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ABSTRACT

We discover a pronounced dependence of the strength of the soft X-ray orbital modulation
and the spectral hardness in Cyg X-1 in the hard state on its superorbital phase. We find, our
results can be well modelled as a combination of two effects: the precession of the accretion
disc (which appears to cause the superorbital flux modulation) and the orbital-phase dependent
X-ray absorption in an accretion bulge, located at the accretion disc edge close to the supergiant
companion but displaced from the line connecting the stars by about 25◦. Our findings are
supported by the distribution of the X-ray dips showing concentration towards zero superorbital
phase, which corresponds to the bulge passing through the line of sight. We Fourier analyse
our model, and find it explains the previous finding of asymmetric beat (between the orbital
and superorbital modulations) frequencies in the observed power spectrum, provided the disc
precession is prograde. On the other hand, we find no statistically significant changes of
the orbital modulation with the superorbital phase in the 15-GHz radio data. This absence
is consistent with the radio being emitted by a jet in the system, in which case the orbital
modulation is caused by wind absorption far away from the disc. We also find that both the
X-ray and radio fluxes of Cyg X-1 in the hard state on time-scales �104 s have lognormal
distributions, which complements a previous finding of a lognormal flux distribution in the hard
state on ∼1-s time-scales. We point out that the lognormal character of the flux distribution
requires that flux logarithms rather than fluxes themselves should be used for averaging and
error analysis. We also provide a correct formula for the uncertainty of rms of a light curve
for the case when the uncertainty is higher than the measurement.

Key words: accretion, accretion discs – stars: individual: Cyg X-1 – stars: individual: HDE
226868 – radio continuum: stars – X-rays: binaries – X-rays: stars.

1 I N T RO D U C T I O N

A number of X-ray binaries show flux periodicities at their respec-
tive orbital period, which may be caused by a number of effects.
First, the source associated with the compact object in a binary may
be eclipsed by the companion (usually of high mass) (see e.g. a list in
Wen et al. 2006). Secondly, a flux modulation may be caused by an
optically thick disc rim (which is highest at the point of impact of the
gas stream from the inner Lagrangian point in case of a donor filling
its Roche lobe), obscuring the disc and/or its corona (e.g. White &
Swank 1999; Hellier & Mason 1989). This obscuration may lead to
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strong partial eclipses in so-called X-ray dippers. More generally,
the disc and any associated structures may depart from its axial sym-
metry due to the influence of the companion, which may cause an
orbital modulation. Third, wind from a high-mass companion may
absorb/scatter the emission from the vicinity of the compact object,
and the degree of absorption will depend on the orbital phase. In the
case of Cyg X-1, both X-ray and radio emission are modulated by
this effect, which modulations were modelled by, for example, Wen
et al. (1999) and Szostek & Zdziarski (2007), respectively. Fourth,
phase-dependent absorption (via photon-photon pair production) of
high-energy γ -rays may occur in a photon field axially asymmetric
with respect to the compact object, especially that of the stellar
photons (e.g. Bednarek 2006). A fifth effect of the companion is
reflection or reprocessing of the emission from around the compact
object on the surface of the companion facing the compact object.
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This effect appears to be responsible for, for example, the ultra-
violet (UV) flux modulation from the X-ray binary 4U 1820–303
(Arons & King 1993; Anderson et al. 1997). Finally, the optical/UV
emission of the companion will be modulated if its shape departs
from the spherical symmetry by partially or fully filling its Roche
lobe, which effect is seen in Cyg X-1, for example Brocksopp et al.
(1999b).

Then, there will be an intrinsic dependence of the emitted flux
on the orbital phase if the orbit is elliptical. This leads, for example
to periodic outbursts at the periastron of Cir X-1 (Parkinson et al.
2003) and Be/X-ray binaries (see, e.g. Coe 2000; Negueruela 2004
for reviews) in X-rays, and sometimes, at other wavelengths. Also,
some orbital flux modulation may be due to the Doppler effect,
which is in principle observable (Postnov & Shakura 1987), but has
not yet been detected in a binary. (Obviously, the Doppler effect
leads to widely observed shifts of spectral lines from binaries.)

