
Mon. Not. R. Astron. Soc. 373, 836–844 (2006) doi:10.1111/j.1365-2966.2006.11088.x

Pulse profiles of millisecond pulsars and their Fourier amplitudes

Juri Poutanen1� and Andrei M. Beloborodov2,3�
1Astronomy Division, PO Box 3000, FIN-90014 University of Oulu, Finland
2Physics Department and Columbia Astrophysics Laboratory, Columbia University, 538 West 120th Street, New York, NY 10027, USA
3Astro Space Center, Lebedev Physical Institute, Profsojuznaja 84/32, 117810 Moscow, Russia

Accepted 2006 September 20. Received 2006 August 30

ABSTRACT

Approximate analytical formulae are derived for the pulse profile produced by small hotspots on
a rapidly rotating neutron star. Its Fourier amplitudes and phases are calculated. The proposed
formalism takes into account gravitational bending of light, Doppler effect, anisotropy of
emission and time delays. Its accuracy is checked with exact numerical calculations.
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1 I N T RO D U C T I O N

During the past decade, coherent (or nearly coherent) oscillations
in the ∼200–600 Hz frequency range were discovered in the light
curves of a number of neutron stars in low-mass X-ray bina-
ries observed by the Rossi X-ray Timing Explorer (RXTE). In 13
sources, these oscillations were discovered during X-ray bursts
(see Strohmayer & Bildsten 2006, for a review), giving the name
nuclear-powered millisecond pulsars to this class of objects. Seven
transient sources, accretion-powered millisecond pulsars, showed
coherent pulsations in the persistent flux during the outbursts lasting
a few weeks (see reviews by Poutanen 2006; Wijnands 2006). In all
these millisecond pulsars (hereafter MSP), the observed emission is
dominated by bright spots on the neutron star surface. Such bright
spots are created either by a thermonuclear explosion observed as an
X-ray burst or by an accretion flow channelled towards a magnetic
pole. The pulse profile produced by the spot carries information
about the position of the spot, its size, spectrum and angular distri-
bution of its emission and the gravitational field of the star.

The X-ray pulse profiles observed from MSP are almost
sinusoidal. In SAX J1808.4−3658 (Gierliński, Done & Barret 2002;
Poutanen & Gierliński 2003) and XTE J1814−338 (Strohmayer
et al. 2003), there is a notable skewing of the profile which increases
with photon energy. The skewness as well as the observed soft time
lags probably result from Doppler boost of anisotropically emitted
radiation (Gierliński et al. 2002; Poutanen & Gierliński 2003). Pulse
profiles of SAX J1808.4−3658 have been measured with high ac-
curacy at different photon energies and well fitted by a theoretical
model (Poutanen & Gierliński 2003). This gave constraints on the
neutron star radius 8 < R < 12 km (assuming mass of 1.4–1.6 M�)
and on the inclination of the spin axis to the line of sight i � 60◦.

The poor photon statistics available for MSP normally does not
allow one to study in detail the shapes of their light curves. There-
fore, data analysis is often limited to the amplitude and phase of the
fundamental Fourier harmonic, and sometimes higher harmonics
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may be analysed. The Fourier technique helps to use the available
data to constrain the neutron star parameters (see e.g. Miller &
Lamb 1998; Weinberg, Miller & Lamb 2001; Muno et al. 2002;
Gierliński & Poutanen 2005). A number of recent papers were de-
voted to numerical calculations of the amplitude of pulsations cre-
ated by a spot (or two antipodal spots) for different radiation patterns,
rotational velocities, inclinations, spot positions and their sizes
(see e.g. Weinberg et al. 2001; Muno et al. 2002). Such calcula-
tions involve light-bending and Doppler effects, which made the
problem complicated and required numerical calculations. Given
the large number of parameters, the numerical approach makes it
difficult to understand the dependence of results on parameters and
interpret the data.

The purpose of this paper is to develop an approximate ana-
lytical description of the problem. Using the simple formalism of
Beloborodov (2002, hereafter B02) for light bending, we derive an-
alytical formulae for oscillation amplitudes which demonstrate how
the observables depend on the parameters of the problem.

The plan of this paper is as follows. In Section 2, we introduce
our notations and summarize the exact numerical method of the
light-curve calculation. In Section 3 we discuss the approximate
description of light bending, introduce an approximate formula for
time-delay effects, describe possible classes of MSP and finally de-
rive approximate analytical formulae for the pulse profiles and the
corresponding amplitudes and phases of the Fourier series. Using
our analytical formalism, we compare the approximate Fourier am-
plitudes to the exact results and investigate the effects of anisotropy
of the emission pattern and the Doppler effect on the pulse profile
in Section 4.

