCATTERING MATRIX 
FOR MONOENERGETIC ISOTROPIC ELECTRONS 

The radiation field and the polarization degree at each point r at time t can be characterized 
by the vector of the Stokes parameters (occupation number for the scalar case) 
n” = n”(x, 0, r, t) = (ni, nQ, n”, nv) T. The radiative transfer equation describing propagation of 
polarized light through the gas of electrons (in the linear approximation) can be written in the 
following forms*” 

where xl, a1 (x, o) is the energy (in unit of m,c2) and direction of the incoming (outgoing) photon, 
fi, = ti(x, , co,, r, t), q, is the Thomson cross-section, n, is the electron density, p = o . o, is the 
cosine of the scattering angle, and 

+ 4x2z 
y+x 

1+4xy+4x* 

_2 ++Z) 

s 
ln(1 + 25) y (2) 

x(Y-2) 1 
is the Compton cross-section. Here y is the electron energy (in units of nr,c*), z = Jm, and 
f(y) is the electron distribution function, which is normalized as follows: 

The rotation matrix 

L(x) = 

s cc 

472 z’f(y) dz = 1. 
0 

1 0 0 0 

0 cos 2x sin 2% 0 

0 -sin2~ cos 2~ 0 

0 0 0 1 

(3) 

(4) 

describes the transformation of the Stokes parameters under the polarization basis rotation.“,” 
The CSM can be represented as a single integral over the electron energy distribution f(y) 

s s, 0 0 

s, 0 0 
= 

SQ 

0 0 so 0 

0 0 0 s, 
where 

7 r R R, 0 0 

Y * = Y *(xv XI, P) = Ix - XI + Q<l + 2/q)“7/2, 

q = xx,(l - p), Q2 = (x -x,)* + 2q. 

1 3 (5) 

(6) 
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We assume further the relativistic Maxwellian electron distribution: 

f(y)= (7) 

where T, is the electron temperature, K, is the Macdonald function of the n-th order. The matrix 
j(x, x, , p, y) is the CSM for the isotropic electron gas of the fixed energy y.“*” The five functions 
R in Eq. (5) have common parts, and it is convenient to introduce a set of designations, namely: 

2 q-2 1 1 
R,=s+- a_-a, 

4 ( ) + 

Here 

l+Y a:=y2,+r, y+=y+x,, y_=y-xx, r=-. 
1-P 

(9) 

Then 

R=R,+Rbr 

R,=Ra+Rw 

R v= Rb-qR,. (10) 

When the frequencies x and x, are small, the quantities a, are very close to each other, and the 
loss of accuracy can appear in the difference between them. The same phenomenon occurs when 
~iscloseto l.Ifp= - 1 then r = 0, but the singularity of R, and RU is illusory. Expressions for 
x(x, x, , p, y) in these cases are given in Ref. 11. However, we shall use these expressions to obtain 
different asymptotic and approximate formulae for g(x, x, , p). 

Matrix j is not zero only if the inequality 

z2Q2 - [y (x, - x) - q]’ a 0 (11) 

satisfies. If we fix x, x, and ,u, then we have from (11) y 2 y*(x, x, , p), where y* is the lower limit 
in the integral (5). Limitations for other quantities can be found in Ref. 11. 

The forward scattering (h = 1) is a special case, and matrix li is proportional to the unit matrix: 

@(x,x,, l,y)=46(x-x,)In(y +z). (12) 

Integration over the electron distribution gives: 

S(x x, 1)=3G(yb(x -x ) I , 

872 K,(Y) 
I (13) 

From the explicit expressions (10) we can obtain the simple relation between scattering matrices 
for the direct and inverse processes: 

~‘(X,,X,~,Y)=ff(X,X,,~,Y+X--,). (14) 
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The direct consequence of this relationship is the relation between the scattering matrix, averaging 
over the Maxwellian electron distribution: 

Rx,, x, cl) = ewWx - xl )Yb, xl, P). (1% 

This relation can be useful for checking the accuracy and for reducing the scope of the programmes 
for calculating of the CSM, because we can confine ourselves to the case x > x,. 

Now we shall consider the method of calculation of the CSM in the general case. 