In addition, a number of X-ray binaries show modulation at pe-
riods much longer than their orbital periods, so-called superorbital
periodicity, see, for example a partial list in Wen et al. (2006). In par-
ticular, Cyg X-1 shows such periodicity with the period of ∼150 d
(e.g. Brocksopp et al. 1999a; Karitskaya et al. 2001; Özdemir &
Demircan 2001; Lachowicz et al. 2006, hereafter L06; Ibragimov,
Zdziarski & Poutanen 2007, hereafter Paper I). The observed su-
perorbital variability appears in most cases compatible with being
caused by accretion disc and/or jet precession, which either results
in variable obscuration of emitted X-rays as in Her X-1 (Katz 1973),
or changes the viewing angle of the presumed anisotropic emitter,
as in SS 433 (Katz 1980) or Cyg X-1 (e.g. L06, Paper I) or both.
The only known exception, in which the superorbital periodicity is
clearly caused by modulation of the accretion rate (and thus not by a
changing viewing angle of the source), is 4U 1820–303 (Zdziarski,
Wen & Gierliński 2007a).

A number of binaries show both orbital and superorbital modu-
lations. Those currently known are LMC X-4, 2S 0114+650, SMC
X-1, Her X-1, SS 433, 4U 1820–303 and Cyg X-1. An interesting
issue then is whether there is any dependence of the parameters
of the orbital modulation on the superorbital phase (or, similarly,
on an average of the flux level). The shape of the profile of the
orbital modulation in Her X-1 was found to depend on its superor-
bital phase (Scott & Leahy 1999), which appears to be due to the
shadowing effect of the precessing accretion disc and scattering in
its wind in that system. Recently, analogous dependencies of the
shape of the orbital modulation on the average flux level have been
found in LMC X-4, SMC X-1, Her X-1, as well as in Cen X-3
(Raichur & Paul 2008). Then, Zdziarski et al. (2007b) found such a
dependence in 4U 1820–303 (of both the amplitude and the phase
of the minimum flux) and interpreted it in terms of the size of the
disc rim (partially obscuring the central source) changing with the
variable accretion rate.

In addition, there is the case of the peculiar Be/X-ray binary
LS I +61◦303, which shows orbital variability in the radio, X-ray
and TeV emission, and a superorbital variability of the peak radio
flux during an orbit (Gregory, Peracaula & Taylor 1999; Gregory
2002). Gregory (2002) found a marked dependence of the phase
of the peak of the orbital radio modulation on the superorbital
phase in LS I +61◦303. The presence of such a dependence may
be due to interaction of the pulsar in that system with a variable
circumstellar Be decretion disc (Gregory 2002; Zdziarski, Neronov
& Chernyakova 2008).

It is of considerable interest to find out whether orbital modulation
depends on the superorbital phase in Cyg X-1, the archetypical and
very well-studied black-hole system with a high-mass companion,

the OB supergiant HDE 226868 (Walborn 1973). In this work, we
study this issue and find that such dependence exists and is very
strong in soft X-rays. We then explain it theoretically in terms of
orbital-phase dependent absorption in the stellar wind interacting
with the outer accretion disc.

2 T H E L I G H T C U RV E S A N D T H E I R A NA LY S I S

2.1 Data

We use the X-ray dwell data (MJD 50087-53789, i.e. 1996 Jan-
uary 5–2006 February 23; note a misprint in the start date in Pa-
per I) obtained with three Scanning Shadow Cameras of the All-Sky
Monitor (ASM) aboard Rossi X-ray Timing Explorer (RXTE; Bradt,
Rothschild & Swank 1993; Levine et al. 1996), with the channels A,
B and C corresponding to the photon energy intervals of 1.5–3, 3–5
and 5–12 keV, respectively. We also use the corresponding 15-GHz
radio data from the Ryle Telescope of the Mullard Radio Astron-
omy Observatory (see, e.g. Pooley, Fender & Brocksopp 1999; L06
for earlier analyses of the observations of Cyg X-1).

