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ABSTRACT

We propose a straightforward and efficient mechanism for the high-energy emission of rel-
ativistic astrophysical jets associated with an exchange of interacting high-energy photons
between the jet and the external environment. Physical processes playing the main role in
this mechanism are electron–positron pair production by photons and the inverse-Compton
scattering. This scenario has been studied analytically as well as with numerical simulations
demonstrating that a relativistic jet (with the Lorentz factor larger than 3–4) moving through
the sufficiently dense, soft radiation field inevitably undergoes transformation into a luminous
state. The process has a supercritical character: the high-energy photons breed exponentially
being fed directly by the bulk kinetic energy of the jet. Eventually particles feedback on the
fluid dynamics and the jet partially decelerates. As a result, a significant fraction (at least
20 per cent) of the jet kinetic energy is converted into radiation mainly in the MeV–GeV
energy range. The mechanism maybe responsible for the bulk of the emission of relativistic
jets in active galactic nuclei, microquasars and gamma-ray bursts.

Key words: acceleration of particles – instabilities – radiation mechanisms: non-thermal –
shock waves – methods: numerical – galaxies: active – gamma-rays: bursts.

1 I N T RO D U C T I O N

Traditionally, the dissipation of a relativistic bulk motion into ra-
diation is assumed to be associated with the shock acceleration
of charged particles. In a relativistic case, its role is limited by a
number of factors (see e.g. Bednarz & Ostrowski 1999; Achterberg
et al. 2001). Derishev et al. (2003) and Stern (2003) independently
suggested that interacting neutral particles can convert bulk kinetic
energy into radiation much more efficiently than this can be done by
charge particles. Indeed, the neutral particles easily cross the shock
front or the boundary of the shear layer in both directions and can be
converted into charged particles for example via e± pair productions
by two photons. Pairs in turn convert their energy into photons by
Compton scattering, some of which cross the boundary again. Such
exchange of particles between media moving with respect to each
other with high Lorentz factor works in the same way as Fermi ac-
celeration, but more efficiently as there is no problem with diffusion
through the boundary layer. This process can proceed in a runaway
manner where the high-energy photons breed exponentially similar
to neutron breeding in nuclear chain reaction.

Stern (2003) demonstrated with numerical simulations that in the
case of an ultrarelativistic shock in a moderately dense medium
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(above ∼104 particles cm−3) this process leads to a dramatic in-
crease in the shock high-energy emission (electromagnetic catas-
trophe) and eventually to the elimination of the shock front, which
is converted into a smooth radiation front. Such effect can take place
in gamma-ray bursts. In this work, we consider the same scenario
for a different kind of relativistic fluid: a shear flow in astrophysical
jets. While we specifically consider here jets in active galactic nuclei
(AGNs) which emit tremendous power in form of the gamma-rays
in the MeV–TeV energy range, the mechanism can operate in the
jets from microquasars as well as in gamma-ray bursts.

There exist different models of the jet emission mechanism, prob-
ably the most popular one is associated with internal shocks in the
jet (Rees 1978; Paczyński & Xu 1994; Rees & Mészáros 1994).
Nevertheless, the maximal variation of � is at the jet boundary and
it is where we can expect the most intensive energy release. The
jet bulk energy can be dissipated in principle through the accelera-
tion of charged particles (Berezhko 1990; Ostrowski 2000; Stawarz
& Ostrowski 2002). If Thomson opacity is sufficiently large, the
standard radiation viscosity can also cause the energy dissipation in
the boundary layer as, for example, discussed by Arav & Begelman
(1992). In the case of AGN jets the Thomson opacity is, however,
insufficient to provide the efficient reflection of photons crossing the
boundary of the jet. Here we show that the role of the ‘mirror’ can
be played by the soft radiation, which provides the pair production
opacity for the high-energy photons.
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We study the mechanism of shear flow energy dissipation numer-
ically in the same way as it was done by Stern (2003) for shocks.
The problem formulation differs in its geometry (tangential jump of
the fluid velocity instead of the head-on shock) and in the character
of the primary photon background. The complete solution of the
problem should account for the feedback of particles on the fluid
dynamics and requires detailed numerical treatment of the hydrody-
namical part of the problem. In this first study, we neglect internal
pressure and consider a one-dimensional dust approximation. With
this simplified treatment of hydrodynamics we formulate our prob-
lem in the following way. We start from a non-radiating, idealized
cylindrical, homogeneous jet and then track its evolution to check
whether it produces a runaway photon breeding or not. This nu-
merical experiment is sufficient to demonstrate that under certain
circumstances a non-radiating jet cannot exist: it must radiate away
a substantial fraction of its kinetic energy.

We present the model of the jet and the environment and formulate
the quantitative problem to be solved in Section 2. In Section 3, we
describe the proposed mechanism qualitatively, formulate the nec-
essary conditions needed for its operation and provide a simplified
analytical study of separate parts of the mechanism. In Section 4,
we give the details of the numerical method for simulation of the
entire process. The results of numerical simulations for two rep-
resentative sets of parameters, which show a runaway regime are
presented in Section 5. We discuss the results, problems with the
model and possible effects in more realistic situations in Section 6,
and we conclude in Section 7.

2 M O D E L O F T H E J E T A N D T H E

E N V I RO N M E N T

We consider a jet of Lorentz factor � consisting of cold electrons
and protons and the magnetic field. We consider a piece of the jet
centred at distance R from the central source and length 20Rj, where
the jet radius is Rj = Rθ and θ has the meaning of the opening angle,
while for simplicity we approximate the jet by a cylinder of radius
Rj. We choose parameters corresponding to the case of AGN taking
the distance scale R ∼ 1017 cm, � ∼ 10–20 and θ = 0.05. The radial
distance from the jet axis r and the distance from the central source
z is measured in units of Rj. The unit of time is Rj/c.

The jet propagates through the soft radiation field, which energy
flux we denote F(x), so that F(x) dx is the energy flux in the interval
dx. The photon energies, in units of the electron rest mass mec2,
are denoted as x and ε for photons of low (<1) and high (>1)
energies, respectively. We define also the power-law index α ≡
−d logF(x)/d log x.