3. GENERAL CASE 

Observing that the quantities q, Q, x, x, and I do not depend on the electron energy and 
introducing the designations 

6, = 
s 

O” (a? - a; )exp( -y (7 - Y 4) dy, 
Yt 

6;s m 
s 

(Y- a? + y+ 4 )exp(-y(y - y*)) dy, (16) 
7. 

we write down the expressions for the redistribution functions averaged over the Maxwellian 
distribution in the form (note that S,, S,, S, are the integrals from R,, R,, &, respectively) 

1 , 
s 4-261, 

4 
1 ) 

s= 3yeefl* 2(x+x,) 

’ 32rrK,(y) q*r 

2 s, - 24 3ye_fl* = 

32m~) 5 [( 

~+~Q(x+x,)* 

e qv 

_4s_+2s_ _12(x+Xi)s;_ 8 
qr ’ q -’ q*r* gZr26, . 1 

(17) 

The expressions for all other functions can be easily obtained from (10). Using the equations 

-=-=2u,--5 
aa: 

87 
- =3a*y,, 
ay 

and integrating 6 + by parts, we express (16) in terms of the other four functions: 

61 I=00 - 3 cP,=&a:, 6: ,=g+11_,,, 
J 

6’ =(x+x,)t* 
3 

I-I 

-y(J;, 6;=-Q+&;, 

Y Y 

6+ Q(l+q)(x+x,)+2(xfx,)r*+J; 
I = 

Yq Y2 

d;= _~_3(Q2+qr)r*__+T -g, _ rgo 
6Q 3J; 2 _ . 

Y Y2 ( Y3 Y Y J -) 

(18) 

(19) 
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Here 

,=Q’+qr(q+2), a*= Q 
37 

G t(& + 3>Q2 -+- 3rd + 2119 (20) 

0; = @P-L, + eyP+L,f ) P,=Y*(Y*)=~Q~*~(~+x,~I/~, (21) 

5 

co 
L; = exd-Y,P) 

P”dP 

c+ 
J-7 rr=J;y, c*=PJ&. (22) 

The methods of calculation of integrals (22) are given in Refs. 2, 3. 
In the same manner as for the scalar CSK studied earlieti*3 we give in the following sections 

expansions in a series of the scattering matrix in the limiting cases of weakly-relativistic and 
ultrarelativistic electron gas, and for small photon energies. 

4. ULTRARELATIVISTIC LIMIT 

Let us assume that the electron temperature is large, so y < 1. We assume as well that 
yr = &I 6 1. By making the change of variables p = (u - l/u)/2 in the integrals (22), expanding 
the exponents in a Taylor series and integrating by parts, one obtains the following expansions 

(23) 

whereu,=(t*&l)(Q+x+x,)/2< r, and Ek is the integral exponential function of order k. 
Thus, functions (22), and through (17), the scattering matrix (5) as well, are represented by the 

quickly converging series. 

5. SMALL FREQUENCIES 

In this section we consider the case of small frequencies (x, x, 4 1) of initial and scattered 
photons. Let us assume that x, x, +O, and the ratio x, /x = Xis constant. Then for x+0 the product 
xff(x, X, x, p, y) has a finite limit. Expanding it in a Taylor series in x, we have: 

xfi(x,Xx,PJ)= f &K!%Y)X”. (24) 
II=0 

Expanding powers of a, in a series in Legendre polynomials, we can find formulae for the 
coefficients of power series (24). The initial expansions are the following: 

$=;:o(:~P@ (25) 

and the expansion for l/a,, which can be obtained by replacing x by -x, . Here we denote 
ai = y2 + r. The coefficients of the expansion of matrix (10) are easy to find, substituting series, 
which follow from (25) and (24) into formulae (8) and (10) 

R,(-%4Y)=~ &-$+3 

1 0 
-g--&l -(-X)“+‘l(n +2;)y5+3)P”+3.n+I}9 

0 

R.b(X,P,Y)=&+-$ 1 t1 -(-a-‘IPn-I -&Al -(-v+'lpn+l 7 

0 0 I 
ux /% Y) = 

2 
Xn P rX2w2a;1+22n +5 n+3P+l' 

6x. 
rXw(n + 2)(n + 3) 1 (26) 

QSRT 5l/bc 
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Here for short we use the notations 

1” = (n + 1)[1 - (-X)“+j] + (n + 3)X[l - (-X)n+‘], 

Q;=(l -X)‘+2wX, P,=P,(y/a,), P,,,=P,-P,,,. 