Because Cyg X-1 is a highly variable source and the effects we
search for are rather weak, we need to select accurately a homoge-
neous set of data. For most of the analysis in the paper, we use the
data corresponding to the hard spectral state following the criteria
defined in section 2 of Paper I. We require the average photon spec-
tral index derived from the RXTE/ASM fluxes to be < 2.1 (Zdziarski
et al. 2002), and additionally we exclude hard-state intervals with
high X-ray variability, namely we include only those 30-d intervals
of the ASM data where <40 per cent of points exceed by 4σ the
average flux in the reference interval MJD 50660–50990. This has
resulted in considering the following time intervals: MJD 50350–
50590, 50660–50995, 51025–51400, 51640–51840, 51960–52100,
52565–52770, 52880–52975, 53115-53174 and 53554–53690 (see
fig. 1 in Paper I).

2.2 Mean fluxes and variance

We generally follow the method of analysing light curves described
in Paper I, but with some modifications necessitated by the scientific
goal of the present work. We use the orbital ephemeris of Brocksopp
et al. (1999b) and the superorbital ephemeris of L06, see equations
(1) and (4), respectively, in Paper I. We use the values of the orbital
and superorbital periods of P = 5.599829 d and Psup = 151.43 d,
respectively. We first divide an analysed light curve into bins with
the length of P/20. Then, we average all points falling into a given
bin weighted by the inverse squares of their measurement errors,
obtaining the binned light curve, Fi . In this way, we avoid any
contribution to our folded/averaged light curves from the source
variability on time-scales shorter than that corresponding to the
length of our chosen phase bin (see Paper I). Note that unlike the
method in Paper I, we do not pre-whiten the light curves, that is, do
not subtract variability at one period in order to detect more clearly
variability at another period.

We have then looked into statistical properties of our distribu-
tions. We plot histograms of the fluxes for the ASM and Ryle data
in Fig. 1. We see that each of the histograms follows a lognormal
distribution and it is completely inconsistent with a normal one.
Our finding of the lognormal form of the variability of Cyg X-1 in
the hard state on long time-scales (∼1/10-d to yr) in both X-rays
and radio is supplemental to that of Uttley, McHardy & Vaughan
(2005), who found the same type of distribution in X-rays on short
time-scales, ∼0.1–10 s, also in the hard state. This form of the flux
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Figure 1. (a) The histogram of the count rates (dwell-by-dwell data) ob-
served from Cyg X-1 for the ASM A, B and C detector channels. (b)
Distribution of the HRs B/A, C/B and C/A. (c) Distribution of the flux in the
Ryle data. The flux units for the ASM and Ryle data are count s−1 and Jy,
respectively. The solid curves give the best-fitting lognormal distributions.

distribution has important implications for calculating flux aver-
ages and the intrinsic dispersion, that is the standard deviation in
the data. Namely, the standard-deviation error estimate based on the
rms, namely

σ 2 =
∑N

i=1 (xi − x̄)2

N (N − 1)
, (1)

provides an unbiased estimate of the true standard-deviation error of
the average of xi only if the distribution of xi is normal (Bevington
& Robinson 1992). Therefore, for the purpose of calculating the av-
erages and the rms standard deviations for our light curves, we have
converted the count rates or fluxes in our binned light curves, Fi ,
into its logarithm, Gi = ln Fi , with Gi having now the distributions
close to normal.