The radiation field in AGNs has two major components. The first
component originates in the accretion disc around the central source
and its photons propagate along the jet direction. We consider a stan-
dard accretion disc (Shakura & Sunyaev 1973), assuming a simple
power law T(R) ∝ R−3/4 dependence of temperature on radius, with
the ratio of the outer to inner disc radius Rout/Rin = 104 and the max-
imum temperature of T = 5eV. The dimensionless temperature is
then � ≡ kT/mec2 ≈ 10−5. The resulting multicolour disc spectrum
Fd(x) has a power-law shape with energy index −1/3 below � and
has a Rayleigh–Jeans part at energies below �min = �(Rout/Rin)−3/4

≈ 10−8.
The second, isotropic component consists of the disc radiation

scattered and reprocessed in the broad line region (BLR) and the in-
frared radiation by the dust (Sikora, Begelman & Rees 1994; Sikora
et al. 1996). We take its energy density to be a fraction ηi of the
energy density of the direct disc radiation, and its flux to be a cut-

off power law Fiso(x) ∝ x−αexp(−x/xmax) extending from the far-
infrared xmin ∼ 10−9 to the UV band, as we assume xmax = �.

The jet kinetic luminosity scales with the disc luminosity as

LK = ηK Ld = �Ṁc2. (1)

From the mass conservation (for a two-sided jet) Ṁ =
2πθ2 R2mpcnp(R), we get the Thomson optical depth across the
jet from the electrons associated with protons

τT(R) = np(R)σT Rj = 2.4 × 10−5ηK Ld,45

R17θ�
, (2)

where we use standard notations Q = 10x Qx in cgs units.
Comoving value of the magnetic field in the jet is Bj, its direction

is transversal by assumption. A reasonable scaling for the jet field
is Bj ∝ 1/Rj, then the Poynting flux carried by the jet

LB = ηB Ld = B2
j

8π
2πR2

j �
2c ∼ 8 × 1043 B2

j R2
17(θ�)2 erg s−1 (3)

is constant along the jet. Parameter ηB defines the role of the mag-
netic field and we consider two cases with low and high ηB.

For our analysis we consider two reference frames: the ambient
medium (external) frame and the frame comoving with the fluid
with Lorentz factor � (jet frame). Energies are normally given in
the external frame. The jet comoving values are specified using
subscript ‘c’ or a prime.

3 S T E P - B Y- S T E P D E S C R I P T I O N O F T H E

B R E E D I N G C Y C L E

The solution of the problem of the jet interaction with the external
environment and dissipation of its kinetic energy into high-energy
radiation requires full-scale non-linear Monte Carlo simulations as
described in Section 4. However, it would be useful to perform a
simplified analytical study. Very schematically, the process can be
split into five steps (see Fig. 1).

(1) A high-energy external photon (which origin is not impor-
tant) enters the jet and interacts with a soft photon producing an
electron–positron pair.

(2) In the jet frame, the produced e+ and e− originally move
backwards relative to the direction of jet propagation with the
energy ∼� times higher than the energy of the parent photon (in
the external frame). When particles gyrate in the magnetic field
of the jet, their time-averaged energy, as measured in the external
frame, becomes ∼�2 higher than the parent photon energy.

(3) The pair Comptonizes soft photons up to high energies.
(4) Some of these photons leave the jet and produce pairs in the

external environment.

Figure 1. The scheme of the photon breeding cycle. The cylindrical jet
moves to the right with a Lorentz factor �. The size of the Larmor orbit is
highly exaggerated. See Section 3 for details.
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(5) Pairs gyrate in the external environment and Comptonize soft
photons more or less isotropically. Some of the Comptonized high-
energy photons enter the jet again. This step completes the cycle.

Steps 1, 3, 4 and 5 require a field of soft photons to provide the
conversion of the high-energy photons into pairs and to produce
new high-energy photons through the inverse-Compton scattering.
In our case, the direct disc radiation provides the opacity for the
high-energy photons at step 1 and provides a target for Compton
scattering at step 5. Because the disc radiation is directed along the
jet, its effect at steps 3 and 4 is small (interactions are suppressed by
the factor of ∼1/�2). The isotropic soft photon component provides
the major source of seed soft photons for Comptonization at step 3
and the opacity at step 4 as well as contributes to the pair production
at step 1.

An additional condition for high efficiency of the cycle is the
presence of a transversal or chaotic magnetic field, both in the
jet (to provide step 2) and in the external environment (to pro-
vide isotropization of pairs and photons Comptonized by them at
step 5).

Each step can be characterized by its energy transmission coeffi-
cient ci defined (in the external frame) as the average ratio of total
energy of particles with energy above the pair production threshold
before and after the step. c2 is large (∼�2), others are smaller than
1. If the criticality index C ≡ c1 × c2 × c3 × c4 × c5 > 1, then the
regime is supercritical, i.e. each cycle produces more particles than
the previous one and their number grows exponentially. In this case,
we deal with particle breeding rather than with particle acceleration.
The spectrum of particles changes slowly (and in principle the mean
particle energy can decrease), but the number and the total energy
of particles grow rapidly.

Each coefficient ck can be represented as an average of the energy-
dependent coefficient Ck(ε) over the photon spectrum at the kth step

ck =
∫

Ck(ε)Fk(ε) dε, (4)

where Fk(ε) is the energy flux spectrum at the kth step normalized
to unity. The spectrum is a matter of a self-consistent treatment of
the whole breeding cycle and we cannot estimate it a priori. For
simplicity, we estimate Ck(ε) for the constant external photon field
(disc as well as isotropic).

A quantitative example for Ck(ε) behaviour described in this sec-
tion is given for the same parameters as in the detailed simulation
presented in Section 5.1: Ld,45 = 1, R17 = 2, � = 10, θ = 0.05,
ηK = 1, ηB = 0.01, ηi = 0.05, and we consider here two cases of the
isotropic photon spectrum with α = 0.4 and 1. The value α = 0.4
seems reasonable for the BLR region, where the scattered radiation
should be dominated by the UV and optical component and some
less-energetic IR radiation of dust is expected, while α = 1 could
be reasonable at the parsec scale where dust radiation can be very
important.