2 P U L S E F RO M A S P OT O N A S P I N N I N G S TA R

Consider a small spot on the star surface. Its area measured in the
corotating frame is dS′, and its instantaneous position in the fixed
lab frame is described by the unit vector n that points to the spot
from the star centre (see Fig. 1). The angle between n and the line of
sight is denoted by ψ . We are interested in photons emitted by the
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Figure 1. Geometry of the problem. Dotted curve shows the photon
trajectory.

spot that propagate along our line of sight at large distances from the
star (where gravitational bending becomes negligible). We denote
the unit vector along the line of sight by k, so that

cos ψ = k · n. (1)

As the star rotates, k · n varies periodically,

cos ψ = cos i cos θ + sin i sin θ cos φ, (2)

where i is the inclination angle of the spin axis to the line of sight,
θ is the spot colatitude and φ = 2πνt is the rotational phase of the
pulsar; ν = P−1 is the pulsar frequency and t = 0 is chosen when
the spot is closest to the observer.

Angle ψ measures the apparent inclination of the spot to the line
of sight, which is different from the true inclination because of the
light-bending effect. We denote the initial direction of the emitted
photon by k0 and the true emission angle by α, so that

cos α = k0 · n. (3)

Emission angle in the corotating frame is denoted by α′. It differs
from α because of relativistic aberration (see derivation in Appendix
A):

cos α′ = δ cos α, (4)

where δ = 1/γ (1 − β cos ξ ) is the Doppler factor. Here γ = (1 −
β2)−1/2 and β = v/c is the spot velocity,

β = 2πR
c

ν√
1 − u

sin θ = βeq sin θ, (5)

βeq is the velocity at the equator and ξ is the angle between the spot
velocity and k0. Here u ≡ rS/R, rS = 2GM/c2 is the Schwarzschild
radius; M and R are the mass and radius of the star. The pulsar
frequency has been corrected for the redshift

√
1 − u. One can show

that ξ is related to α, ψ , i and φ by (see Appendix A),

cos ξ = − sin α

sin ψ
sin i sin φ. (6)

For power-law spectra (observed for example in accretion-
powered MSP), we assume that the energy and angular dependencies
of the spectrum emitted by the spot may be separated as

IE ′ (α′) = I0(1 + h cos α′)E ′−(�−1), (7)

where h does not depend on the photon energy E. If the power-law
spectrum is produced by the thermal Comptonization by electrons
of temperature Te, this condition would be satisfied if the maximum
Doppler shift δ ∼ 2πνR/c sin i sin θ is smaller than the typical
relative energy change in a single scattering E/E ∼ 4kTe/mec2,
which translates to (ν/600 Hz) sin i sin θ < kTe/16 keV (Viironen
& Poutanen 2004). Even for X-ray burst spectra one expects that h
varies slowly with energy, so that equation (7) still can be used.

The observed spectral flux at a distance D from the star is then
given by (see derivation in Appendix A),

FE = (1 − u)�/2 δ�+3 I ′
E (α′) cos α

d cos α

d cos ψ

dS′

D2
. (8)

Expression for the bolometric flux may be obtained as a special case
of equation (8) by setting � = 2,

F = (1 − u) δ5 I ′(α′) cos α
d cos α

d cos ψ

dS′

D2
. (9)

These equations take into account the special relativistic effects
(Doppler boost, relativistic aberration) as well as general relativistic
effects (gravitational redshift and light bending in Schwarzschild
geometry).

For further analysis, we use pulse profiles normalized to F0 =
I0 E−(�−1) (1 − u)(�+2)/2 d S′/D2:

F(φ) = δ�+3(1 + hδ cos α) cos α
1

1 − u
d cos α

d cos ψ
. (10)

The flux is zero if cos α < 0. For the antipodal spot, we substitute
θ → π − θ and φ → π + φ.

Expression (10) does not account for time delays resulting from
different paths travelled by photons emitted at different phases φ.
The delays become significant only for very fast-rotating pulsars.
In Schwarzschild metric, the maximum time delay for a neutron
star of M = 1.4 M� is t ∼ 7 × 10−2 ms (almost independent
of compactness of the star M/R). This gives at most a 5 per cent
correction to the arrival phase for a rotational period P = 1.5 ms.
The flux at observed phase φobs is F̄(φobs) = F(φobs − φ) with
phase delay φ = 2πνt computed using (A17) and (A18) from
the appendix. The effect of the photon arrival time contraction (or
stretching) on the observed flux is already accounted for by one of
the Doppler factors. The effects of gravitational bending, Doppler
boost and time delays on the pulse profile are shown in Fig. 2.

Fourier series of the pulse profile is given by

F̄(φobs) = A0 +
∑
n=1

[An cos(nφobs) + Bn sin(nφobs)], (11)

where

A0 = 1

2π

∫ 2π

0

F̄(φobs) dφobs,

An = 1

π

∫ 2π

0

F̄(φobs) cos(nφobs) dφobs, n � 1

Bn = 1

π

∫ 2π

0

F̄(φobs) sin(nφobs) dφobs, n � 1.

(12)

An alternative form of Fourier series is written in terms of amplitudes
cn and phases φn
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Figure 2. (a) The bolometric blackbody flux as a function of the observed
phase. Dotted curve is for a slowly rotating star ignoring all relativistic
effects. The pulse profile where gravitational light bending is accounted for
is shown by the dashed curve. Dot–dashed curve gives the profile modified
by the Doppler boost and aberration for a neutron star rotational frequency
ν = 600 Hz. Solid curve accounts also for the time delay. Thin solid curve is
a pulse profile produced using the approximate Fourier amplitudes derived
in Section 3. (b) Doppler factor δ as a function of the observed phase for ν =
600 Hz. We take i = θ = 45◦, R = 2.5rS and M = 1.4 M� in this example.

