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A B S T R A C T

Observations suggest that accretion discs in many X-ray binaries are likely flared. An outer

edge of the disc intercepts radiation from the central X-ray source. Part of that radiation is

absorbed and re-emitted in the optical/UV spectral ranges. However, a large fraction of that

radiation is reflected and appears in the broad-band X-ray spectrum as a Compton reflection

bump. This radiation is delayed and variability is somewhat smeared compared with the

intrinsic X-ray radiation. We compute response functions for flat and flared accretion discs

and for isotropic and anisotropic X-ray sources. A simple approximation for the response

function which is valid in the broad range of the disc shapes and inclinations, inner and outer

radii, and the plasma bulk velocity is proposed. We also study the impact of the X-ray

reprocessing on temporal characteristics of X-ray binaries such as the power spectral density,

auto- and cross-correlation functions, and time/phase lags. We propose a reprocessing model

which explains the secondary peaks in the phase lag Fourier spectra observed in Cyg X-1 and

other Galactic black hole sources. The position of the peaks could be used to determine the

size of the accretion disc.

Key words: accretion, accretion discs – black hole physics – methods: numerical – stars:

individual: Cygnus X-1 – X-rays: binaries.

1 I N T R O D U C T I O N

The X-ray spectra of radio-quiet active galactic nuclei (AGNs) and

X-ray binaries can often be decomposed into a power law like

continuum with a cut-off at 100 keV (Zdziarski 1999), soft

blackbody emission from the accretion disc and/or neutron star

surface, and the Compton reflection continuum with the associated

iron emission line at ,6.4 keV (see e.g. George & Fabian 1991;

Nandra & Pounds 1994; Reynolds 1999). The reflection features

are produced in a rather cold neutral material which is often

identified with an accretion disc. Correlation between the

amplitude of reflection, R, and the photon spectral index, G, in

X-ray binaries and AGNs (Zdziarski, Lubiński & Smith 1999;

Gilfanov, Churazov & Revnivtsev 2000a) implies that a relatively

large fraction of reflection originates close to the X-ray-emitting

region. In the case of X-ray binaries, some fraction of reflected

photons, however, can also come from a companion star (Basko,

Titarchuk & Sunyaev 1974; Done & Życki 1999; Vikhlinin 1999)

or an outer part of the accretion disc. In the case of AGNs, the

delayed reflection from a distant molecular torus (e.g. Ghisellini,

Haardt & Matt 1994) can be clearly observed when the central

X-ray source turns off (Guainazzi et al. 1998).

The reflected radiation is necessarily delayed relative to the

direct radiation from the X-ray source. Studies of these delays can

help to determine the geometry of the accretion disc, the position of

the X-ray source, and the distance to the companion (Vikhlinin

1999). A number of papers were devoted to studies of the response

of the Fe line profile to an X-ray flare in the vicinity of a black hole

(e.g. Reynolds et al. 1999; Hartnoll & Blackman 2000).

Observations of AGNs with future X-ray missions such as

Constellation-X may open a possibility of determining directly

from the Fe line profile temporal evolution, the geometry of the

X-ray-emitting region and the mass and spin of black holes (see

Reynolds 1999; Fabian et al. 2000 for reviews). However, in order

to do that, observation of a bright individual flare is needed.

Otherwise, the interpretation of the line profile produced by many

flares would be complicated. Such studies are impossible in the

case of X-ray binaries even with future instruments, since the

photon flux per light crossing time of one gravitational radius is

thousands times smaller than in AGNs. As an alternative to

studying the line profiles one can use all the available statistics at

different energy bands and analyse the response of the reflected

continuum radiation to a varying X-ray source.

All the temporal studies mentioned above assumed that the

accretion disc is flat. In contrast, a number of observations indicate

that accretion discs are flared, i.e. geometrically thick at the outerPE-mail: juri.poutanen@oulu.fi
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edge (see Verbunt 1999 for a recent review). There observations

include obscurations of the central X-ray source (e.g. White & Holt

1982) and the variability properties in the UV/optical/infrared

spectral band in low-mass X-ray binaries (e.g. Mason & Cordova

1982; Vrtilek et al. 1990), the delays between the optical/UV

emission and the X-rays observed in the X-ray bursters (Trümper

et al. 1985) and in the superluminal black hole source GRO

J1655-40 (Hynes et al. 1998). The inferred height-to-radius ratio,

Hrout, at the outer edge of the disc varies from 0.15 to 0.5. This is

much larger than predicted by the standard accretion disc theory

(Shakura & Sunyaev 1973).

In this paper, we study the impact of the X-ray reflection from

flat and flared accretion discs on temporal characteristics of the

X-ray binaries and AGNs. In Section 2, we present the general

formalism for computation of the response functions and introduce

approximations that allow one to consider a linear reflection

response. Formulae describing the impact of reflection on the

temporal characteristics of the composite (direct and reflected)

signal are presented in Section 3. Response functions for the flat

and flared discs and the resulting phase lags are presented in

Section 4. Comparison with observations and discussion is given in

Section 5. Conclusions are presented in Section 6.

2 R E S P O N S E F R O M T H E AC C R E T I O N D I S C

2.1 General formulation

Let us consider an axially symmetric accretion disc and assume for

simplicity that the height of the disc surface above the equatorial

plane is given by a power-law relation,

zðrÞ ¼ Hðr/routÞ
a; ð1Þ

where H is the maximum disc height, rout is the disc radius, and

a $ 1. The inner radius of the disc is rin. Throughout this paper,

distances will be measured in units of Rg ; 2GM/c 2 and time – in

units of Rg/c. For all the examples considered below, we take

M ¼ 10 M(, but the results can be easily scaled to any mass.

Let us introduce the Cartesian coordinate system with the origin

at the disc centre. The x- and y-axes lie in the central disc plane, and

the line of sight towards the observer is in the x–z plane in the

direction o ¼ ðsin i, 0, cos i), where i is the inclination. The

geometry of the problem is presented in Fig. 1. An X-ray point

source is situated at the disc axis at some height h from the disc

plane, i.e. at the position h ¼ ð0, 0, h). Let us assume that the X-ray

source angular distribution does not depend on time and photon

energy. The direct (marked with a superscript D) monochromatic

luminosity (per unit solid angle) is then

LD
E ðm; tÞ ¼ LD

E ðtÞ
VðmÞ

4p
: ð2Þ

The total emitted luminosity is then

L DðtÞ ¼

ð
dE

ð1

21

dm2pLD
E ðm; tÞ: ð3Þ

Function V(m) gives the dependence of the incident (direct)

radiation field on zenith angle arccos m, and is normalized
1
2

Ð
VðmÞ dm ¼ 1, i.e. for an isotropic source, VðmÞ ¼ 1.

An element of the disc surface has coordinates d ¼ ðr cosf,

r sinf, z), where the azimuth f is measured from the x-axis.

Photons reflected from that element are delayed by

Dtðr;fÞ ¼ p 2 p·o ¼ p 2 rsin i cosf 2 ðz 2 hÞ cos i ð4Þ

relative to the photons reaching the observer directly. Here p ¼

d 2 h and p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r 2 þ ðz 2 hÞ2

p
is the distance between the source

and the reflection point.