3.1 Steps 1 and 4: propagation of photons and pair production

Let us consider a problem of photon propagation through the bound-
ary between the external medium and the jet. Let aγ γ (ε) be the total
opacity for the pair production (i.e. the absorption coefficient pro-
duced by the disc and isotropic components) for a photon of energy
ε. The opacity produced by the isotropic component of the radiation
field only is denoted as aiso

γ γ (ε).
The jet photons move within the cone of opening angle 1/� to

the jet direction and interact mostly with the isotropic component

of the external radiation field, because the probability of interaction
with the disc component is reduced by the factor of ∼1/�2. The
corresponding opacity computed for the interval perpendicular to
the jet direction is aj ≈ �aiso

γ γ (εj). The probability that the jet photon
is absorbed in the interval d at distance  from the jet bound-
ary is exponential exp(−aj )aj d (this assumes that all photons
cross the boundary at the same angle 1/�). The pair production and
consequent Compton scattering transform this photon to photons
of energy εe. Roughly half of these photons are emitted towards
the jet and the fraction exp(−ae ) reaches the boundary [where
ae = aγ γ (εe) is the absorption opacity and we assumed that the
photons propagate in the direction perpendicular to the boundary].
The probability that the photons are absorbed within the jet is about
1 − exp(−aeRj). Assuming that only photons born at a distance not
more than the jet radius from the boundary can enter the jet, we get
the total probability for an external photon of energy εe to interact
inside the jet with a soft photon producing an electron–positron pair:

C1(εe, εj) ≈
∫ Rj

0

e−ae
1

2
e−aj aj d

(
1 − e−ae Rj

)
= 1

2

b
1 + b

(
1 − e−ae Rj

)(
1 − e−(ae+aj)Rj

)
, (5)

where

b = aj

ae
= �aiso

γ γ (εj)

aγ γ (εe)
. (6)

Obviously, C1 depends also on the energy of the parent photon εj,
because it defines the spacial distribution of sources of photons εe.

Analogously, we derive the probability of a high-energy photon
εj produced in the jet to escape from the jet and to produce a pair in
the external medium at a distance not more than the jet radius from
the boundary

C4(εj, εe) ≈
∫ Rj

0

e−aj
1

2
e−ae ae d

[
1 − e−aj Rj

]
= 1

2

1

1 + b

[
1 − e−aj Rj

] [
1 − e−(ae+aj)Rj

]
. (7)

Again, C4 depends on the energy of the parent photon εe that gave
rise to the photon εj in the jet.

If opacity is sufficiently high (i.e. we can ignore exponential fac-
tors in equations 5 and 7), the sum of the probabilities C1(εe, εj) +
C4(εj, εe) = 1/2, and their product reaches the maximum of 1/16
when the opacities are equal, b = 1. Accounting for the angular
distribution of photons gives

max[C1(εe, εj) C4(εj, εe)] ≈ 1

21
. (8)

Let us now discuss in details the behaviour of the photon opacity.
For isotropic external photons, the main contribution to the pho-
ton opacity is given by the radiation of the accretion disc Fd(x).
The angle-averaged cross-section of photon–photon pair produc-
tion σγγ (ε, x) has a low-energy threshold xε > 1 and reaches the
maximum ≈0.21σ T at xε ≈3.5 (see e.g. Zdziarski 1988). The ab-
sorption coefficient for a photon of energy ε can be obtained by
integrating the cross-section over the spectrum of soft photons:

aγ γ (ε) = NphσTsγ γ (ε), (9)

where the mean cross-section (in units of σ T)

sγ γ (ε) =
∫ ∞

1/ε

n(x)σγγ (xε) dx (10)
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Figure 2. The averaged over the photon distribution photon–photon absorp-
tion cross-section sγ γ (ε) given by equation (10). The dotted curve gives the
cross-section averaged over the multicolour disc spectrum with � = 10−5

and Rout/Rin = 104. Almost straight lines give the opacity induced by the
isotropic component of the radiation field ∝ εα exp (−1/ε�) (scaled by the
ratio of photon densities Nph,iso/Nph,d of the isotropic and disc radiation).
Thick curves give the sum of the two opacities. Solid and dashed lines are
for α = 0.4 and 1, respectively.

and n(x) is the photon number density normalized to unity. The
mean cross-section for the multicolour disc is plotted in Fig. 2 by the
dotted curve. The total disc photon number density can be expressed
through the energy density Nph,d = ξUd/kT , where ξ ≈ 1.4 for the
multicolour disc. Because Ud = 2Ld/(c4πR2) close to the jet axis (a
factor of 2 comes from the angular distribution of the disc radiation,
which we assume to follow the Lambert law), we obtain

aγ γ (ε) = Ld

c4πR2

σT

mec2

1

�
2 ξ sγ γ (ε)

= 6 × 10−14 Ld,45

R2
17�−5

sγ γ (ε) cm−1. (11)

The opacity is low at ε < 1/� ∼ 105 and has a maximum at
εmax ≈ 10/�: aγ γ,max = 6 10−15Ld,45/(R2

17�−5) cm−1. At higher
energies ε > εmax, the photons interact with the power-law part of
the multicolour disc spectrum resulting in a power-law decay of the
opacity

aγ γ (ε) ≈ aγ γ,max

(
εmax

ε

)1/3

, (12)

which transforms into a faster 1
ε

ln ε decay at ε > 1/�min.
In spite of a lower energy density, the isotropic component Fiso(x)

dominates the opacity at very high ε, because of its much softer
spectrum α > −1/3. The opacity increases with energy following
a power law (Svensson 1987):

aiso
γ γ (ε) ≈ 1

5

σT

mec3
Fiso(1/ε) ∝ εα, (13)

as shown in Fig. 2.
Because the coefficients C1 and C4 depend on both photon en-

ergies εe and εj, it is easier to visualize them as one-dimensional
cross-sections. As an example, we plot C1(εe, 10εe) and C4(εj, εj/10)
in Fig. 3. Coefficient C1 vanishes below εe � εmax, because of
low opacity when the photons escape freely and do not produce

Figure 3. Coefficients Ci (ε) versus photon energy. C2 and C3 are functions
of energy of a photon produced in the external medium εe, while C5 is
the function of a typically higher photon energy εj, produced in the jet.
Coefficients C1 and C4 depend on both energies, and we plot here only the
one-dimensional cross-sections C1(εe, 10εe) and C4(εj, εj/10). Solid curves
represents the case α = 0.4, while dashed curves are for α = 1 (C2 and C5

do not depend on the choice of α).

pairs within the jet. In the interval 5 × 104 < εe < 106, C1 ∼
b/2(1 + b) ∼ 1/4 because here the ratio of opacities b ∼ 1. At
higher energies, the opacity is dominated by the isotropic compo-
nent, b ≈ �aiso

γ γ (εj)/aiso
γ γ (εe) ∼ � (εj/εe)α is large and C1 ∼ 1/2.