Note that the coefficients of expansion in the second argument are the same: 

xZ@&x,PJJ)= f R(XP,Y)(-x)“. 
n=O 

(27) 

(28) 

It is following from the property of the matrix coefficients 

h”(l/X P, Y) = (- l)“X’-X(X P, “9). 

The last equation is easy to verify using explicit expressions (26). 
Substituting (24) and (26) into (5) and integrating over y, we obtain 

(29) 

gcx x, pj _ 3~ e-“* 
9 9 f xn-I - 

32~ ma),=, 
&(X P). (30) 

The coefficients of the expansion are deduced from (26) and (24) and expressed by means of the 
two sets of functions Z’ 

S.,(X,p)=--&+[l -(-X)n-qzn+_, -& [I -(-x)“+qz,+,,, 
0 

2 Xn 
&(X/J) = -- r_y2W2 zn + 5 Z n+3.n+ 17 

S,,(X,p)=2S,+ ++ 
[ 0 

6x, 
rXw(n + 2)(n + 3) 1 

The functions mentioned above are the integrals 

Computations of these functions can be performed by the recursion relations 

1 Y* nZf=-P _ - n I 
( > a$” a* 

- YZ,+_ I 9 

2n - 1 
n(2n - 3)Z, = n_2 P,_, J? +2(n - l)Z,+_,-y(2n - l)Z,,, 

a* ( ) a* 

(31) 

(32) 

(33) 

where ai = yi + r. It is necessary to calculate the first two functions of each set numerically by 
the same procedure as for integral (22). 

The recursion relations give accurate results not for all values of variables. For large y, errors 
increase very quickly, but in that case integrals (32) can be easily calculated using the 
Gauss-Laguerre quadrature. The formulae of the next section can be useful as well. 

6. NON-RELATIVISTIC LIMIT 

When the temperature of the electron gas is low, the value of y = mc’/k, T, is large. In that case 
it is possible to obtain the expansion in negative powers of y. Let us present here the terms of the 
order of l/y2 inclusively. 
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The initial expansions are 

(34) 

where 

x; =a*(Y*)=t(x+x,)t*+Q1/2, P,‘=P,(p*laf). (35) 

Substituting (34) into (16) integrating by parts and collecting the terms with equal powers of y, 
we obtain 

~6,’ x i A$Jyj. (36) 
j=O 

We express the quantities here by means of the functions introduced earlier: 

A:,,,=+, AI,,, = &J-Q’frq(q - ~)Q2+w?*19 

AI,2 = 2@* 3r@** 
. F-n” 

A,,o=Q(x+xl), 
sn 

A’ 
1-1 

=r(x+x')r*[(2q+l)Q*+q ] 
2ql-P 

* 9 

A+,,*= -s 3r Q(;4+,x1)[(2q2+4q+ 1)Q4+2q*(1+q -q*)Q’+q:(l-2q)], 

A13,0=$. A13,,=&$[-2(q + 1)Q6+rq(2q2-2q -7)Q4+2rqq*(2q - l)Q’+rqq$], 

+ 7q:(4q + 3)Q’+ 7q:], 

A+ 
3.0 

= Q<x +x,) 
~~2113 h! + l>Q* + q*U - q)l, 

AZ3,, = 3r(;q;;;)” [(4q* + 6q + l)Q4 + 2q*(3q + l)Q* + q:] - f A:,,,, 

A+,,2 = - 
15rQ(X +x,) 

8q4l-I’ 
[(q + 1)(4q* + 8q + 1)Q6+q*(-4q’ + 4q2 + 15q + 3)Q4 

+q:(--8q2+3q +2)Q2+q:(1 -3q)]-f A+,,*, 

Aiyo = _Q, A;,= -T, A;*=$ 

A,to= Q(x +x,)*, 
4 

, 

A+ _ (x +x,x? 
I.2 - zq3n3 [Q4+rq(% + 5)Q2+3w*l, 

A<,,= -@*, A;, = -3t*(Q*+rq), A;*= -3Q 

Here q* = rq(q + 2), @* is defined in Eq. (20), and 

<P** =&[(4q* + 1Oq + 5)Q” + lOq*(q f l)Q* + Sqi]. 