The temporal evolution of the radiation reflected towards the

observer can be described by the following relation:

Lrefl
E ðcos i; tÞ ¼

ðrM

rm

rdr

ð2p

0

FEðh; z; r;f; tÞ df; ð5Þ

where rm, rM are the innermost and outermost disc radii intersecting

the isodelay paraboloid (see Section 2.5 and Appendix A3) and

FEðh; z; r;f; tÞ ¼
VðmÞ

4pp 2

z

cos j

2h

2p

ð1

E

Rðr; E;h; E0; z ÞLD
E0 ðt 2 DtÞ dE0

ð6Þ

is the monochromatic flux of radiation reflected in a unit solid

angle from a surface element that gives a unit area when projected

on to the central plane (note factor cos j ¼ 1/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z02
p

in the

denominator, where z0 ¼ ›z/›rÞ. The reflection Green function R
describes the processes of Compton reflection, photoelectric

absorption, and fluorescent line emission (see e.g. Poutanen,

Nagendra & Svensson 1996). It depends on the angles arccos z,

arccosh between the normal n to the disc surface at a reflection

point and the directions of the incoming and outgoing photons,

respectively, as well as on the photon energies. Here

z ¼ 2n·p/p ¼ ½r sin j 2 ðz 2 hÞ cos j�/p;

h ¼ n·o ¼ 2sin i sin j cosfþ cos j cos i; ð7Þ

m ¼ ðz 2 hÞ/p:

In principle, there exists a weak dependence ofR on the difference

in the azimuth of incoming and outgoing photons, which we

neglect. This is equivalent to assuming isotropic scattering. The

reflection Green function can also be a function of radius, for

example, if the ionization state of the disc changes with radius.

It is worth noticing that the evolution of the reflected radiation

(equation 5) depends not only on time, photon energy, and

inclination angle, but also on the shape of the intrinsic spectrum

LD
E ðtÞ. Thus, in general, temporal characteristics of the reflected

radiation at a given photon energy E depend on behaviour of the

intrinsic spectrum at all energies above E. This means that there is

no linear response between the intrinsic and reflected signals at a

single energy E. In a number of physically realistic situations

considered below the response is, however, very close to linear.

That helps us to solve temporal problems in a simpler way.

2.2 Constant intrinsic spectrum

If the spectrum of the intrinsic X-ray radiation LD
E ðtÞ does not vary

Figure 1. Geometry of the problem. Note that vector o does not generally

lie in the plane defined by other vectors.
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in time while the normalization varies,

LD
E ðtÞ ¼ PðtÞL DðEÞ; ð8Þ

equation (6) can be simplified:

FEðh; z; r;f; tÞ ¼ LD
E ðt 2 DtÞ

VðmÞ

4pp 2

z

cos j

2h

2p
rEðr;h; z Þ; ð9Þ

where we introduced the angle- and energy-dependent albedo

function

rEðr;h; z Þ ¼

ð1

E

Rðr; E;h; E0; z ÞLDðE0Þ dE0/L DðEÞ: ð10Þ

The temporal and all other variables are separated. The temporal

evolution of the reflected radiation at energy E and inclination i can

be represented as a convolution of the direct luminosity at the same

angle i with the energy- and inclination-dependent response

(transfer) function:

Lrefl
E ðcos i; tÞ ¼

ðt

21

TEðt 2 t0ÞLD
E ðcos i; t0Þ dt0; ð11Þ

TEðtÞ ¼

ð
r dr

ð2p

0

dðt 2 DtÞ df
z

p 2 cos j

VðmÞ

Vðcos iÞ

2h

2p
rEðr;h; zÞ:

ð12Þ

The total observed luminosity is thus presented as a sum of the

direct and reflected luminosities:

LEðcos i; tÞ ¼ LD
E ðcos i; tÞ þ

ðt

21

TEðt 2 t0ÞLD
E ðcos i; t0Þ dt0: ð13Þ

2.3 Thomson approximation

X-ray observations with high temporal resolution and large photon

statistics exist only at moderate energies ðE & 20 keVÞ, for which

in the first approximation Compton recoil can be neglected, and the

reflection Green function then takes the form

Rðr; E;h; E0; z Þ ¼ rEðr;h; z ÞdðE 2 E0Þ: ð14Þ

In the Thomson approximation (14), the energy integral in equation

(6) can be trivially taken. It is easy to see that the reflected radiation

is then given by equation (11) with the response function (12).

A specific form of the function rE depends on the properties of

the reflecting medium. If, for example, the medium is

homogeneous, i.e. the single-scattering albedo (the ratio of the

Thomson cross-section to the sum of the Thomson and

photoelectric cross-sections), l ¼ sT/ðsph þ sTÞ, is constant with

depth, the reflection Green function rE can be presented as a

product of two Ambarzumian functions (see e.g. Chandrasekhar

1960; Sobolev 1975),

rEðh; z Þ ¼
l

4

HlðhÞHlðz Þ

hþ z
; ð15Þ

and is normalized to the reflection albedo:ð1

0

rEðh; z Þ2h dh ¼ aEðz Þ ¼ 1 2 Hlðz Þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1 2 l
p

: ð16Þ

For an isotropic source above the infinite plane the angle-averaged

albedo then

aE ¼

ð1

0

aEðzÞ dz ¼ 1 2 h0

ffiffiffiffiffiffiffiffiffiffiffiffi
1 2 l
p

; ð17Þ

where h0 ¼ 2ð1 2
ffiffiffiffiffiffiffiffiffiffiffiffi
1 2 l
p

Þ/l is the zeroth moment of Hl. The

function Hl satisfies the integral equation

HlðhÞ ¼ 1þ
l

2
hHlðhÞ

ð1

0

Hlðz Þ dz

hþ z
: ð18Þ

For l ! 1,

HlðhÞ < 1þ
l

2
h ln

1þ h

h
; aE <

l

4
: ð19Þ

One should note that the response function depends on the photon

energy through the function rE.

2.4 Isotropic approximation

The response function in general depends on the properties of

the Green function for reflection which is a function of the photon

energy and possibly radius (see equation 12). However, if the

physical conditions do not change with radius and if one assumes

that the intensity of the reflected radiation is isotropic (we will

call this the isotropic approximation), one can approximate

rEðr;h; z Þ ¼ aE. In this case, one can introduce a response

function that is independent of albedo and photon energy:

TðtÞ ;
TEðtÞ

aE

¼

ð
r dr

ð2p

0

dðt 2 DtÞ df
z

p 2 cos j

VðmÞ

Vðcos iÞ

2h

2p
: ð20Þ

The advantage of this approximation is that we need to compute

only one response function. In most applications considered in this

paper we use this approximation. We discuss its accuracy in

Section 4.4.1.

2.5 Integration over azimuth and radius

In order to integrate expressions (12) and (20) over the azimuth one

can use the following identity:

Gðr; tÞ ;
ð2p

0

dðt 2 DtÞ df ¼
2

r sin ijsinfj

¼
2/

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r 2 sin2i 2 ½t 2 pþ ðz 2 hÞ cos i�2

p
; i – 0;

2pdðt 2 pþ z 2 hÞ; i ¼ 0:

8<:
ð21Þ

For given t and r, the azimuth f is found from equation (4) (note

that p and z are functions of r only)

cosf ¼ 2
t 2 pþ ðz 2 hÞ cos i

r sin i
: ð22Þ

The limits rm,rM in equation (5) are determined by the conditions

that the expression under the square root in (21) is positive (i.e.

jcosfj , 1, equation 22) and that rin # rm , rM # rout. The

details on the method of integration over the radius in equation (5)

are given in the Appendix.