Coefficient C4 vanishes at εj < 2 × 105 because the opacity pro-
duced by the isotropic power-law component is low here, and pho-
tons are escaping too far from the jet (note the exponential factor in
equation 7). At εj ∼ 106, b ∼ 1 and C4 ∼ 1/4. At high energies C4

decays ∝ 1/2b. In our formulation of C4, we accounted only for pho-
tons that can directly penetrate from the jet to the external medium.
However, those high-energy photons that are absorbed within the jet
do not leave the system, but produce pair-photon cascade. During
the cascade, the photon energy eventually becomes sufficiently low
to allow the photon escapes from the jet and produces a pair outside.
Thus even if a photon was emitted towards the jet axis, a fraction
of its energy can eventually escape the jet in a form of secondary
photons.

3.2 Step 2: energy gain of a pair produced in the jet

A high-energy photon of energy εe at this stage has interacted with
a soft photon inside the jet to produce an electron–positron pair. The
two particles move now backwards relative to the jet propagation
direction with the mean comoving Lorentz factor

γc = 4

3

εe

2
�. (14)

Here the factor of 4/3 comes from the averaging over the angles of
the incident high-energy photons accounting for the probability of
interaction with the disc photons moving along the jet (in case of
interaction with the isotropic photon field, this factor disappears).
Integrating over the Larmor orbit, we get the mean particle energy
in the external frame

〈γ 〉 = γc�
〈

(1 + cos φc)
2
〉

φc
= 3

2
γc� = 2

εe

2
�2, (15)
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where φc is the angle between the particle momentum and jet prop-
agation direction (in jet frame). Note, that the averaging is over φc,
not cos φc. The mean energy gain is then

C2(εe) = 〈γ 〉
εe/2

= 2�2. (16)

The time-scale of synchrotron cooling is equal to the inverse of
Larmor frequency at the (comoving) electron Lorentz factor

γc,max ≈ 108 B−1/2
j . (17)

Compton losses because of the disc radiation can be neglected at
this step (for our parameters) due to a deep Klein–Nishina regime
of scattering at γ c � 108. For a very high initial photon energy
εe � γ c,max�, the Lorentz factor of the produced pair is reduced to
∼γ c,max after first Larmor orbit because of the synchrotron losses.
In the external frame its energy is now ∼γ c,max�, resulting in the
energy gain (loss) factor C2(εe) ≈ γ c,max�/εe. Thus, the energy gain
for arbitrary εe (shown in Fig. 3) can be written as

C2(εe) = 2�2 1

1 + εe�/γc,max
. (18)

3.3 Step 3: energy conversion into photons

Coefficient C3(εe) describes a fraction of the electron (positron)
energy, which is converted into photons with the energy above the
thresholds of the cycle εj,min = 3 × 105 defined by a sharp drop
of coefficient C4. Photons of lower energies escape almost freely
from the jet and are lost from the cycle. C4 also drops above ∼3 ×
107, however, the photons of higher energies are not lost from the
cycle, but produce a pair cascade and eventually escape from the jet
producing pairs outside.

The efficiency of conversion is mainly determined by the ratio be-
tween Compton and synchrotron losses (because synchrotron pho-
ton energy is below εj,min in our case), which, in Thomson regime,
is just the ratio of the soft radiation energy density (dominated by
the isotropic component) to the magnetic field energy density (mea-
sured in the jet frame):

U ′
rad

U ′
B

= ηiUd�
2

LB/
(

2πR2
j �

2c
) = ηi

ηB
(�θ )2�2. (19)

In reality, however, the share of Compton scattering is much smaller,
because a pair produced in the jet by a photon at εe ∼ 1/� gains
energy up to γ ∼ �2/� and interacts with photons at x ∼ � in the
deep Klein–Nishina regime. The situation also complicates by the
fact, that because of cooling, the fraction of soft photons interacting
with the pair in Thomson regime grows with time.

Neglecting for simplicity scattering in the Klein–Nishina regime
and pair cooling (i.e. assuming a constant pair Lorentz factor given
by equation 14), we define the coefficient C3 as the ratio of the
soft radiation energy density, that can produce photons above the
threshold, to the sum of the magnetic field energy density and the
total radiation density in the Thomson regime

C3(εe) = U ′
cycle

U ′
B + U ′

T

, (20)

where

U ′
B = B2

j

8π
, (21)

U ′
T ∝ �2

∫ xKN

xmin

Fiso(x) dx, (22)

U ′
cycle ∝ �2

∫ xKN

max[xmin,xlow]

Fiso(x) dx . (23)

The upper integration limits is defined by the Thomson regime of
scattering

x < xKN = 1

〈γ 〉 = 1

εe�2
. (24)

The lower limit is given by the condition that the scattered photon
energy εj = x 〈γ 2〉 is above the threshold εj,min. Averaging over the
Larmor orbit, we get the mean square of the particle Lorentz factor

〈γ 2〉 = γ 2
c �2 〈(1 + cos φc)

3〉φc = 5

2
γ 2

c �2 = 10

9
ε2

e �
4, (25)

that gives

x > xlow = εj,min

〈γ 2〉 = 9

10

εj,min

ε2
e �

4
. (26)

The behaviour of C3(εe) is shown in Fig. 3.
There are three characteristic energies. For εe < ε1 ≈ εj,min/�

2 ∼
103, xKN < xlow and C3 vanishes. At energies εe > ε2 ≈√

εj,min/xmin/�2 ∼ 105, UT = Ucycle because xlow < xmin. And
at energies above ε3 = 1/(�2xmin) ∼ 107, xKN < xmin and C3 = 0 in
our approximation. At energies ε2 < εe < ε3, one can approximate

1

C3(εe)
≈

⎧⎪⎪⎨⎪⎪⎩
1 + U ′

B

U ′
rad

x1−α
max − x1−α

min

x1−α
KN − x1−α

min

, α = 1,

1 + U ′
B

U ′
rad

ln(xmax/xmin)

ln(xKN/xmin)
, α = 1.