We then separate the light curves binned based on the orbital
phase into superorbital phase bins of the length of Psup/8, with the
mid-point of the first and the fifth bin at � = 0 and 0.5, respectively.
Here, either the orbital phase, φ, or superorbital phase, �, is defined
in the 0–1 interval, and zero corresponds to the flux minimum as
defined by the respective ephemeris. Then, we calculate folded and
averaged profiles (of Gi = ln Fi) of the orbital modulation within
each superorbital phase bin, that is

Gjk =
∑

i∈(j,k) Gi

Ijk

, (2)

where i ∈ (j, k) counts over all points, i, falling into a given super-
orbital bin, j, and the orbital bin, k, and Ijk is the number of such
points. We estimate the error of this average using equation (1), that
is

σ 2
jk =

∑
i∈(j,k)

(
Gi − Gjk

)2

Ijk(Ijk − 1)
. (3)

Note that this error estimate accounts for both the aperiodic vari-
ability of the source, that is intrinsic dispersion of individual fluxes
contributing to a given orbital/superorbital bin (usually dominat-
ing), and the dispersion due to measurement errors. Also, since we
use logarithms, σjk represents a fractional error (and should not be
divided by Gjk).

The average and the average-square error in a given superorbital
bin are,

Ḡj =
∑K

k=1 Gjk

K
, σ̄ 2

j =
∑K

k=1 σ 2
jk

K
, (4)

respectively, where K = 20 is the number of orbital bins.
We need to characterize the strength of a given modulation. One

way of doing it without making any assumption about its shape is to
measure the fractional rms of a given orbital modulation profile. To
do it, we calculate the unweighted rms variance and then subtract
from it the rms variance due to the uncertainties of the individual
points, which is so-called excess variance (see e.g. Edelson et al.
2002),

S2
j =

∑K

k=1

(
Gjk − Ḡj

)2

K − 1
− σ̄ 2

j . (5)

Note that the variance difference above can be negative if the in-
trinsic variability is comparable or weaker than the measurement
uncertainties. If this happens, we set this excess variance to zero.
We again point out that Sj represent already the fractional rms, that
is, it should not be further divided by Ḡj (which may be zero or
negative). Then, we calculate the standard deviation of the above
excess variance, �S2

j , following equation (11) of Vaughan et al.
(2003), hereafter V03,

�S2
j =

(
2

K

)1/2

σ̄ 2
j

(
1 + 2S2

j

σ̄ 2
j

)1/2

. (6)

We note that the transformation of �S2
j into �Sj is not trivial. V03

have done it using the standard differential propagation of errors,
obtaining their equations (B2) and (B3), which, however, we find
not generally correct. Namely, the assumption behind using deriva-
tives in propagating errors is that the uncertainty is much lower than
the estimated quantity. This is often not the case for the excess vari-
ance, which can be null for either weak intrinsic variability or mea-
surement errors comparable with that variability, see equation (5),
whereas its uncertainty is always >0. Then, the error-propagation
formula used by V03, �Sj = �S2

j /(dS2
j /dSj ) (using our notation),

obviously fails, leading to infinite uncertainties. The cause for that
is the failure of the assumption of �S2

j � S2
j . To account for that,

we calculate the uncertainty on the rms without that assumption,
that is directly from the definition of the 1σ uncertainty range as
S2

j ± �S2
j ,

�Sj = (
S2

j + �S2
j

)1/2 − Sj . (7)

Here, we have chosen the upper error, which is larger than the
lower one, and which is the only one possible for S2

j < �S2
j . For

�S2
j � S2

j , this becomes the usual �Sj � �S2
j /(2Sj ) (as in V03),

which equals �Sj � σ̄j /K
1/2. On the other hand, for �S2

j � S2
j , the

result is �Sj � (�S2
j )1/2, which should be used to correct the upper

part of equation (B3) in V03, and which equals �Sj � (2/K)1/4σ̄j

(in our notation). Hereafter, we use equation (7) to estimate the rms
uncertainty.

Note that the above uncertainty estimates are due to the measure-
ment errors only, and they do not account for the long-term, red-
noise, variability of the source properties (V03). This is a correct
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procedure for our sample containing most of the currently available
ASM data, for which we are interested in their actual properties,
and are not hypothesizing about their behaviour over time-scales
�10 yr.