3 T E M P O R A L C H A R AC T E R I S T I C S

As we showed in Section 2.2 and Section 2.3, the reflected signal

depends linearly on the intrinsic (direct) signal when there is no

spectral variability of the direct radiation or at sufficiently low

energies where Compton down-scattering can be ignored. Timing

properties of the reflected radiation are then described by a

response function TE(t). For most of our applications, we assume

X-ray reverberation in flared accretion discs 259
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that albedo does not depend on radius and one can take

TEðtÞ ¼ aETðtÞ, where now T(t) is energy-independent. The total

observed radiation flux is composed of the direct radiation from the

X-ray source plus the radiation reflected from the disc (see

equation 13):

LEðtÞ ¼ LD
E ðtÞ þ aE

ðt

21

Tðt 2 t0ÞLD
E ðt
0Þ dt0: ð23Þ

The cross-correlation function (CCF) of the total signal,

C12ðtÞ ¼
Ð

L1ðt
0ÞL2ðt

0 þ tÞ dt0, can be easily found by substituting

equation (23):

C12ðtÞ ¼ CD
12ðtÞ þ a1a2

ð1

21

CD
12ðt

0ÞA Tðt 2 t0Þ dt0

þ

ð1

21

CD
12ðt

0Þ½a2Tðt 2 t0Þ þ a1Tðt0 2 tÞ� dt0; ð24Þ

where CD
12ðtÞ is the CCF of the direct signal and A TðtÞ ¼Ð

Tðt0ÞTðt0 þ tÞ dt0 is the auto-correlation of the response function.

The auto-correlation function (ACF) can be obtained from the

above expression:

AEðtÞ ¼ AD
E ðtÞ þ a2

E

ð1

21

AD
E ðt
0ÞA Tðt 2 t0Þ dt0

þ aE

ð1

21

AD
E ðt
0Þ½Tðt0 þ tÞ þ Tðt0 2 tÞ� dt0; ð25Þ

where AD
E ðtÞ is the ACF of the direct signal.

The Fourier transform of (23) reads

L̂Eð f Þ ¼ L̂
D

E ð f Þ½1þ aET̂ð f Þ�: ð26Þ

The cross-spectrum of the light curves at two energies E1, E2,

Ĉ12ð f Þ ; ½L̂1ð f Þ�* L̂2( f ), can be expressed as a product,

Ĉ12ð f Þ ¼ Ĉ
D

12ð f ÞĈ
R

12ð f Þ ¼ jĈ
D

12ð f Þje
iwDð f ÞjĈ

R

12ð f Þje
iwRð f Þ; ð27Þ

where Ĉ
D

12ð f Þ ¼ ½L̂
D

1 ð f Þ�* L̂
D

2 ð f Þ is the cross-spectrum of the

direct radiation and

Ĉ
R

12ð f Þ ; 1þ a1a2jT̂ð f Þj
2
þ a1T̂* ð f Þ þ a2T̂ð f Þ: ð28Þ

The phase lags of the direct radiation wD( f ) and that added by

reflection wR( f ) are defined as the phases of Ĉ
D

12ð f Þ and Ĉ
R

12ð f Þ,

respectively. The ‘reflection’ phase lag,

tanwRð f Þ ¼
ða2 2 a1ÞI T̂ð f Þ

1þ ða1 þ a2ÞRT̂ð f Þ þ a1a2jT̂ð f Þj
2
; ð29Þ

is positive (hard lags) when a2 . a1. HereR and I denote real and

imaginary part of a complex variable. For small a1 and small

a2

Ð
TðtÞ dt, the phase lag is approximately

wRð f Þ < ða2 2 a1ÞI T̂ð f Þ: ð30Þ

The power density spectra (PDS) are related in the following way:

jL̂Eð f Þj
2
¼ jL̂

D

E ð f Þj
2
½1þ a2

EjT̂ð f Þj
2
þ 2aERT̂ð f Þ�: ð31Þ

In many recent publications, the PDS is often normalized to the

relative rms of the signal (Miyamoto et al. 1991; Nowak et al.

1999a). We denote such a PDS P( f ). In this normalization, we get

Pð f Þ ¼ P Dð f Þ
1þ a2

EjT̂ð f Þj
2
þ 2aERT̂ð f Þ

½1þ aE

Ð
TðtÞ dt�2

: ð32Þ

4 R E S U LT S

4.1 Simple response functions

For illustration, let us specify a simple exponential response

function:

TðtÞ ¼
R exp½2ðt 2 tÞ/t�/t; t $ t;

0; t , t:

(
ð33Þ

The corresponding Fourier transform is T̂ð f Þ ¼ R exp ðixÞ=ð1 2 ixÞ;

where x ¼ 2pf t: As a starting point let us take E1 ¼ 3 keV where

for the neutral reflector of solar abundances the albedo a1 , 0.014.

This is the smallest energy available for timing analysis, for

Figure 2. Phase lags for the exponential response function (33). (a) wR
Eð f Þ frequency dependence for different aeff relative to 3 keV (where a1 ¼ 0:014Þ. Thin

curves give the negative phase lags. (b) The solid curve gives the angle-averaged albedo aE for Compton reflection from a neutral medium (omitting the Fe Ka

line) corresponding to the intrinsic photon power-law index G ¼ 2 computed for solar abundances using the PEXRAV model (Magdziarz & Zdziarski 1995) from

XSPEC. Dotted curves give the energy dependence of the phase lag wR
E ð f Þ (relative to 3 keV) divided by frequency x ; 2pf t for R ¼ 1 at frequencies x ¼ 0:1,

0.5, 0.7, 1, 1.5 (from top to bottom). At x , 0:1, the curves coincide with the x ¼ 0:1 case.
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example, at RXTE. For aE @ a1, the phase lag at energy E relative

to E1 is then

tanwR
Eð f Þ <

aeffðx cos xþ sin xÞ

1þ x 2 þ aeffðcos x 2 x sin xÞ
; ð34Þ

where aeff ¼ RaE is the effective albedo. The phase lag grows linearly

with frequency as wR
Eð f Þ < 2aeffx/ð1þ aeffÞ for x ! 1, and for

aeff & 3 reaches the maximum tan wR
max;1 < 0:7aeff /ð1 2 0:15aeffÞ

at x < 1 (see Fig. 2a). The peak shift slightly towards higher

frequencies at larger aeff. When aeff * 3 (large effective albedo is

possible in strongly anisotropic sources), phase lag goes through p

at x , 2. For a1 ! aeff ! 1 and x ! 1, the phase lags are

proportional to the albedo aE (see equation 30), and their energy

dependence is exactly the same as that aE. At small energies close

to E1, lags go to zero. At larger energies (and larger albedos), the

phase lag rises slower than aE (Fig. 2b). At large frequencies, when

cos x , x sin x (i.e. x , 1Þ, the dependence on aE in the

denominator of equation (34) disappears and wR
E depends linearly

on aE. Including the fluorescent iron line would produce a bump in

the phase lag energy spectrum which amplitude depends on the

energy resolution of the X-ray instrument.

If the response function is a sum of two exponentials described

by t1, R1 and t2, R2, respectively (let t1 ! t2Þ, the phase lag has

two prominent maxima at f 1 , 1=ð2pt1Þ and f 2 , 1=ð2pt2Þ. The

value of the high frequency maximum at f1 is the same as for the

case of a single reflector, while the new, low frequency maximum

is tan wR
max;2 < 0:7aeff;2/½1þ aeff;1 2 0:15aeff;2�.