(27)

Taking into account equation (19), we can conclude that the
Comptonization at step 3 can be very efficient (C3 ∼ 1) if the fol-
lowing conditions are satisfied.

(i) The magnetic field is weak, ηB � 1.
(ii) The energy density of the external isotropic radiation is large

in the jet frame, i.e. � or ηi are large.
(iii) The spectrum of isotropic component is soft, α � 1. Then

the power-law decay of C3 above ε2 is replaced by a constant or a
logarithmic decay (see equation 27 and note a slow decays of C3

in Fig. 3, dashed curve). In this case, a high value of C3 is possible
even for the magnetically dominated jet if its total power is a few
times smaller than the disc luminosity.

3.4 Step 5: Compton scattering in the external environment

At step (5) an electron–positron pair, produced in the external en-
viroment, Comptonizes a number of soft photons to produce high-
energy photons above the energy threshold εe,min ∼ 3 104 defined by
the low-energy cut-off of C1. At this step, synchrotron losses which
can be safely neglected as magnetic field in the external medium is
much lower than the jet field.

Because the cooling is fast, the spectrum produced by a pair
is a standard ‘cooling’ spectrum F(ε) ∝ ε−1/2 extending up to the
maximum energy equal to the pair Lorentz factor γ = εj/2. Defining
coefficient C5(εj) as the energy fraction emitted above the thresholds
εe,min, we get

C5(εj) = 1 −
(

εe,min

γ

)1/2

= 1 −
(

2εe,min

εj

)1/2

. (28)

The computed C5(εj) is shown in Fig. 3. A low-energy cut-off is at
εj = 2 εe,min = 6 × 104.
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3.5 Amplification through the cycle and dissipation efficiency

The absolute theoretical maximum of the amplification factor

max A(εe, εj) = C1C2C3C4C5 ≈ �2

10
(29)

is achieved when C2 = 2 �2, C1 × C4 = 1/21 and C3 = C5 = 1. Thus,
the minimum jet Lorentz factor required to achieve supercriticality
is � ≈ 3. In a more realistic situation, the amplification factor is
smaller and larger � is needed. For example, a strong magnetic
field inhibits the photon breeding reducing C2 and C3 because of
synchrotron losses. The cascade still develops, if a sufficiently dense
soft external radiation field is present, because C3 ∼ 1, when ηi�

4/ηB

is large (Section 3.3), see Section 5.2 for the simulation example.
An estimation of A using our simple formulae from Sections 3.1–

3.4 is shown in Fig. 4. For α = 0.4, it reaches 7.4 at εe = 2 105, εj

= 106 (the more precise Monte Carlo step-by-step simulations of
the cycle efficiency show A reaching the maximum of 4.7 at εe =
5 105, εj = 2 106). For α = 1, the maximum of A is about 9.9 at εe =
3 105, εj = 2 106. Of course, A(εe, εj) does not have the meaning
of the criticality index C . The photon energy distribution during
the cycle is wide and does not necessarily coincide with the area of
the maximal amplification. Fig. 4 (dotted curve) shows the median
energy εj(εe) computed by a Monte Carlo method (for α = 0.4)
of the distribution εjp23(εj, εe), where p23(εj, εe) is the probability
density of a photon of energy εe to produce a photon of energy εj

after steps 2 and 3. A similar function εe(εj) for step 5, which is
a median of distribution εep5(εe, εj), is also shown (dashed curve).
Note that the median energy gain at steps 2 and 3 is slightly higher
than the energy loss at step 5, which means that the photon energy
rises on average during the cycle and tends to the area at εe ∼ 3 106,
εj ∼ 3 107, where the curves intersect. The amplification in that area
is A(εe, εj) ≈ 2.

We can now estimate a typical distance where the most efficient
energy dissipation in the shear flow should take place. The total

Figure 4. The product of the five coefficients A(εe, εj) = C1(εe, εj) C2(εe)
C3(εe) C4(εj, εe) C5(εj), represented by contours of constant levels. For α =
0.4 (solid contours), it reaches the maximum of 7.4 at εe = 2 × 105, εj = 106.
In this case, the dotted curve shows the median energy εj(εe) for steps 2 and
3, and the dashed curve shows the median energy εe(εj) at step 5. For α =
1 (dashed contours), the maximum of 9.9 is at εe = 3 × 105, εj = 2 × 106.

optical depth across the jet is (see equation 11)

τγγ (ε) = aγ γ (ε)Rj = 300
Ld,45(20θ )

R17�−5
sγ γ (ε), (30)

which gives us the maximal distance from the central engine where
τ γγ (εmax) ∼ 1 and, therefore, is sufficient to produce pairs in the jet

Rmax ∼ Ld,45 (20θ )

�−5
pc. (31)

Note that infrared emission of the dust can provide the opacity for
higher energy photons at much larger distances.

At R < Rmax, the typical depth of photon penetration δ =
δr Rj into the jet is given by the condition δaγ γ (ε) = 1, i.e. δr
= 1/τ γγ (ε). At the peak of absorption, for ε ∼ εmax, we obtain

δr = R
Rmax

= 0.03
�−5 R17

Ld,45 (20θ )
. (32)

The value of 2δr defines the fraction of the jet volume occupied by
the ‘active layer’, which is responsible for the exponential breeding
of the high-energy photons. Because the photons of slightly higher
and lower energies than εmax can propagate further into the jet, the
fraction of the total jet kinetic energy released is even higher than
2δr, as demonstrated by the full-scale simulation (see Section 5). At
small distances from the central source, opacity is so large that the
high-energy photons can hardly penetrate the boundary between
the jet and the external medium. The cascade can develop there,
but the dissipation efficiency is very low because δr is small.