2.3 Hardness ratio

We also would like to analyse the spectral variability of Cyg X-1
with orbital and superorbital phase. A useful measure of the spec-
tral shape is the hardness ratio (HR) of the fluxes in various chan-
nels, which can be computed in a number of ways. The obvious
one is to use already available mean fluxes and construct their ra-
tio. This procedure, however, does not account for short-time-scale
spectral variability. The HR can also be computed for each obser-
vation (dwell) and then the mean can be obtained. However, we
have already seen that fluxes follow the lognormal distribution, and
therefore expect that their ratio could also be distributed in such a
way. Indeed, Fig. 1(b) demonstrates that the logarithm of HR have
distributions close to normal. Therefore, for the unbiased estima-
tion of the mean HR and its error, we take the logarithm of HR
for each observation (using fluxes that are not pre-averaged within
the P/20 bins) and average them within selected orbital and su-
perorbital phase bins. We also note that the mean HR is computed
without weighting the individual HRs according to their errors,
because the error is systematically larger for harder spectra (as a
result of a smaller flux in lower energy channels), and therefore ac-
counting for errors would result in a strongly biased estimate of the
mean.

3 ST R E N G T H O F T H E O R B I TA L

MOD U LATION VERSUS THE SUPERORBITAL

PHASE

The folded and averaged profiles of the orbital modulation for the
ASM A data are shown in Fig. 2. We can see that the orbital mod-

Figure 2. Profiles of the orbital modulation of the ASM A (1.5–3 keV, lower crosses) and C (5–12 keV, upper crosses) data at eight superorbital phase bins.
The bin number and the phase of the bin centre are given on each panel. Note that the minimum and maximum modulation are offset from the 0 and 0.5 phase,
and appear instead close to � = 0.125 and 0.625, respectively. The unit of F is count s−1. The solid curves give the best-fitting theoretical outflow model
(model 8 in Table 1) described in Section 5, which involves the absorption in the isotropic stellar wind as well as in the bulge situated at the disc edge. The
dashed curves shows the model component due to the wind only.

ulation is variable, for example it appears to be the weakest at the
superorbital phase � = 0.625. However, there is also a fair amount
of statistical noise, and the results of this figure need to be quantized.
We can see here that the orbital modulation profiles are character-
ized by rather narrow minima, and thus would not be well fitted by
a smooth function, for example a sinusoid. Thus, we first calculate
the rms of each dependence to characterize its strength, following
the method of Section 2.

Fig. 3(a) shows the superorbital phase diagram for the ASM A
channel. We can see the highly significant flux modulation with the
superorbital period (cf. L06, Paper I). We also see that the minimum
of the superorbital cycle is clearly offset from the ephemeris of L06
by �� � 0.1 (which was based on ∼30 yr of data compared to 10 yr
analysed by us). The crosses in Fig. 3(b) show the corresponding
rms dependence. We very clearly see a strong dependence of the
rms on �, with the rms being anticorrelated with the flux. It also
appears that some phase lag, �0.1, of the maximum of the rms with
respect to the minimum of the flux is present.

Fig. 3(c) shows the results for all three ASM channels. The orbital
modulation, due to bound-free absorption, is strongest in the 1.5–
3 keV range and weakest in the 5–12 keV range (Wen et al. 1999;
L06). Consequently, the statistical significance of the dependence
on � decreases with the energy.

In order to test the robustness of our finding of the depen-
dence of the strength of the orbital modulation on �, we have
also calculated the rms for the ASM A taking into account the
weights due to uncertainties of the individual points in the or-
bital phase diagrams (see Zdziarski et al. 2004). This alternative
method gives only negligible differences with respect to the origi-
nal one, and thus we do not show its results. Then, we have fitted
the ASM A orbital modulation profiles with a sum of three sinu-
soidal harmonics, see equation (2) in Paper I, and calculated both
the amplitude, (Fmax − Fmin)/(Fmax + Fmin), and the rms for it. In
this way, we largely avoid contributions to the rms from residual
aperiodic variability. The results are shown in Fig. 3(b). We see
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Figure 3. (a) The superorbital phase diagram for the ASM A channel. The
unit of F is count s−1. (b) Comparison of the characterization of the ASM
A rms dependence using different methods. The crosses are the intrinsic
rms, S, of the orbital modulation as a function of the superorbital phase.
The solid histogram gives the amplitude of the orbital variability as fitted
by sum of three harmonics, see Section 3. The dashed histogram gives the
corresponding rms for the fitting functions. The solid curves in panels (a)
and (b) show the dependencies for the theoretical outflow model (model 5 in
Table 1). (c) The dependencies of the intrinsic rms of the orbital modulation
on the superorbital phase for three ASM channels. The crosses with filled
circles, open triangles and open squares correspond to the channels A, B
and C, respectively.