Let us now consider the effect of reflection on the shape of the

auto- and cross-correlation functions. The effect is easier to

understand if one considers an even simpler d-function response

TðtÞ ¼ Rdðt 2 tÞ. Then

AEðtÞ ¼ ð1þ a2
ER 2ÞAD

E ðtÞ þ aER½AD
E ðt 2 tÞ þ AD

E ðt þ tÞ�: ð35Þ

For a monotonic ACF strongly peaked at zero lag (such as that of

Cyg X-1; see Maccarone, Coppi & Poutanen 2000) and aE ! 1, the

largest relative increase in the total ACF achieved at lag ,t is

,1þ aER/AD
E ðtÞ (for the normalized to unity at zero lag ACF).

This means that the changes are more significant when the

characteristic decay time-scale of the ACF is smaller than or

comparable to the characteristic delay owing to reflection. Similar

behaviour is expected for the exponential response function (33).

The CCF for a1 ¼ 0 and a d-function response takes the form:

C12ðtÞ ¼ CD
12ðtÞ þ a2RCD

12ðt 2 tÞ: ð36Þ

Since the CCFs of most GBHs and AGNs are strongly peaked at

zero lag (see e.g. Nolan et al. 1981; Papadakis & Lawrence 1995;

Smith & Liang 1999; Lee et al. 2000; Maccarone et al. 2000), the

total observed CCF should become more asymmetric for larger

albedos (i.e. at larger energies). The largest relative deviation from

the intrinsic CCF should be observed at lags t , t. In the case of

the intrinsic CCF CD
12ðtÞ ¼ exp½2ðt/t0Þ

n�, the relative change at

large lags, jtj @ t, is the following:

C12ðtÞ

CD
12ðtÞ

¼ 1þ a2R exp sgnðtÞn
tjtj

n21

tn0

" #
: ð37Þ

4.2 Flat disc response

4.2.1 Infinite slab

The response function for a flat disc and an isotropic source can be

derived analytically from equation (20) in the isotropic

approximation (i.e. r ¼ aEÞ. In this case, z ¼ 0, cos j ¼ 1,

h ¼ cos i, z ¼ h/p, and

TslabðtÞ ¼
2 cos i

2p

ð
r dr

p 2

h

p
Gðr; tÞ; ð38Þ

where p 2 ¼ r 2 þ h 2 and G(r, t) is given by equation (21). The

variable p should satisfy the condition p2 , p , pþ, where

p^ ¼ q ^ s; q ¼
t 2 h cos i

cos2i
; s ¼

sin i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tðt 2 2h cos iÞ
p

cos2i
: ð39Þ

Substituting p ¼ qþ s cos u into equation (38) we get

TslabðtÞ ¼
2 cos i

2p

ðpþ

p2

hdp

p 2

2

cos i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp 2 p2Þðpþ 2 pÞ
p

¼
2h

p

ðp
0

du

ðqþ s cos uÞ2
¼

2h

p

pq

ðq 2 2 s 2Þ3=2

¼ 2 cos i
hðt 2 h cos iÞ

ðt 2 þ h 2 2 2th cos iÞ3=2
;

t $ 2h cos i:

ð40Þ

The response function is normalized in the following way:ð1

2h cos i

TslabðtÞ dt ¼ 2 cos i: ð41Þ

4.2.2 Disc with a central hole

In hot flow models for the X-ray production in accreting black

holes, the X-ray source is situated inside a cold accretion disc

truncated at some radius (see e.g. Esin et al. 1998; Poutanen 1998).

The response then can be approximately evaluated assuming a

point source at the axis of the disc with rin @ 1 (see also Gilfanov,

Churazov & Revnivtsev 2000b). A more general expression for the

response function, for a non-zero inner radius and a finite outer

radius rout, can be written similarly to equation (40):

TðtÞ ¼
2h

p

ðpM

pm

dp

p 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp 2 p2Þðpþ 2 pÞ
p

¼
2h

p

ðum

uM

du

ðqþ s cos uÞ2
;

tmin , t , tmax;

ð42Þ

where

tmin ¼ maxð2h cos i;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

in þ h 2

q
þ h cos i 2 rin sin iÞ;

tmax ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

out þ h 2

q
þ h cos iþ rout sin i; ð43Þ

and the limits

pm ¼ maxð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

in þ h 2

q
; p2Þ;

pM ¼ minð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

out þ h 2

q
; pþÞ; ð44Þ

um;M ¼ arccos½ðpm;M 2 qÞ/s�:

For
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

in þ h 2
p

þ h cos iþ rin sin i # t #
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

out þ h 2
p

þ h cos i

2rout sin i, the response function is given by equation (40).

Fig. 3(a) shows the response function and other timing
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characteristics for different inner radii rin. Since in flat discs TðtÞ ,
t 22 at large t (see equation 40), the responses are multiplied by t 2.

Owing to the absence of the reflector in the direct vicinity of the

flare, reflection acts as a low pass filter removing high frequency

signal from the reflected radiation. This causes the maximum of the

phase lag to shift to lower frequencies. For large rin, the covering

factor of the reflector is small and therefore the amplitude of the

phase lag decreases.

4.2.3 Anisotropic sources

Let us consider anisotropic sources of radiation. When the X-ray-

emitting plasma has some bulk velocity b ; v/c away from or

towards the disc, the angular distribution of the radiation is

VðmÞ ¼
1

g 4ð1 2 bmÞ3
; g ¼ 1/

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 2 b 2

p
; ð45Þ

if the emission is isotropic in the plasma rest frame (see e.g.

Rybicki & Lightman 1979). This formula is valid for both the

bolometric luminosity as well as for the monochromatic luminosity

for a photon spectral index G ¼ 2. Similarly to derivations in

Section 4.2.1, we then can analytically compute the infinite slab

response function substituting V(2h/p) to equation (20):

TbðtÞ ¼
2h

p
ð1 2 b cos iÞ3

ðp
0

du

p 2ð1þ bh/pÞ3

¼
2h

p
ð1 2 b cos iÞ3

X1
k¼0

ðk þ 1Þðk þ 2Þ

2
ð2bhÞk

£

ðp
0

du

ðqþ s cos uÞkþ2

¼ hð1 2 b cos iÞ3
X1
k¼0

ðk þ 1Þðk þ 2Þð2bhÞk

£
Pkþ1 q/

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q 2 2 s 2

p� �
ðq 2 2 s 2Þ1þk/2

; ð46Þ

where Pk are the Legendre polynomials and we used relation 3.661

from Gradshteyn & Ryzhik (1980) to obtain the last expression.

The responses together with the related phase lags are presented in

Fig. 3(b) for a few b. With increasing b, the response amplitude

decreases since radiation is becoming more beamed away from the

disc towards the observer. At small lags the effect is even more

dramatic. This causes also a significant change in the amplitude of

the phase lags at high frequencies.

4.2.4 Ionized discs

The intense incident X-ray flux can affect the ionization state of the

reflecting material changing its albedo. The surface layer of the

accretion disc is heated up to the Compton temperature of radiation

and is almost completely ionized (e.g. Nayakshin, Kazanas &

Kallman 2000). We can consider such ‘skin’ as a purely scattering

medium. A transition layer from the hot layer to almost neutral

matter is very thin. Therefore, a two-phase model, with a hot layer

atop of neutral material, can be adopted. We neglect smearing of

the reflection features by thermal motions in the skin and consider

pure Thomson scattering.