The efficiency also depends on the number of generations N the
breeding cycle operates. A high efficiency is achieved if N is larger
than a few (say N = 10). The time-scale of the cycle is defined by
the longest step 4, which takes on average tcycle ∼ δr �. Because the
active layer width depends on distance δr ∝ R, the breeding cycle
takes longer time (in Rj/c units) at larger R and at the same time it
is less sensitive to the requirement of a sharp boundary. The cycle
time-scale should be compared to the dynamical time-scale tdyn ∼
1/θ . This determines the most favourable distance for the breeding
to operate as

Reff = Rmax

N�θ
= 1

N
Ld,45

�−5

20

�
pc. (33)

For this estimation, we assumed that the amplification factor A
does not depend on distance R. This is true as long as B2

j , Fd and
Fiso all scale as 1/R2 and δr � 1. The last condition breaks down at
a parsec scale (see equation 31), while the scaling for Fiso probably
breaks much closer, as one can hardly expect the existence of the
sufficient material to provide efficient scattering/reprocessing of the
disc radiation to the isotropic component beyond the BLR. Thus,
the most efficient dissipation is expected within the BLR at Reff <

R < Rmax.
There still remains such source of Fiso as the dust IR radiation,

but it cannot convert photons at εj < 107 into pairs and the coeffi-
cient C4 will be small. In such a case one can expect that the cycle
works in the TeV range, which could be relevant for TeV blazars.
At small distances R < 1016 cm, there appears another possibility:
non-thermal X-ray component of the disc radiation (which typically
constitutes ∼0.1 of the disc luminosity) becomes opaque and can
efficiently convert lower energy photons (ε < 1/�). Then, one can
expect the existence of a low-energy breeding cycle in the range
ε ∼ 103–104. This possibility requires a separate study.

4 N U M E R I C A L I M P L E M E N TAT I O N

We assume a sharp boundary between the jet and the surround-
ing medium at the start of simulations. For simplicity we adopt the
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constant physical conditions along the 20Rj interval, including a uni-
form field of the external radiation. The jet decelerates transferring
its momentum to the radiation. In our model, we take into account
the dependence of the fluid Lorentz factor on r only.

The numerical simulation method is based on the Large Particle
Monte Carlo code (LPMC) developed by Stern (1985) and Stern
et al. (1995). The code can treat essentially non-linear problems
when the simulated particles constitute at the same time a target
medium for other particles. The number of large particles (LPs)
representing photons and e± pairs was 217 = 131 072.

The version of LPMC used here treats Compton scattering, syn-
chrotron radiation, photon–photon pair production and pair anni-
hilation. Synchrotron self-absorption was neglected as it consumes
too much computing power and is not very important in this applica-
tion. All these processes are reproduced without any simplifications
at the microphysics level. The general organization of the LPMC
simulation is described in Stern (1995). A new specific feature of
numerical simulation in this work (as well as in Stern 2003) is a
scheme of particle tracking in the relativistic fluid.

Parameters of photon LPs are defined in the external reference
frame. The energy and the direction of electron/positron LPs are de-
fined in the jet frame, since the electron energy in the external frame
oscillates by a factor of 4�2 because of gyration in the magnetic
field.

The tracking scheme for the high-energy charged particle LPs
differs for the first Larmor orbit and the rest of the trajectory. The
reason is that at the first orbit a particle can lose the main fraction
of its (jet frame) energy before it turns around and gains the energy
in the external frame (see Section 3.2 and equation 17).

Rapid energy losses require a fine particle tracking at the first Lar-
mor orbit if the particle has been produced with γ c > γ c,max. There-
fore, the comoving tracking step is limited by ds = 0.1RL, where RL

= 1.7 103γ c/Bj cm is the Larmor radius. Each step is described in
both reference frames. The corresponding Lorentz transformations
from the jet frame to the external frame are

dt = dtc

(
1 + V

c
βc cos φc

)
�, γ = γc

(
1 + V

c
βc cos φc

)
�,

(34)

where V is the velocity of the fluid, dtc is the comoving time interval
for the tracking step, βc is the particle comoving velocity in units
of c, φc is the angle between comoving direction of the particle
momentum and the jet, dt and γ are the external frame values for
the step time-interval and the particle Lorentz factor. The comoving
representation is used to track the particle gyration in the magnetic
field frozen into the jet and to simulate the synchrotron radiation.
The external frame representation is more convenient to simulate in-
teractions with photons and is necessary to synchronize the particle
tracking with the general evolution of the system.

An example of a high-energy (γ c > γ c,max) particle tracking for
several Larmor orbits as viewed from both reference frames is shown
in Fig. 5. The magnetic field and the external soft photon field corre-
spond to the case considered in Section 5.1. One can see the dramatic
energy loss due to synchrotron radiation at the first orbit and a much
slower further evolution. A discrete step at t ∼ 4 × 10−3 is a result
of Compton scattering.

When the particle energy is below γ c,max, we can neglect the
dependence between the comoving direction and the energy. In this
case, we sample the direction of the particle assuming a uniform
distribution of its gyration phase φc in the comoving system. The

Figure 5. External frame (γ , dashed curve) and jet comoving (γ c, solid
line) Lorentz factor of a particle gyrating in the transversal magnetic field Bj

= 0.35 G frozen into fluid. Upper panel: dependence on the external frame
time. Lower panel: dependence on the comoving time multiplied by the bulk
Lorentz factor � = 10. Initial Lorentz factor of the particle is γ c = 3 × 108

and the jet radius Rj = 1016 cm.

external frame probability density function for φc is

p(φc) ∝ dt
dtc

=
(

1 + V
c

βc cos φc

)
�. (35)

Trajectories and momenta of LPs are three-dimensional. The tar-
get LP density is averaged over 45 two-dimensional cylindric cells:
five layers along the jet with nine concentric shells in each. The
trajectories of electrons and positrons in the magnetic field were
simulated directly assuming transversal geometry of the field Bj in
the jet and Be in the external matter.

The primary soft photon field (disc and external isotropic) is kept
constant during the simulations. Any additional soft (synchrotron)
photons produced by the cascade participate in the simulations in
the form of LPs. At the start of simulations, the shell of the length
�z = 20 between 10 < z < 30, and the radial extend 0.9 < r < 1 is
filled by seed isotropic high-energy photons, whose energy density
is several orders of magnitude less than the energy density of the jet.
All particles participating in the simulations are descenders of these
seed photons. In the course of the simulations, the jet undergoes
differential deceleration. We split the jet into 500 cylindric shells,
calculate the momentum transferred to each shell and decelerate
each shell independently from others.