F̄(φobs) =
∑
n=0

Cn cos[n(φobs + φn)], (13)

where

Cn =
√

A2
n + B2

n , tan(nφn) = −Bn

An
. (14)

The exact Fourier series are calculated numerically.

3 A NA LY T I C A L A P P ROX I M AT I O N

3.1 Light bending and time delay

The expressions for the observed flux (8) and (9) can be significantly
simplified if one uses analytical formula for light bending and time
delays. This will allow us to also obtain analytical expressions for
the pulsation amplitude and Fourier harmonics in Section 3.3.

Beloborodov (2002) showed that the relation

cos α ≈ u + (1 − u) cos ψ (15)

describes light bending with high accuracy (see also Leahy & Li
1995; Zavlin, Shibanov & Pavlov 1995, for discussion of approxi-
mations). The accuracy of equation (15) is shown in Fig. 3 (see also
B02). For a star with R = 2rS, the accuracy is better than 10 per cent,
while for R = 3rS the error does not exceed 3 per cent. The spot is
visible to the observer when

cos ψ > cos ψmax = −u
1 − u

. (16)

The exact expression for the time delays (A17) may also be ap-
proximated by a simple formula. Expanding it in Taylor series with
1 − cos α as a small parameter and using also the expansion

1 − cos α

1 − u
= y

(
1 + u2

112
y2

)
(17)

(obtained from equation 2 in B02), where y = 1 − cos ψ , we get

t = y

{
1 + uy

8

[
1 + y

(
1

3
− u

14

)]}
R
c

. (18)

Figure 3. Light bending in Schwarzschild metric. The solid curves are the
exact results using equation (A1) and the dotted lines is the approximation
(15).

Figure 4. Time delays in Schwarzschild metric. The solid curves are the
exact results using equation (A17) for R = 2, 2.5 and 3rS (from top to
bottom). The dashed curves show the results of an approximate formula
(18), and the dotted line is the approximation (19).

Keeping only the leading term, we find

t = y
R
c

. (19)

This approximation is better than 20 per cent accurate for most
emission angles and compactnesses (Fig. 4). Only in the extreme
case of R = 2rS for large bending angles (and large delays), the error
increases to 35 per cent. Since the time delays themselves produce
a small effect, equation (19) is sufficient in most calculations.

3.2 Pulsar visibility classes

Analytical light-bending formula (15) allows one to introduce a
simple classification of the light curves according to the relative
positions of μmin ≡ cos(i + θ ), μmax ≡ cos(i − θ ), cos ψmax and
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Figure 5. Classes of visibility for hotspots on neutron star surface at the inclination i – spot colatitude θ plane. The classes are determined by the relative
positions of μmin = cos (i + θ ), μmax = cos (i − θ ), cos ψmax and κ ≡ |cos ψmax|. Left-hand panel: classes for one spot. In class A defined by μmin > −κ , the
spot is always visible. In class B defined by μmin < −κ < μmax, the spot is not visible for a fraction of period. In class C defined by μmax < −κ , the spot is never
visible. Right-hand panel: classification for two antipodal spots as given in B02. In class I, μmin > κ , the primary spot is visible all the time and the antipodal
spot is never seen. In class II, −κ < μmin < κ < μmax, the primary spot is seen all the time and the antipodal spot also appears for some time. In class III,
μmin < −κ , the primary spot is not visible for a fraction of period (and then only the antipodal spot is seen). In class IV, −κ < μmin, μmax < κ , both spots are
seen at any time. Dotted and solid lines correspond to the exact ψmax = 129.◦4 and approximate cos ψmax = − u/(1 − u) (giving ψmax = 131.◦8), for u = 0.4
(i.e. R = 2.5rS).

κ ≡ |cos ψmax|. For a single spot, three classes exist (see the left-
hand panel of Fig. 5). In class A, defined by μmin > −κ , the spot
is always visible. When κ < −μmax (class C), the spot is always
invisible. For μmin < −κ < μmax (class B), the spot is visible during
the pulsar phases |φ| < φp, where

cos φp = cos ψmax − cos i cos θ

sin i sin θ
= −Q

U
, (20)

and we defined

U = (1 − u) sin i sin θ,

Q = u + (1 − u) cos i cos θ. (21)

Pulsars with two antipodal spots are divided into four classes
(shown in the right-hand panel of Fig. 5, see also B02). In class I,
corresponding to μmin > κ only the primary spot is visible all the
time. In class II, −κ < μmin < κ < μmax, the primary spot is always
visible, while the antipodal secondary spot appears during phases
φs < φ < 2π − φs, where

cos φs = − cos ψmax + cos i cos θ

sin i sin θ
= 2u − Q

U
. (22)

The primary spot disappears for a fraction of the period in class III,
μmin < −κ , and then only the antipodal spot is seen. And finally, in
class IV (−κ < μmin, μmax < κ), both spots are seen all the time.