One should point out here that in the isotropic approximation,

the response functions T(t) given by equation (20) are not affected

by ionization (while the reflected luminosity is affected). However,

the phase lags at given energies will change since they depend on

the reflection albedo. If reflection from the underlying neutral

material follows Lambert’s law (i.e. isotropic intensity), the total

reflection albedo can be expressed as follows (Sobolev 1975):

aðz; tTÞ ¼ 1 2 2ð1 2 aÞ
1þ 3

2
zþ 1 2 3

2
z

ÿ �
expð2tT/zÞ

4þ 3tTð1 2 aÞ
; ð47Þ

where tT is Thomson optical thickness of the ionized layer, and a is

the albedo for a neutral slab. The angle averaged albedo is then

aðtTÞ ¼ 1 2 ð1 2 aÞ
7 2 3 expð2tTÞ þ ð4þ 3tTÞE2ðtTÞ

2½4þ 3tTð1 2 aÞ�

< 1 2 ð1 2 aÞ
7þ expð210tTÞ

2½4þ 3tTð1 2 aÞ�
; ð48Þ

where E2 is the exponential integral of the second order. A relative

error of the approximation in the nominator is smaller than 1 per

cent for any tT. The energy dependence of the albedo for different

tT is shown in Fig. 4(a). We see that at lower energies the albedo is

high, aminðtTÞ < 3tT/ð4þ 3tTÞ, compared with the neutral

material albedo, and therefore one cannot assume a1 ! 1 when

computing the phase lags. The important quantity here is, however,

not the albedo itself, but the difference between albedos at different

energies (see equations 29, 30):

a2ðtTÞ2 a1ðtTÞ <
ða2 2 a1Þ{1 2 ½1 2 expð210tTÞ�=8}

½1þ 3tTð1 2 a1Þ=4�½1þ 3tTð1 2 a2Þ=4�

<
a2 2 a1

ð1þ 3tT/4Þ2
: ð49Þ

The first approximate formula is accurate to within 1 per cent. The

accuracy of the second one is better than 13 per cent for tT , 0:5,

and is better than 20 per cent up to albedo a2 , 0:7 (i.e. E ,
20 keVÞ for tT , 1. The resulting phase lags (relative to 3 keV) at

f ¼ 1=ð10hÞ as a function of photon energy are shown in Fig. 4(b).

They have very similar behaviour at other frequencies (see Fig. 2)

and follow the a2ðtTÞ2 a1ðtTÞ dependence (see equation 29).

In real physical situations, the optical depth of the ionized skin

could be a function of the radius. For a source of ionizing radiation

at the disc axis at height h, we can approximate the radial

distribution as tTðrÞ ¼ t0ð1þ r/10hÞ23=2 (see e.g. Nayakshin

2000). The resulting response functions TE(t) computed from

equation (12) in isotropic approximation are shown in Fig. 5(a).

Close to the centre (small delays), the responses for different

energies are close to each other, because of the fact that the

effective albedo is large for all energies (see equation 48). At large

delays, a strong energy dependence of the effective albedo results

in large differences in the responses. The response is strongly

suppressed at small energies, while at higher energies the shape of

the response function is similar to the constant albedo case. The

resulting phase lags (see Fig. 5b) are then smaller (compared with

the constant albedo case) at higher frequencies since the difference

of the albedos becomes smaller (see equations 29, 30, 49). Phase

lags at low frequencies are barely affected by ionization.

4.3 Flared disc response

An important parameter influencing the response of a flared disc is

the a-parameter (see equation 1) which describes the disc shape. In

the general case, it is difficult to get useful analytical formulae for

the disc response, therefore we compute the responses numerically
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(see equation 20 and the Appendix). We first consider an isotropic

source above the disc and vary the a-parameter. The results are

shown in Fig. 6(a). For a ¼ 1 the response does not differ much

from that of the flat disc. For any a . 1, there appears an increased

response from the outer part of the disc and the response function

flattens out at large lags. Comparing with the flat discs (and flared

discs with a ¼ 1Þ, the additional phase lags corresponding to the

light crossing time to the outer part of the disc t , rout/c appear at

low frequencies f , 1=ð2ptÞ. The larger the curvature (i.e. larger

a), the more prominent the bump in the Fourier-frequency-

dependent phase lag spectrum becomes.

Changes of the accretion disc size affect mostly the lags at low

Figure 4. (a) Energy dependence of the reflection albedo for a slab with purely scattering skin of Thomson thickness tT atop of a neutral slab. (b) Energy

dependence of the phase lags. An isotropic X-ray source is elevated at h ¼ 10 above an infinite ‘ionized’ slab. The phase lags are computed relative to

E1 ¼ 3 keV at Fourier frequency f ¼ 1=ð10hÞ (i.e. 100 Hz for h ¼ 10Rg ¼ 3 £ 107 cmÞ.

Figure 3. (a) Response functions T(t ) (in the isotropic approximation), their Fourier amplitudes, and the phase lags for the flat disc with different inner radius

rin and rout ¼ 104Rg. Since asymptotically at large t in flat discs TðtÞ , t 22, the responses are multiplied by t 2. The phase lags are computed assuming albedos

a1 ¼ 0; a2 ¼ 1. Solid and dotted curves correspond to cos i ¼ 1 and 0.7, respectively. Thin curves give negative phase lags. (b) Dependence on the bulk velocity

b ¼ v/c. Solid, dotted, and dashed curves correspond to b ¼ 20:2, 0, 0.3, respectively. Parameters are rin ¼ 0, rout ¼ 104Rg, cos i ¼ 0:7. The negative b means

the bulk velocity directed towards the disc. Rg/c ¼ 1024 s in all simulations.
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frequencies corresponding to the response from the outer edge

(Fig. 6b). For larger rout, the secondary phase lag peak shifts

towards lower frequencies with a constant amplitude.

Variations in the plasma bulk velocity and corresponding

changes in the angular distribution of the intrinsic radiation affect

markedly the flared disc response functions and the phase lags.

They are presented in Fig. 6(c) for a few b. The most prominent

effect is the dramatic change in the amplitude of the response at

small lags, i.e. from vicinity of the X-ray source. The response

from the outer disc edge is affected less since for h , 0 and mildly

relativistic velocities, beaming is not so important. The resulting

phase lags are affected in a similar way: the amplitude of the phase

lags at high frequencies changes dramatically, while the lags at low

frequencies related to the outer disc edge remain basically the

same.

4.4 Approximations

4.4.1 Accuracy of isotropic approximation

Let us now estimate the accuracy of the isotropic approximation.

Using the exact expressions for rE-function (equation 15) we

computed the response functions for the two cases l ¼ 0:1 and 1

corresponding to the photoelectric absorption and the scattering

dominated regimes. The results are shown in Fig. 7. The difference

is coming from different angular dependences of the reflection

Green function (15) at different l.

For small l, Hl , 1 and rEðcos i; zÞ/aE , 1=ðcos iþ zÞ. At

rather small inclinations, cos i ¼ 0:7–1, the reflected intensity is

reduced compared with the isotropic case ðrE/aE ¼ 1Þ at small lags

(photons coming underneath the flare) since z , 1. At large delays,

z , 0 and the reflected intensity is closer to the isotropic case. For

small inclinations, cos i , 0, the reflection is significantly larger

than that given by the isotropic approximation at large delays (i.e.

small z) (see lower panel in Fig. 7).