5 R E S U LT S O F S I M U L AT I O N S

We have made several tens of simulation runs with different param-
eters and various model formulations. In some of them we observed
the exponential energy grow, others gave no effect. As we have
shown in Section 3, the supercritical behaviour appears, when the
jet Lorentz factor and the density of the soft isotropic radiation are
sufficiently high. The lowest Lorentz factor, where the cascade is
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Figure 6. Total cumulative energy release of the fluid into radiation versus
time. Solid curve: Example 1 and dashed curve: Example 2 (see text).

possible in principle is around � = 4. Here, we present only two
examples demonstrating the development of the runaway cascade
for different conditions.

5.1 Example 1. Weak magnetic field and a ‘minimal’

seed radiation

In this example, we assume the disc luminosity Ld,45 = 1, the dis-
tance of the active region from the black hole R17 = 2 and jet pa-
rameters � = 10, θ = 0.05. The total jet kinetic power is equal to
the disc luminosity ηK = 1 and the Poynting flux is one per cent of
that ηB = 0.01. This implies a matter-dominated jet. The resulting
magnetic field in the jet (comoving frame) is Bj ≈ 0.35 G and we
take the external magnetic field Be = 10−3 G. The ratio of isotropic
and disc radiation energy densities is ηi = 0.05, and we assume
α = 0.4.

The total (cumulative) energy release as a function of time is
shown in Fig. 6. We observe a reasonably fast breeding with
e-folding time te ∼ 0.6. The active layer is rather thin: a half of
the energy release is concentrated within δr ∼ 0.02 from the jet
boundary. At t ∼ 6 the regime changes: the external shell deceler-
ates (see Fig. 7) and the active layer gets wider (δr = 0.05 at t =
8 and δr = 0.08 at t = 20). The cascade breeding slows down as
the photon path length through the cycle increases. The total energy
release into photons reaches 19 per cent of the total jet energy at the
end of simulation at t = 20. Simulation demonstrated a significant
pair loading at the late stage: the Thomson optical depth of produced
pairs across the jet has reached ∼3 × 10−5 which exceeds the initial
depth of electrons associated with protons by 25 per cent (assum-
ing proton-dominated jet, see equation 2). Most of these pairs are
loaded in the outer region of the jet (r > 0.8), where they dominate
the number density of original electrons by a factor of 8.

While the jet decelerates in our model, the external environment
is fixed at rest. In reality, it undergoes a radiative acceleration. Fig. 8
shows the momentum exchange between matter and photons. The
momentum transferred to the external environment is an order of
magnitude less than the momentum losses of the jet to radiation. The
momentum gained by the external shell δr = 2 × 10−3 around the jet
boundary is �P ≈ 1048 erg/c. The volume of the innermost external

Figure 7. Fluid Lorentz factor versus cylindrical radius of the jet r for
Example 1 at various times t = 6 (upper curve), t = 10 (middle curve) and t
= 20 (lower curve).

Figure 8. Momentum exchange between the fluid and photons for Example
1. A narrow distribution (dashes) corresponds to time t = 6, and a wider
distribution is for t = 20.

shell is 2πRj δr �z ≈ 1047 cm3. Therefore, the volume density of the
transferred momentum is ∼10 erg cm−3/c. If the density of external
medium exceeds 104 cm−3 (i.e. the energy density nmpc2 is higher
than 10 erg cm−3), we can neglect the effects of its acceleration by
the deposited momentum.

The evolution of the photon instant spectrum (i.e. the spectrum
of photons which are in the volume at the moment) is shown in
Fig. 9(a). Early spectrum demonstrates two distinct components:
the TeV Comptonization peak (mainly the Compton-scattered ex-
ternal isotropic photons) and the synchrotron maximum. After t ∼
6 the spectrum changes: the main peak moves to lower energies and
the synchrotron peak declines. The reason for such evolution is ev-
ident: the system enters a non-linear stage, because the synchrotron
radiation of the cascade exceeds the initial soft photon field. The
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Figure 9. Evolution of the instantaneous (jet frame) photon spectra within
the emitting medium. (a) Example 1 and (b) Example 2. The observed spectra
should be close to the latest ones. Time in units Rj/c is marked next to the
corresponding curves.

Comptonization losses increase, whereas the synchrotron losses do
not change.

Note, that an observer cannot see the high-energy part of early
spectra because the isotropic radiation field Fiso is opaque for pho-
tons with energy ε > 1/�. The observed spectrum should have such
a cut-off in the late spectra. A detection of a sharp cut-off at tens
of GeV would be the evidence for gamma-rays origin in quasars
(blazars) at the scale of the broad emission-line region.

5.2 Example 2. Strong magnetic field

We consider the same parameters as in Example 1, but take ηB =
1 implying magnetically dominated jet with Poynting flux LB =
1045 erg s−1 (for a two-sided jet). The comoving value of magnetic
field is 3.5 G. The ratio of Compton to synchrotron losses at such
parameters is low (see Section 3.3). Therefore, the system remains
subcritical and the simulations have shown no supercritical photon
breeding at such conditions. Our analytical calculations show that
the maximum of A is about 0.5. The situation changes if we take a
softer spectrum of the isotropic component with α = 1, then max
A = 3.5. If we instead increase the soft photon density to ηi = 0.2,
then max A = 1.2. However, the easiest way to achieve criticality
is to increase the jet Lorentz factor to � = 20, which gives max
A = 8.4. All these options increase the importance of the Compton
cooling relative to the synchrotron (see equations 19 and 27).

In the numerical simulations, we followed the last alternative. In
this case, the comoving magnetic field is 1.75 G. The simulations
have shown that the active layer is wider than that in Example 1:
δr ∼ 0.05 at the beginning of the evolution (therefore this case is
more stable against the mixing of the boundary layer). The expo-
nential growth is slower (see Fig. 6), but the final energy release
is the same as in the previous case. The pair loading is an order of
magnitude smaller than that in Example 1.