3.3 Fourier series

Our aim is to obtain simple analytical expressions for the Fourier
amplitudes and phases characterizing the pulse profile. We can sim-
plify expression (10) by using approximation to the light-bending
formula (15):

F(φ) = δ�+3(1 + hδ cos α) cos α, (23)

where now

cos α = Q + U cos φ. (24)

Doppler factor δ depends on βeq. In the leading order of βeq � 1,
this dependence is given by

δ ≈ 1 − βeq sin i sin θ
sin α

sin ψ
sin φ. (25)

We further approximate sin α/ sin ψ ≈ √
1 − u which becomes

exact at α � 1 (cf. the cosine relation 15). This gives

δ ≈ 1 − T sin φ, (26)

where

T ≡ βeq

√
1 − u sin i sin θ � 1. (27)

Hereafter, we keep linear terms in T and neglect higher order terms.
Then, substituting δ into expression (23), we obtain the flux (as a
function of φ):

F(φ) = a0 +
3∑

n=1

[an cos(nφ) + bn sin(nφ)], (28)

with non-zero coefficients

a0 = Q + h

(
Q2 + U 2

2

)
, (29)

a1 = (1 + 2hQ)U , (30)

b1 = −
[

Q(3 + �) + h

(
Q2 + U 2

4

)
(4 + �)

]
T , (31)

a2 = hU 2

2
, (32)

b2 = −[(1 + 2hQ)(4 + �) − 1]
T U

2
, (33)

b3 = −4 + �

4
hT U 2. (34)

Similarly to equation (14), we can define Fourier coefficients cn and
corresponding phase lags. Coefficients (29)–(34) are good approxi-
mations to the exact Fourier coefficients An , Bn of the flux F̄(φobs) as
long as the spot is visible at all phases (through the entire period of
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rotation). Alternatively, the pulse profile can be written as a cosine
series

F(φ) = Q + h

(
Q2 + U 2

2

)
+ U (1 + 2hQ)

cos ζ1
cos(φ + ζ1)

+ hU 2/2

cos 2ζ2
cos[2(φ + ζ2)]

+ 4 + �

4
hT U 2 cos

[
3

(
φ + π

6

)]
, (35)

where

tan ζ1 = T
U

(3 + �)Q + (4 + �)h(Q2 + U 2/4)

1 + 2hQ
, (36)

tan 2ζ2 = T
U

(4 + �)(1 + 2hQ) − 1

h
. (37)

The ratio of the harmonic to the fundamental

c2

c1
= hU

2(1 + 2hQ)

cos ζ1

cos 2ζ2
(38)

grows with the anisotropy parameter h and sin i sin θ .
If the spot disappears from the visibility zone for part of the

period (classes B, II, and III), the Fourier series becomes infinite.
The Fourier coefficients of the light curve can be computed from
the coefficients (29)–(34):

a′
0 = φp

π

3∑
k=0

aksk(φp),

a′
n = φp

π

3∑
k=0

ak

[
sn−k(φp) + sn+k(φp)

]
,

b′
n = φp

π

3∑
k=1

bk

[
sn−k(φp) − sn+k(φp)

]
, (39)

where s0(φ) = 1 and sn(φ) = sin (nφ)/(nφ).
Including the time delays further modify the expansions. We

are interested in the Fourier coefficients of the function F̄(φobs) =
F[φobs − φ(φ)]. We can calculate the phase delays relative to the
photons arriving from the star element closest to the observer (with
impact parameter b = 0) using equation (19):

φ(φ) ≈ φ(φobs) ≈ � − T cos φobs, (40)

where � = βeq

√
1 − u(1 − cos i cos θ ) = (1 − Q)βeq/

√
1 − u.

Keeping only the first term in the Taylor expansion, we arrive at

cos n(φ − φ) = cos nφ + nφ sin nφ,

sin n(φ − φ) = sin nφ − nφ cos nφ. (41)

The Fourier amplitudes for F̄(φobs) are found as follows

a′′
n = an,

b′′
n = bn + �nan − T

2
[(n − 1)an−1 + (n + 1)an+1] ,

(42)

where we neglected products Tbn , �bn ∝ T2. If the spot is invisible
for a part of the period, one should use coefficients a′

n , b′
n instead

of an , bn . For the antipodal spot, we substitute θ → π − θ and φ →
π + φ. Thus we still can use the expressions (29)–(34), where Q
is replaced by Qs = u − (1 − u) cos i cos θ and the sign of the odd
terms a1, b1 and b3 is changed.

4 R E S U LT S

We have checked the accuracy of the analytical formalism
(Section 3.3) by direct comparison with the exact numerical cal-
culation (Section 2). The accuracy depends mainly on the com-
pactness of the star u = rS/R and its rotational frequency ν. Part
of the error comes from the light-bending approximation (15); this
error increases for stars with large u (Fig. 3). Besides, we made
the approximation sin α/sin ψ ≈ (1 − u)1/2 in equation (25) for the
Doppler factor δ. This introduces an additional error which becomes
notable for fast rotators. Errors generally grow at higher ν because
we neglected the terms quadratic in βeq in all formulae.