For l , 1, HlðhÞ , 1þ 2h and rEðcos i; z Þ/aE , ð1þ 2 cos iÞ �

ð1þ 2z Þ=4ðcos iþ z Þ: At small inclinations, the isotropic approxi-

mation underestimates (overestimates) slightly the response at

small (large) lags. At large inclinations and large delays, the

response exceeds that in the isotropic approximation.

Thus, the isotropic approximation overestimates (underesti-

mates) the response at small (large) lags for most inclinations and

for l ! 1. For l , 1, the isotropic approximation is very accurate

at small lags. At large lags, it overestimates (underestimates)

slightly the response at small (large) inclinations.

The phase lags expected for the flat disc and computed using the

accurate response function as well as in the isotropic approxi-

mation are presented on the right panels in Fig. 7. For l ! 1, the

‘isotropic’ phase lags are larger for small inclinations and smaller

for large inclinations than the accurate ones. For l , 1, the phase

lags computed in the isotropic approximation are almost

indistinguishable from the exact ones (compare dashed and solid

curves peaking at higher frequencies).

4.4.2 Approximate response function

Calculations of the response function from a flared disc are not

entirely trivial. However, for many applications they are not even

needed. One can approximate the exact results by much simpler

response functions that have almost identical temporal properties.

The reflection response from the vicinity of the X-ray source can be

approximated by the flat disc response (40), while the response

from the outer edge can be approximated by a power law:

TapprðtÞ ¼ R1T slabðtÞ þ R2ToutðtÞ; ð50Þ

where ToutðtÞ ¼ ct 22þ1:6ða21Þ1=3 , tmin , t , rout, and the constant c

is found from the normalization condition
Ð

ToutðtÞ dt ¼ 1. We find

that the resulting phase lags are similar to the exact ones (for

rin – 0Þ if one takes

tmin ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

in þ h 2
p

þ h cos i; x $ 1;

ð1 2 xÞ2h cos iþ xð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

in þ h 2
p

þ h cos iÞ; x , 1;

8<:
ð51Þ

where x ¼ rin/h tan i. The normalization factors, i.e. the apparent

amplitude of reflection from the disc area close to the source and

Figure 5. (a) Response functions TE(t ) for a flat slab with ionized skin, the optical depth of which decreases with radius as tT ðrÞ ¼ t0ð1þ r/10hÞ23=2, where

t0 ¼ 1 and h ¼ 10 are assumed (here cos i ¼ 0:7 and Rg ¼ 3 £ 106 cmÞ. Thick curves from the bottom to the top correspond to 3, 6, 12, 24 keV. The thin solid

curve represents the response function with unity albedo over the whole surface. (b) Corresponding phase lags relative to 3 keV. The thin solid curve represents

the case of constant albedos a2 ¼ 1, a1 ¼ 0.
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that from the outer edge, depend on the inclination, bulk velocity b,

and solid angle occupied by the outer disc edge expressed in H/rout:

R1 ¼

ð0

21

dm
VðmÞ

Vðcos iÞ
¼ ð1 2 b cos iÞ3

1þ b/2

ð1þ bÞ2
; ð52Þ

R2 ¼
H

rout

ðH/rout

0

dm
VðmÞ

Vðcos iÞ

¼
H

rout

ð1 2 b cos iÞ3
1 2 ðb/2ÞH/rout

ð1 2 bH/routÞ
2
: ð53Þ

A more accurate approximation can be introduced if one replaces

the first term in equation (50) by the ‘anisotropic’ response (46):

TapprðtÞ ¼ TbðtÞ þ R2ToutðtÞ: ð54Þ

This approximation is compared with the accurate response

functions for flared discs at Fig. 8. One sees that it reproduces the

response functions rather well. The approximation slightly

overestimate (by 30–50 per cent) the position of the peak in the

phase lag spectra resulting in a similar error in estimation of the

disc radius.

5 C O M PA R I S O N W I T H O B S E RVAT I O N S A N D

D I S C U S S I O N

The phase lag Fourier spectra of a number of GBHs show breaks

and secondary peaks at low frequencies (Nowak et al. 1999a;

Nowak, Wilms & Dove 1999b; Grove et al. 1998; see Fig. 9). The

appearance of a secondary peak could be related to the variability

properties of the intrinsic signal. The peaks in the phase lag spectra

approximately correspond to the peaks in the power density spectra

in the fP( f ) representation (see e.g. Nowak et al. 1999a; Kotov,

Churazov & Gilfanov 2001) which can be produced by two

Figure 6. Response functions, their Fourier amplitudes, and the phase lags for flared discs in the isotropic approximation. The phase lags are computed

assuming albedos a1 ¼ 0, a2 ¼ 1. Thin curves give negative phase lags. (a) Dependence on a. Solid, dotted and dashed curves correspond to a ¼ 1, 1.5, 3,

respectively. (b) Dependence on the outer disc radius rout. Solid, dotted and dashed curves correspond to rout ¼ 104, 104.5, 105Rg, respectively. (c) Dependence

on the bulk velocity b ¼ v/c. Solid, dotted and dashed curves correspond to b ¼ 20:2, 0, 0.3, respectively. Everywhere cos i ¼ 0:7, and in (a), (c) rout ¼ 104Rg.
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independent processes. The secondary phase lag peaks can also be

a result of reflection from the outer part of the disc (Poutanen

2001). The position of these peaks would then depend on the disc

size (see Fig. 6b). For a linear response, the energy dependence of

the lags at a given frequency should have features characteristic of

reflection: an Fe line, an edge, and hardening above 10 keV. The

lags observed in Cyg X-1 at frequencies above 0.6 Hz do not show

these features (Kotov et al. 2001). In fact, the reflection features

Figure 7. Response functions and phase lags for the flat disc of radius rout ¼ 103 with an isotropic source at elevation h ¼ 10 computed for three inclinations

cos i ¼ 1, 0.7, 0.2 (from top to bottom). Dotted and dashed curves represent the response function TE(t ) given by equation (12) computed using the exact angle-

dependent expression for rE from equation (15) for l ¼ 0:1 and 1, respectively, and divided by the angle-averaged albedo for these l (i.e. by aE ¼ 0:026 and 1,

see equation 17). The corresponding phase lags (computed assuming a1 ¼ 0Þ are also divided by aE. Thin curves give negative lags. Solid curves correspond to

the response function (20) computed assuming isotropic intensity of the reflected radiation, i.e. rE ¼ aE . The phase lags are computed taking the same angle-

averaged albedos, aE ¼ 0:026 and 1. For larger albedo, the phase lags peak shifts to higher frequency.

Figure 8. (a) Flared disc response functions for a ¼ 3, H/rout ¼ 0:2, h ¼ 10, cos i ¼ 0:7, rin ¼ 10, and rout ¼ 104. Dotted curves give the exact responses for

b ¼ 20:2 (upper curve) and b ¼ 0:2 (lower curve). Solid curves represent the approximate response function (54). (b) Corresponding phase lags (computed for

a1 ¼ 0, a2 ¼ 1Þ.
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appear to have negative contribution (‘anti-lags’), i.e. the lags are

reduced at energies where reflection is expected to contribute. This

could be interpreted as a non-linear, negative response. At lower

frequencies (below 0.6 Hz), the energy dependence of lags is not

known. It is possible that there the reflection response is still

positive and the lag energy dependence shows reflection features.