(37) 

(38) 
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Formulae (37) give relative error less that 2 + low4 for y = 100. In the limiting case of small photon 
energies x + 1 (for example, if we are investigating the broadening of atomic spectral line in the 
optical or ultraviolet regions due to the scattering by non-relativistic electrons) we can put x = x, 
everywhere in Eqs. (37) and keep difference x - x, only in the expression for y * [see Eqs. (6), (17)]. 
Taking into account terms of order l/y, we obtain the deviation of the CSM from the Rayleigh 
matrix in non-relativistic limit: 

Qx 
, 
x 

IT 
P) = 3&l - 15/Q) 

321r”=xfi 
exp[-~~(l+~)]~+~@}, (39) 

where w = 1 - CL, 4 is the Rayleigh scattering matrix 

&_[::;:-~:;;j , 

and @ is the correction matrix 

2+p -5~~ 4-/l -5$ 0 

@= 4-p -5$ -2-3~ -5~~ 0 

0 0 -3-7j.l 

0 

0 . 

0 1 
0 1-3~J 

w 

(41) 

7. FAST NUMERICAL SCHEME 

If we divide the interval of integration [y., co) in Eq. (5) into subintervals, and then approximate exp( - yy ) 
by linear function, we can calculate the resulting integral using only elementary function: 

dy =exp(-n,)i$,ct, ui-Pi.,) 
_t,)(p,+p, 

I+1 I I I+1 

) 

‘/z +I Pi(Yi+ I s [ - Y) +Pi+ ICY - Yi) 

I( 
&x, XI > ,uL, Y) - i 1 dy, 

7, Yi+l -Yi Q > 
(42) 

where i is unit matrix, yi = y, + ti/y, ti = (0,0.8, 1.9,4.7), pi = exp( - ti), except p4 = 0. We have used here 
the same linear approximation that Kershaw et al. 2 have done. It gives an exact result if R is 
constant. 

To evaluate this integral we need indefinite integrals jdy (k - i 6) and jy dy(i - i $). We shall calculate 
the integrals for the functions Ra,b,c,U, and find all others using formulae (10). Preventing round off errors if 
x, x, or/and r are small, we find the following expressions: 

s dyR,= -;[26 -2-f _bu’ 
4 1 4% ’ 

Id+,,-;)=yA-, 

s 
dy%=;126+4_]+:[2-v], 

j-dy(R,-;)=-$[2b+A_]+b{-;--2--(u2+3v)(+) 

+ l-- 
( > 

3 ~+-$(l-z+)-$I}, 
29 

(43) 
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where 

2E 
c=(x+x,)/2, b=p 

a- +a+’ 

v =a_a+, u = a, -a- =b(y_ +y+). (44) 

Singularity for r = 0 is illusory. If r is close to zero we use the following expressions: 

u-Q CD 
-=-> 

rq u+Q 
(45) 

where C = 2/[v, + rq], v, = v + y_ y+ + r, D = 2y_ y+ - Q2tz/2. 

8. CONCLUSIONS 

The Compton scattering matrix is presented as a single integral over the electron distribution. 
Series expansions for the ultrarelativistic and non-relativistic electrons, and small photon frequen- 
cies are given. Formulae presented give a possibility to compute CSM with high accuracy. On the 
base of these formulae we have written a FORTRAN subroutine to calculate the CSM for the 
Maxwellian electron distribution. Next step is the solution of the radiative polarization transfer 
equation, that would be very useful for the interpretation of future X-ray polarimetric observations 
of various astrophysical objects. As a first application of the developed technique, the polarization 
of the radiation scattered in the hot optically thin corona around accretion disk was calculated in 
a single scattering approximation.’ Results differ drastically from calculations where the Rayleigh 
matrix was applied. 
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