As an example, we show in Figs 2 and 6 the results for a fast
and compact rotator with ν = 600 Hz and u = 0.4 (R/rS = 2.5). In
this case, the pulse profile reconstructed from the analytical Fourier
amplitudes is very close to the exact profile (Fig. 2). The accuracy
of analytical approximation for amplitudes C0 and C1 is better than
3 per cent, while C2 is 15 per cent accurate (see Fig. 6). The phases ζ 1

and ζ 2 (equations 36 and 37, and the phases obtained from equations
39 and 42) are accurate within 0.2 rad. For slower rotation, e.g. ν =
300 Hz, the error of analytical approximation decreases to ∼5 per
cent. Only amplitude C3 (which is smaller than C1 and C2 and more
sensitive to the neglected terms in the analytical expansion) has a
significant error, our formulae underestimate C3 by about 50 (20)
per cent for ν = 600 (300) Hz.

Even for an extremely compact star with u = 0.5, the analytical
C1 and C2 have a good accuracy: they are typically 10–20 per cent
smaller than the exact values. Only in the cases with one spot at large
colatitudes θ > 120◦ and small inclinations i < 60◦, the amplitudes
are underestimated by a factor of 2, because of extreme gravitational
bending.

Using the analytical formalism one can understand the behaviour
of Fourier amplitudes and their ratio obtained previously by nu-
merical calculations (Weinberg et al. 2001; Muno et al. 2002). Be-
low, we investigate separately the effects of anisotropy and fast
rotation.

4.1 Effects of anisotropy

Let us assume a slowly rotating star (i.e. take δ = 1 and φobs = φ)
and investigate the effects of anisotropy h = 0 of the source emis-
sion I(α) = I0(1 + h cos α) on the pulse profile. For example, ra-
diation from an optically thin source (slab) is more beamed along
the stellar surface and described by h < 0 (see e.g. Poutanen &
Gierliński 2003; Viironen & Poutanen 2004), while h ∼ 2 character-
izes radiation from an optically thick electron-scattering dominated
atmosphere.

As will be seen from equations below, anisotropy (i) introduces
harmonic a2 ∝ h, (ii) changes the global structure of the profile
(e.g. two maxima may appear and φ = 0 may become a minimum)
and (iii) leaves the profile symmetric.

We will use the following expression for the flux from a single
(or primary) spot,

Fp(φ) = cos αp(1 + h cos αp), (43)

where

cos αp = u + (1 − u) cos ψ = Q + U cos φ. (44)

If secondary (antipodal) spot is present, the corresponding flux is

Fs(φ) = cos αs(1 + h cos αs), (45)

where (using cos ψ s = −cos ψ)

cos αs = u − (1 − u) cos ψ = 2u − Q − U cos φ. (46)
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Figure 6. Fourier amplitudes of the pulse profile as functions of the spot colatitude for three inclinations i = 30◦, 60◦ and 90◦. Left-hand panel: one spot.
Right-hand panel: two antipodal spots. Solid curves show the exact numerical results and dashed curves – the analytical approximation. Inclinations and
corresponding visibility classes are marked above the curves. Parameters are M = 1.4 M�, R = 2.5rS, � = 2, ν = 600 Hz and h = −0.7.

4.1.1 One spot

First, let us consider the simple case of blackbody spots (i.e. h =
0). The pulse profile from a single spot then has almost exactly sine
shape (B02)

Fp(φ) = cos αp = Q + U cos φ. (47)

This immediately gives the non-zero Fourier cofficients a0 = Q and
a1 = U for pulsars in class A. In class B, the Fourier coefficients
can be computed using equations (39). The peak-to-peak amplitude
A ≡ (Fmax − Fmin)/(Fmax + Fmin) is given by

A =

⎧⎪⎨⎪⎩
U
Q

, class A,

1, class B.

0, class C.

(48)

The peak-to-peak amplitude coincides with the ratio |a1|/a0 and is√
2 larger than sometimes quoted rms amplitude if the light curve

is a pure sine profile.
The pulse profile is given by

F(φ) = Q + h

(
Q2 + U 2

2

)
+ U (1 + 2hQ) cos φ + h

U 2

2
cos 2φ.

(49)

One sees that anisotropy introduces no phase shift in the harmon-
ics, and the pulse profile remains symmetric about φ = 0 and π;
however, the Fourier amplitudes are changed. The amplitude of the
fundamental c1 increases with positive h and decreases if h is neg-
ative. The fundamental can even completely disappear when h =
−1/(2Q). It is proportional to U and therefore c1 behaves close to
sin i sin θ (see also Fig. 6, left-hand panel for class A and right-hand
panel for class I).