Let us develop a toy model that is capable of describing the

observed phase lags (and the PDS). We assume that the lags at high

frequencies are intrinsic, i.e. related to the direct radiation. We

describe the direct emission in terms of a simple modified shot

noise model. The shot profile is taken to be a rising exponential

exp(t/tE), t , 0. For a power law radiation spectrum with time-

varying spectral index, the shot time-scale depends logarithmically

on energy tE ¼ t0½1 2 b lnðE/E0Þ� (see Poutanen & Fabian 1999;

Kotov et al. 2001). Spectral evolution can for example be produced

by evolution of magnetic flares (Poutanen & Fabian 1999). We

consider b as a free parameter because its value is determined by

the details of spectral evolution which are unknown. The

decreasing of tE with energy ensures that the ACF width decreases

with E as observed (Maccarone et al. 2000). The resulting CCFs

peak at zero lag since the shots at different energies are correlated

and peak at the same time. For a given t0, the cross-spectrum of the

signal at two energies is Ĉð f ; t0Þ / t1t2/½ð1 2 i2pft1Þð1þ i2pft2Þ�.

If t0 is distributed according to P(t0), the total cross-spectrum

becomes Ĉð f Þ ¼
Ð

Ĉð f ; t0ÞPðt0Þ dt0. We assume a power-law

distribution Pðt0Þ / t
2p
0 between tmin and tmax. The lags observed

from Cyg X-1 on 1996 October 22 (Nowak et al. 1999a) at high

frequencies can be described by this model (dotted curves in Fig. 9)

with tmax ¼ 0:05 s, p ¼ 1:5, b ¼ 0:22, and any sufficiently small

tmin. At f , 1=ð2ptmaxÞ, phase lags are proportional to f. With these

parameters, the PDS of Cyg X-1 above 1 Hz is also well reproduces

ðp ¼ 1:5 gives the slope of the PDS also equal to 1.5, see Poutanen

& Fabian 1999). The PDS shape at lower frequencies can be

reproduced for example by the flare avalanches.

Let us now consider the effect of reflection by applying an

approximate response function for a flared disc given by equation

(54). A rather good fit to the data can be achieved for the disc inner

and outer radii 30Rg and 104Rg, respectively, and the flaring

parameter H/rout ¼ 0:3 (see Fig. 9, we assumed b ¼ 0, cos i ¼ 0:7,

and a ¼ 3Þ. One can see that reflection, however, cannot reproduce

the observed sharp features. For the given parameters, the

amplitude of reflection is close to that observed in Cyg X-1 (e.g.

Gierliński et al. 1997; Poutanen 1998). In order not to overproduce

lags at high frequencies, the reflection should be suppressed at

small distances from the central source. This can be achieved by

truncation of the disc at ,30Rg (as here), by ionization of the disc,

or beaming of the radiation away from the disc. A rather small size

of the disc is consistent with the fact that Cyg X-1 is probably

accreting via wind from the high-mass companion. The angular

momentum of accreting material is then small and the disc is small

(Illarionov & Sunyaev 1975; Beloborodov & Illarionov 2001). In

low-mass X-ray binaries where material accretes via Roche lobe

overflow, the angular momentum is high and the disc is large. In

such systems the phase lag secondary maxima should appear at

lower frequencies as seems to be the case (Nowak et al. 1999b;

Grove et al. 1998). Thus, if the model is correct, the disc size can be

determined from the position of the phase lag peak. The lags

energy dependence at low frequencies can resolve the issue

whether the phase lag breaks are caused by reflection.

Revnivtsev, Gilfanov & Churazov (1999) showed that the

frequency-resolved spectra (proportional to the amplitude of

the Fourier transforms L̂
D

E ð f Þ at a given frequency f as a function

of E) of Cyg X-1 depends on frequency. At f . 20 Hz, the spectra

are rather hard and contain no reflection features. At low

frequencies (below 0.1 Hz), the spectra are much softer and show

strong reflection features. If the response is linear, reflection

modifies the frequency-resolved spectra in the following way

jL̂Eð f Þj < jL̂
D

E ð f Þj½1þ aERT̂ð f Þ� (see also equations 26, 31). The

Figure 9. Phase lags between signals in the 8:2–14 keV and the 3:9–6 keV bands vs the 2–3:9 keV band observed with RXTE in Cyg X-1 on 1996 October 22

(Nowak et al. 1999a; Pottschmidt et al. 2000). Dotted curves correspond to the intrinsic lags described by a modified shot noise model (Poutanen & Fabian

1999) with exponentially rising shots of time-scale t0 distributed between 1 ms and 0.05 s according to a power law Pðt0Þ / t
2p
0 with p ¼ 1:5. At a given energy

E the shot time-scale is tE ¼ t0½1 2 blnðE/E0Þ�, where E0 ¼ 3 keV and b ¼ 0:22. Since tE decreases with energy, the lags are hard. Dashed curves are the lags

produced by reflection from a flared disc with the following parameters rin ¼ 10, rout ¼ 104, h ¼ 10 (in units Rg ¼ 3 £ 106 cmÞ, H/rout ¼ 0:3, a ¼ 3,

cos i ¼ 0:7, and b ¼ 0. Solid curves give the sum of the lags from the intrinsic signal and reflection.
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straightforward explanation of the observed effects as solely

caused by the finite light crossing time (studied in the present

paper) fails, since the delays arising from reflection cannot change

the slope of the underlying spectra. The observed behaviour

implies that the intrinsic (Comptonized) frequency-resolved

spectra, L̂
D

E ð f Þ, depend on frequency. In that case, the signal at

different frequencies is possibly produced in physically different

locations. For example, the high-frequency signal can be produced

closer to the black hole, while the low-frequency signal comes

from further away. This arrangement would be natural if the

dominant frequencies were the Keplerian ones. However,

physically different locations also imply different reflection

response functions thus complicating the situation.

The X-ray reprocessing in the cool disc produces both the

Compton reflection continuum with an Fe line and soft radiation.

The reprocessed radiation from the outer disc emerges in the

optical/UV bands. The response function of this soft radiation to

the variability of the intrinsic X-ray radiation would be similar to

that of the Compton reflection continuum unless the ionization

state of the reflecting material is a function of radius. Thus, the

accretion disc response function obtained from the cross-

correlation analysis of the optical and the X-ray light curves (see

e.g. Hynes et al. 1998; O’Brien & Horne 2001) should also satisfy

the constraints coming from the X-ray timing e.g. from the Fourier-

frequency-dependent phase lags. If the response is known from the

optical/X-ray data, then one can try to subtract the lags related to

the reflection from the observed time lags in order to obtain the lags

corresponding to the intrinsic (direct) signal only. This will not be

easy, however, if the reflection response is non-linear or the disc is

ionized (then the UV and Compton reflection responses are

different).

Real accretion discs are not necessarily axisymmetric, but can

be, for example, radiatively warped (e.g. Pringle 1996; Wijers &

Pringle 1999) or warped because of the Bardeen–Petterson (1975)

effect. For non-axisymmetric discs the response function depends

not only on the inclination, but also on the azimuthal angle.