The hard-to-soft evolution of the high-energy peak of the photon
spectrum shown in Fig. 9(b) spans almost all the range of peak
energies observed in blazars. The latest spectrum peaks in the MeV
range as in MeV blazars.

6 D I S C U S S I O N

We have demonstrated that a supercritical runaway cascade develops
under reasonable conditions and can convert at least ∼20 per cent of
the jet kinetic energy into radiation. This is certainly not an ultimate
value: with our simplified model we are able to reproduce only the
initial stage of the evolution. Indeed, our cylindric shells decelerate
as a whole with constant Lorentz factor along z-axis. Therefore,
once the outer shells decelerate, the cascade breeding slows down
everywhere. Actually, the radial gradient of � should depend on z
and a slow breeding at larger z can co-exist with a fast breeding at
a smaller z.

The behaviour of the jet is strongly non-linear because the process
is very sensitive to a number of details including the geometry of the
magnetic field, density of the external environment, density of the
isotropic soft photon field, etc. The effect of inhomogeneities, which
are exponentially amplified, can be dramatic, particularly taking a
form of flares and moving bright blobs and resulting in the formation
of internal shocks. A more realistic model should include a detailed
treatment of fluid hydrodynamics (at least in 2D) coupled with the
electromagnetic cascade.

The model can reproduce the high-energy component of blazar
radiation. On the other hand, examples presented in this work do
not reproduce the low-energy synchrotron components as prominent
as observed in blazars. It is possible that the synchrotron bump is
produced at much larger distances from the central source than the
Compton component.

A certain problem can appear if the jet boundary is turbulent (see
e.g. Aloy et al. 1999): the thin active zone at the jet boundary layer
as in above examples does not exist in this case. Then, one still
can expect to obtain the supercriticality at a moderate transversal
opacity. However, the breeding cycle in this case would take longer
than Rj/c. If the electromagnetic cascade grows only along the jet,
the active range of z could be insufficient to provide the growth by
orders of magnitude. An issue to be studied is whether the cascade
can grow with time at a fixed z or not. This could be due to a spatial
feedback at step 5: a photon from the external environment moves
upstream to a smaller z than the point where a parent photon has
been produced at step 3. It is clear that such feedback is weak, but
in the case of a jet the time is unlimited. Note that even if the super-
criticality is not reached, the process can amplify the high-energy
output of the charged particle acceleration in the subcritical regime.

Now let us try to characterize in general terms the mechanism we
are dealing with. First of all, it belongs to a class of supercritical run-
away phenomena like neutron breeding in a nuclear pile or a nuclear
explosion. Such phenomena still seem rather exotic in astrophysics
(let alone ‘trivial’ nuclear explosions of supernovae or of the accret-
ing matter at the surface of neutron stars). To our knowledge, there
exist only a few works considering such kind of phenomena. Stern
& Svensson (1991) discovered with numerical simulations a super-
critical behaviour of electromagnetic cascade in a cloud of ultrarela-
tivistic protons with sufficient compactness. In that case, the energy
is stored in non-radiating protons and the supercriticality appears
in the energy transfer from protons to pairs and photons through
photomeson production. Later, this mechanism was confirmed an-
alytically by Kirk & Mastichiadis (1992). However, at that time,
there was no clear astrophysical situation providing proper condi-
tions. Recently Kazanas, Georganopoulos & Mastichiadis (2002)
have found that a possible site for such a phenomenon could be a
highly relativistic shock in gamma-ray bursts.

In this work (see also Stern 2003), we propose a different kind
of a supercritical process where the energy is extracted by particles
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directly from the kinetic energy of the fluid. In principle, the protons
can also participate in such mechanism, especially, if a scheme of
Derishev et al. (2003) with p + γ → n + π+ charge exchange works
at given conditions. In this case we would have a unified mechanism,
where the electromagnetic cascade is fed by the fluid bulk motion
directly and through the high-energy nucleons.

In any case, the supercritical models of energy conversion look
promising for explanation of such violent phenomena as blazars and
gamma-ray bursts because the supercriticality does produce violent
effects.

7 C O N C L U S I O N S

We have proposed and studied a novel photon breeding mechanism
of the high-energy emission from relativistic jets. We showed that a
relativistic jet moving through the sufficiently dense soft radiation
field inevitably undergoes transformation into a luminous state. We
have considered the application of this mechanism for the AGN
jets, while actually it may also work in microquasars and gamma-ray
bursts, if the latter are associated with the well-formed narrow jets. In
general, the mechanism can be characterized as a viscous dissipation
of the kinetic energy of the jet into high-energy photons. We showed
that at least 20 per cent of the jet energy can be converted into high-
energy radiation. From the dynamical point of view the mechanism
is a supercritical process, which is very similar to the chain reaction
in the supercritical nuclear pile. The subject to exponential breeding
in our case is electromagnetic cascade, particularly the high-energy
photons which create a viscosity between the jet and the external
environment.

In the case, when the exponential photon breeding does not oc-
cur, the process still could act as a subcritical amplifier for the high-
energy output of internal shocks or other mechanisms of particle
acceleration. Alternatively, it can produce a population of hot elec-
trons/positrons which can then participate in the Fermi I type of
acceleration of charged particles.

The photon breeding mechanism works very efficiently at the
following conditions.

(i) The jet Lorentz factor exceeding 3–4.
(ii) A weak magnetic field and/or a large density of the external

soft isotropic radiation field.
(iii) If the magnetic field is strong (equipartition or magnetically

dominated jet), the supercritical regime requires a dense soft radi-
ation component (in the jet frame), which requires either a large
fraction of scattered photons or a large jet Lorentz factor. Alter-
natively, an additional source of soft photons, e.g. the synchrotron
radiation from other forms of the jet high-energy activity, e.g. by
the particle acceleration in internal shocks, is needed. The required
intensity of this activity is much smaller than the final high-energy
output.

(iv) The presence of a sharp boundary of the jet, with the depth
of the transition layer less than a few per cent of the jet radius
(which is still several orders of magnitude larger than that required
for the charged particle acceleration). If the jet does not have a
sharp boundary, then the formation of a supercritical regime is still
possible at large distances, where the photon–photon pair production
opacity declines.
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