Anisotropy h = 0 introduces harmonic cos 2φ in the pulse. The
amplitude c2 of this harmonic can be quite large if h is large (in

absolute value) and is proportional to sin2 i sin2θ (see equations 32,
33 and lower panels in Fig. 6). The ratio of amplitudes c2 and c1 is
given by

c2

c1
= a2

a1
= hU/2

1 + 2hQ
∝ h sin i sin θ. (50)

If h � −1/2, the pulse profile has a maximum at φ = 0 and a
minimum at φ = π. The corresponding pulse amplitude is

A = U (1 + 2hQ)

Q + h(Q2 + U 2)
. (51)

If h < −1/2 and the conditions

cos(i + θ ) < η ≡ −u + 1/2h
1 − u

< cos(i − θ ) (52)

are satisfied, then the pulse has minima at both φ = 0 and π. Two
maxima

Fmax = − 1

4h
(53)

appear at phases corresponding to

cos φ = cos φ1 ≡ −1 + 2hQ
2hU

. (54)

The global minimum of the pulse profile is at φ = π,

Fmin(φ = π) = (Q − U )[1 + h(Q − U )]. (55)

If h < −1/2 and cos(i + θ ) > η, the pulse minimum is at φ = 0
and its maximum at φ = π. When cos (i − θ ) < η, then the minimum
is at φ = 0 and the maximum is at φ = π.

In class B, the phase φ = π is not visible. The condition for
additional maxima (52) is the same as in class A and these maxima
are always in the visibility zone, cos φ1 > cos φp.

The above analysis is also applicable to pulsars with two antipodal
spots in class I, when only one spot is visible. Because class I is
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smaller on the θ − i plane than class A, the existence of the maxima at
φ =|φ1| (equation [54]) requires a stronger condition on h: −1/4u <

h < −1/2.

4.1.2 Two antipodal spots

First consider blackbody spots (h = 0). In class IV, the pulse profile
is flat with a0 = 2u, i.e. there are no pulsations. In class II, the pulse
profile consists of a single sinusoidal pulse and a flat plateau appear-
ing when the antipodal spot also becomes visible (see equation 22).
In class III, there are two pulses with two plateaus in between (sym-
metric about phases φ = 0 and π). The primary is seen at |φ| < φp,
while the secondary appears at cos φ < cos φs. The corresponding
pulse amplitudes A for all these classes are given by (B02)

A =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
U
Q

, class I,

U + Q − 2u
U + Q + 2u

= cos(i − θ ) − u
cos(i − θ ) + u

, classes II, III,

0, class IV.

(56)

The anisotropy h = 0 modifies significantly the pulse profiles.
The analysis is simplest for class IV, where two spots are always
visible. Then the total flux is

F̄(φ) = F̄p(φ) + F̄s(φ) = 2u + h[2(Q − u)2 + 2u2 + U 2

+ 4(Q − u)U cos φ + U 2 cos 2φ] (57)

and the Fourier amplitudes are

c1

c0
= a1

a0
= 2h(Q − u)U

u + h[u2 + (Q − u)2 + U 2/2]
, (58)

c2

c0
= a2

a0
= hU 2/2

u + h[u2 + (Q − u)2 + U 2/2]
. (59)

The dependencies c1/c0 ∝ h sin 2i sin 2θ and c2/c0 ∝ h sin2 i
sin2θ are found not only in class IV, but also in classes II and III
(right-hand panel, Fig. 6). Note that the importance of the second
harmonic
c2

c1
= U

4(Q − u)
= 1

4
tan i tan θ (60)

is independent of h and grows with i and θ .
If i + θ � 90◦, the pulse profile has two extrema at φ = 0 and π.

The pulse peak-to-peak amplitude is

A = 2(Q − u)U |h|
u + h[u2 + (Q − u)2 + U 2]

. (61)

If i + θ > 90◦, there are two additional extrema at cos φ = cos φ2 ≡
−(Q − u)/U = − cot i cot θ with

F(φ2) = 2u(1 + hu). (62)

These extrema are minima if h > 0 and maxima if h < 0. Here φ =
0 is a global maximum for h > 0 and a global minimum for h < 0.
The amplitude of the pulse with four extrema grows with |h|,

A = (1 − u)2 cos2(i − θ ) |h|
2u + h[2u2 + (1 − u)2 cos2(i − θ )]

. (63)

It is maximum at the boundary of class IV when cos (i − θ ) = κ .

4.2 Effects of fast rotation

The effects of fast rotation are illustrated in this section with a simple
case of blackbody spots (h = 0, no anisotropy). Furthermore, we

assume that the spots are always visible, i.e. consider classes A, I
and IV.

4.2.1 One spot, classes A and I

The flux from one spot is given by

Fp(φ) = δ3+� cos αp = Q + U cos φ − (3 + �)QT sin φ

− 3 + �

2
U T sin 2φ = Q + U

cos ζ1
cos(φ + ζ1)

+ 3 + �

2
U T cos

[
2
(
φ + π

4

)]
, (64)

which only slightly deviates from a sinusoidal shape. The phase
shift

tan ζ1 = (3 + �)Q
T
U

≈ βeq√
1 − u

(3 + �)Q (65)

is of the order of βeq � 1. The main dependences of the Fourier
amplitudes on i and θ are similar to the anisotropic case considered
in Section 4.1.1, with c1 behaving close to sin i sin θ and c2 ∝ sin2

i sin2θ (compare equations 30 and 31 as well as equations 32 and
33). The ratio of harmonics is

c2

c1
≈ (3 + �)T

2
≈ (3 + �)

2
βeq

√
1 − u sin i sin θ. (66)

We see that the Doppler effect produces the first harmonic and in-
troduces a phase shift between the fundamental and the harmonic,
which skews the profile. The phase shift is proportional to βeq.