Blackman (1999) and Hartnoll & Blackman (2000) studied the Fe

line profiles produced in flared axisymmetric and warped discs. It

would be interesting to study temporal response of the iron line

profile for such discs. If reflection is responsible for shaping the

phase lags, they would change periodically depending on the azi-

muthal angle.

We focused on the effects of Compton reflection on temporal

characteristics and not much attention was paid to the iron

emission line. With future instruments of high spectral resolution

and large effective area, it will be possible to study the phase lags

across the line profile. By combining the line profile with the

energy dependence of the phase lags it will be possible to put better

constraints on the accretion disc geometry in X-ray binaries. The

narrow cores, produced in the material far away from the X-ray

source, would be associated with large time delays. The broad

wings should respond faster to the variations of the continuum and

the lags should be smaller. However, there could be serious

complications. We assumed everywhere that there is a linear

response between variations of the continuum and the reflected

radiation. In other words, properties of the reflecting material are

assumed to be constant independently of the X-ray flux. This

assumption could be wrong since the ionization state of the

reflecting material depends on the illuminating flux (see e.g.

Reynolds 2000; Nayakshin & Kazanas 2001).

Another complication is that the angular distribution of the

intrinsic radiation could change. This would be likely for example

in the model with mildly relativistic outflows (Beloborodov 1999;

Malzac, Beloborodov & Poutanen 2001). If the velocity of the

plasma ejection is correlated with the energy dissipation rate in

magnetic flares, one could expect that a large emitted luminosity

corresponds to a larger ejection velocity, and more beaming

away from the disc. This would decrease the amplitude of

reflection at large fluxes. The resulting reflection response could

thus be non-linear possibly reproducing negative lags introduced

by reflection (Kotov et al. 2001). Further studies in that direction

are in progress.

6 C O N C L U S I O N S

In the present paper, we have developed the formalism for

computing the response functions for isotropic and anisotropic

X-ray sources above flat and flared accretion discs. We have also

studied the impact of the reflection on the temporal characteristics

such as the power density spectra, auto- and cross-correlation

functions, and the Fourier-frequency-dependent time/phase lags. A

number of useful approximations were introduced to simplify

significantly computations of the response function. Simple

approximate response function was shown to have temporal

characteristics which are very similar to that computed using exact

responses.

The temporal characteristics predicted by a model with a linear

response of the reflected component on to the variability of the

intrinsic radiation were computed. The reflection model can

reproduce the observed secondary maxima at low frequencies in

the phase lag Fourier spectra of Cyg X-1 and other GBHs. The

position of these maxima could be used to get constraints on the

accretion disc size. In spite of the fact that the observed energy

dependence of the phase lags at high frequencies indicate that

reflection is not their only source (Kotov et al. 2001), a proper

account of the impact of the reflection on temporal characteristics

is necessary, when interpreting the data.
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A P P E N D I X A : C A L C U L AT I O N O F T H E

R E S P O N S E F U N C T I O N

A1 Visibility conditions

Contrary to the case of the flat disc, every point of a flared disc is

not necessarily visible. For a concave disc surface, z00 . 0, the

condition for visibility reads

tan i ,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

out 2 r 2 sin2f
p

2 r cosf

H 2 z
: ðA1Þ

For a given inclination i and radius r, this translates to

cosf , cosf0 ;
ðr2

out 2 r 2Þ2 ðH 2 zÞ2 tan2i

2ðH 2 zÞr tan i
: ðA2Þ

According to the value of tan i, the visibility condition is as follows.

(i) If tan i , 1/z0max, then the whole disc surface is visible.

(ii) If 1/z0max , tan i , rout/H, then the whole area r , rc is

visible. For rc , r , rout, the condition cosf , cosf0 should be

fulfilled. Here rc is the solution of the equation tan i ¼

ðrout 2 rÞ=ðH 2 zÞ:

(iii) If tan i . rout/H, then the area r , rc is invisible. For r . rc,

the inequality cosf , cosf0 gives the visible area. Here rc is the

solution of the equation tan i ¼ ðrout þ rÞ=ðH 2 zÞ.

A2 Isochrons

An a given moment of time, the observer receives the signal

reflected from the curve which is the interception of the paraboloid

of equal delays with the disc surface. For an infinite flat disc, this

curve is an ellipse with a centre shifted along the x-axis:

ðx 2 q sin2i cos iÞ2

ðs/sin iÞ2
þ

y 2

ðs ctan iÞ2
¼ 1; ðA3Þ

where q and s are given by equation (39). A few examples of

isochrons for a flared disc are presented in Fig. A1. At small

inclinations and small delays they are close to those for the flat disc

(see Fig. A1b, c). The curve of equal delays on the disc surface can

consist of two disconnected regions depending on the inclination,

disc parameters and time. Some part of the disc can also be blocked

from the observer by the disc outer edge. The area on the right side

of the dashed curves in Fig. A1 is invisible.

A3 Integration over radius

Computation of the response function for flared discs is reduced to

one integral over the radius (see equations 12, 20). For zero

inclination i ¼ 0, the integration is trivial using the d-function from

equation (21). For the non-zero inclination, the integration limits

rm, rM are given either by the solution of the equations

t ¼ p 2 ðz 2 hÞ cos i ^ r sin i; ðA4Þ

or by the minimum/maximum disc radii rin, rout. Integrating over

radius we use a substitution r ¼ ½rM þ rm þ ðrM 2 rmÞ cos u�=2

which removes possible divergency of the integrand at the integration

limits. The solution of equation (A4) is trivial in the case of z ¼ 0 (see

equations 39 and 40). In order to solve equation (A4) for z – 0, we

first tabulate the function tðrÞ ¼ p 2 ðz 2 hÞ cos i 2 r sin i at a

dense grid of r, with r varying between 2rout and rout. If

tan i , rout/H, equation (A4) can have from 1 up to 3 solutions (for

2rout , r , routÞ. If t0ðroutÞ . 0, then there are two solutions for
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tmin , t # tðroutÞ that are found by interpolation. Here tmin is the

minimum value of t(r). For tð2routÞ , t , tðroutÞ, rM ¼ rout and

the only solution is found by interpolation (rm is then the absolute

value of that). The response function for t $ tð2routÞ is zero. If

tðroutÞ , 0 (see Fig. A1b, c), the integral over radius has to be

divided into two parts, since the isochrons consist of two separated

regions for some t.

For every t, we check that the visibility condition (A2) is

satisfied at all integration points u. If the condition is not satisfied

for some points, we find the radius (or radii) satisfying equation

cosfðrÞ ¼ cosf0ðrÞ by iterations (see equations 22 and A2). The

integral is then recomputed only over radii where (A2) valid. All

the routines used in this paper are written in IDL.

This paper has been typeset from a TEX/LATEX file prepared by the author.

Figure A1. Upper panels: The curves of equal delays (isochrons) at the disc surface for different inclinations (only one half of the disc is shown). The reflector’s

surface is given by equation (1) with H/rout ¼ 0:3, a ¼ 3, rout ¼ 1000, rin ¼ 0. The flare elevation above the disc centre is h ¼ 10. The observer is situated in

the x–z plane at inclination i. For large inclinations and certain time delays, the isochrons consist of two disconnected regions: one is close to the flare, the other

one is close to the disc edge (see e.g. panels b and c). At very large inclinations, a certain area on the disc surface becomes invisible (rightwards from the dashed

curves given by equation A2). Lower panels: function tðrÞ ¼ p 2 ðz 2 hÞ cos i 2 r sin i.
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