We note, however, that the ratio c2/c1 depends linearly on βeq

(which is a small number) and sin i sin θ . We conclude that for a
single spot c2/c1 � 1, i.e. the Doppler effect alone cannot introduce
a strong additional harmonic to the signal (unless � is large). In con-
trast, an anisotropic source can make it easily (see equation 50). In
combination with anisotropy, the Doppler effect significantly mod-
ifies the pulse profile.

The time delays slightly reduce the phase lag to tan ζ1 = βeq[(4+
�)Q − 1]/

√
1 − u and produce a third harmonic with a small am-

plitude a3 ∝ UT2 ∝ β2
eq.

4.2.2 Two spots, class IV

The contribution of the secondary (antipodal) spot to the flux is
given by

Fs(φ) = δ3+�
s cos αs = 2u − Q − U cos φ

+ (3 + �)(2u − Q)T sin φ − 3 + �

2
U T sin 2φ, (67)

where δs ≈ 1 + T sin φ. The total flux is given by

F(φ) = Fp(φ) + Fs(φ)

= 2u − (3 + �)T [2(Q − u) sin φ + U sin 2φ]. (68)

The time delays introduce the effects of the order β2
eq which are

ignored here.
The Doppler effect modulates the flux, so that the profile is not

a plateau anymore. The Fourier amplitudes c1 and c2 grow linearly
with the rotational frequency and the spectral index �. The ampli-
tude of the fundamental,

c1

c0
= 3 + �

u
(Q − u) T ∝ βeq sin 2i sin 2θ (69)
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is maximum at the boundary of class IV where cos (i − θ ) = κ ,
while the amplitude of the harmonic,

c2

c0
= 3 + �

2u
U T ∝ βeq sin2 i sin2 θ, (70)

is maximum when i = θ = 90◦. The dependences on i and θ are
similar to the anisotropic case from Section 4.1.2. This explains
the fact that when both anisotropy and fast rotation are present, the
behaviour remains the same (see right-hand panels in Fig. 6). The
ratio of the harmonics is

c2

c1
= U

2(Q − u)
= 1

2
tan i tan θ. (71)

It differs by a factor of 2 from the anisotropic case (60), and becomes
large at large inclination i and spot co-latitude θ .

If i + θ � 90◦, the Doppler-boosted pulse from two antipodal
spots has two extrema at

cos φ = cos φ+ ≡
√

8 + cot2 i cot2 θ − cot i cot θ

4
> 0, (72)

with maximum at −φ+ and minimum at φ+. If i + θ > 90◦, there
are two additional extrema at

cos φ = cos φ− ≡ −
√

8 + cot2 i cot2 θ + cot i cot θ

4
< 0, (73)

with φ− being the maximum and −φ− being the minimum. The
global maximum and minimum remain at ∓φ+.

5 S U M M A RY

We have derived an analytical approximation for the pulse profile
produced by small spots on a neutron star surface, its Fourier ampli-
tudes and phases. The exact profile is reproduced with good accuracy
by our formulae even in the case of very fast rotation (e.g. with the
error of ∼15 per cent for rotational frequency ν = 600 Hz). For
slower rotation of 300 Hz, the accuracy improves to ∼5 per cent.
The main advantage of the analytical formalism is that it shows
the dependence of the pulse profile and its Fourier series on the
parameters of the pulsar.

The proposed formalism can be used to obtain constraints on
the neutron star parameters and position of the hotspot from the
amplitudes of oscillations observed during X-ray bursts in some
low-mass X-ray binaries, as well as from the X-ray pulse profiles
of the accretion- and rotation-powered pulsars. Our results can be
further extended to study the energy dependence of the profile as
well as the effects of the finite spot size.
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Muno M. P., Özel F., Chakrabarty D., 2002, ApJ, 581, 550
Pechenick K. R., Ftaclas C., Cohen J. M., 1983, ApJ, 274, 846
Poutanen J., 2006, Adv. Space Res., in press (astro-ph/0510038)
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A P P E N D I X A : E X AC T C A L C U L AT I O N O F

O B S E RV E D F L U X

A1 Light bending and Lorentz transformations

The exact relation between α and ψ in Schwarzschild geometry (i.e.
light bending) is given by (e.g. Misner, Thorn & Wheeler 1973)

ψ =
∫ ∞

R

dr
r 2

[
1

b2
− 1

r 2

(
1 − rS

r

)]−1/2

, (A1)

where b is impact parameter,

b = R√
1 − u

sin α, (A2)

u = rS/R, rS = 2GM/c2 is Schwarzschild radius; M and R are
mass and radius of the star. The maximum bending angle ψmax

corresponds to α = π/2. The visibility of the spot is defined by a
condition cos α > 0, or alternatively by ψ < ψmax ≡ ψ(α = π

2 ).
As a photon emitted at angle α with respect to the spot normal n

propagates to infinity, its direction changes from k0 near the stellar
surface to k at infinity, so that cos α =k0 · n changes to cos ψ =k ·
n. The relation between k0 and k may be written as

k0 = sin α k + sin(ψ − α) n

sin ψ
. (A3)

At any moment of time, we can introduce an instantaneous non-
rotating frame x, y and z with the y-axis along the direction of the
spot motion, x-axis along the meridian towards the equator and
z-axis along the normal to the spot. In this static frame,

k0 =
[

sin α

sin ψ
(sin i cos θ cos φ − cos i sin θ ), cos ξ, cos α

]
, (A4)

where

cos ξ = β

β
· k0 = sin α

sin ψ

β

β
· k = − sin α

sin ψ
sin i sin φ. (A5)

In the frame comoving with the spot (with y-axis along the spot
motion, z-axis along the local normal), the unit vector along the
photon momentum is obtained from the Lorentz transformation:

k′
0 = δ

⎡⎢⎣ (sin i cos θ cos φ − cos i sin θ ) sin α

sin ψ
γ (cos ξ − β)

cos α

⎤⎥⎦ , (A6)

where γ = 1/
√

1 − β2 and the Doppler factor

δ = 1

γ (1 − β cos ξ )
. (A7)
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Using equation (A6), we obtain

cos α′ = δ cos α. (A8)

A2 Observed flux

The observed flux from the spot at photon energy E is

dFE = IE d�, (A9)

where IE is the specific intensity of radiation at infinity and d� is
the solid angle occupied by spot with area dS′ on the observer’s sky.
The solid angle can be expressed in terms of the impact parameter

d� = b db dϕ

D2
, (A10)

where D is the distance to the source and ϕ is the azimuthal angle
corresponding to rotation around line of sight (vector k). The impact
parameter b depends on ψ only, but not on ϕ.

Using equation (A2) and the facts that dS = R2 d cos ψ dϕ and
dS′ cos α′ = dS cos α (since the spot area projected on to the plane
perpendicular to the photon propagation direction, i.e. a photon
beam cross-section, is Lorentz invariant), one gets

d� = dS′ cos α′

D2

1

1 − u
d cos α

d cos ψ
. (A11)

In the limit of weak gravity u � 1, this gives the usual formula
d� = dS′ cos α′/D2.

The combined effect of the gravitational redshift and Doppler
effect results in the following relation between the monochromatic
observed and local intensities (see e.g. Misner et al. 1973; Rybicki
& Lightman 1979):

IE =
(

E
E ′

)3

I ′
E ′ (α′), (A12)

where E/E ′ = δ
√

1 − u. Here, I′
E ′ (α′) is the intensity computed in

the frame comoving with the spot. For the bolometric intensity, one
gets

I = (
δ
√

1 − u
)4

I ′(α′). (A13)

If the radiation spectrum can be represented by a power law I′
E ′ (α′)∝

E ′−(�−1) with a photon spectral index � which does not depend on
the angle α′ then

I ′
E ′ (α′) = I ′

E (α′)
(
δ
√

1 − u
)�−1

. (A14)

This approximation is equivalent to the assumption of a weak energy
dependence of the angular distribution (see Viironen & Poutanen
2004).

The observed spectral flux (equation A9) now reads

dFE = (1 − u)1/2δ4 I ′
E ′ (α′) cos α

d cos α

d cos ψ

dS′

D2
, (A15)

where we have used the aberration formula (A8). Substituting equa-
tion (A14), we recover equation (8).

The bolometric flux is given by

dF = (1 − u) δ5 I ′(α′) cos α
d cos α

d cos ψ

dS′

D2
. (A16)

Thus, the flux from a rapidly rotating star differs by a factor of δ5

from that from a slowly rotating star (Poutanen & Gierliński 2003).
Two powers of δ come from the solid angle transformation, one
from the energy, one from the photon arrival time contraction and
the fifth from the change in the projected area due to aberration.
Aberration may also change the specific intensity since it has to be
computed for angle α′ in the comoving frame.

A3 Time delays

Finally, we write down here the formula describing the time delays.
The delay is caused by different travel times of emitted photons to the
observer, depending on the position of the emitting spot. A photon
following the trajectory with an impact parameter b is lagging the
photon with b = 0 by (Pechenick, Ftaclas & Cohen 1983)

ct(b) =
∫ ∞

R

dr
1 − rS/r

{[
1 − b2

r 2

(
1 − rS

r

)]−1/2

− 1

}
. (A17)

For a given pulsar phase φ, we compute angle ψ , then we find the
corresponding emitted α and the impact parameter using formulae
(A1) and (A2), and compute the corresponding delays t(b) with
equation (A17). We then construct a one-to-one correspondence
between the pulsar phase φ and the photon arrival phase to the
observer φobs = φ + φ, with the phase delays

φ(φ) = 2πνt[b(φ)]. (A18)

For analytical work we can also use the relation φ =φobs −φ(φ) ≈
φobs − φ(φobs).
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