that the values of the rms of the fitted functions are very similar
to that calculated directly from the data in Fig. 2. On the other
hand, the amplitude (which is sensitive only to the extremes of the
fitted function) is larger than the rms simply due to their different
definitions. The amplitude also shows a strong dependence of the
superorbital phase similar in shape to that of the rms; however, it
appears consistent with no phase shift with respect to the flux profile
(Fig. 3a).

We have then searched for a similar effect in the Ryle 15 GHz
data. We have found, however, that no apparent dependence is seen,
and the �-dependent orbital modulation profiles look all similar,
and consistent with the average orbital modulation (see fig. 4 in
L06). Thus, we show here, in Fig. 4, only the results of calculating
the rms of the orbital modulation as a function of �. In Fig. 4(b),
we see that the strength of the orbital modulation is consistent with
being constant, though we cannot rule out some dependence hidden
in the statistical noise. We have also checked that the 2.25 and
8.30 GHz data from the Green Bank Interferometer (see
L06; Paper I) also do not show any statistically significant
dependencies.

Figure 4. (a) The superorbital phase diagram for the Ryle 15 GHz data. The
unit of F is Jy. (b) The dependence of the intrinsic rms of the 15 GHz orbital
modulation on the superorbital phase, consistent with being constant.

4 SPECTRAL VARI ABI LI TY

4.1 Hardness ratio

The X-ray modulations can also be tracked through the HR. The
largest and easily detectable variability is shown by the ratio of
count rates in ASM channels C and A (C/A). Fig. 5 presents the
dependence of the mean C/A (computed from the logarithm of
the ratio, see Section 2.3) on orbital and superorbital phases. We
see a strong peak at orbital phase φ ∼ 0, which can be explained
by absorption in the nearly isotropic wind (see Wen et al. 1999).
The dependence of C/A on the superorbital phase also shows a
very significant hardening around � ∼ 0. The two-dimensional
dependencies on φ and � demonstrate a plateau with C/A ≈
1.4, a significant increase in hardness around φ = 0.0±0.2, and two
peaks at superorbital phase � ∼ −0.1 and 0.1, which significance
is not certain. Other HRs C/B and B/A show similar behaviour, but
of smaller amplitude.

4.2 X-ray dips

X-ray dips, which are believed to result from absorption in blobs in
the stellar wind, are characterized by significant drop in the count
rate (see e.g. Bałucińska-Church et al. 2000, hereafter BC00; Feng
& Cui 2002). However, most markedly they manifest themselves
by spectral hardening (BC00). It is of interest to study their distri-
bution over the orbital and superorbital phase and to compare these
distribution to the corresponding dependencies of the HR.

In order to define the dips, we use the ratio of the ASM count
rates in channels B and A, B/A (HR1 in BC00), and the analo-
gous C to B ratio, C/B (HR2 in BC00). We then use the crite-
ria of B/A >2 or C/B > 2.5, which is the same as that of BC00
(in spite of their statement that they used both criteria simultane-
ously; M. Bałucińska-Church, private communication). With the
present ASM calibration, we found only 56 dips satisfying both
criteria in the ASM data used by us. The cause for almost no dips
with both hardnesses large appears to be caused by the dip ab-
sorption being partial, that is with some small fraction of the flux
remaining unabsorbed, see fig. 4 of BC00. Then, at a relatively low
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Figure 5. The mean HR in the ASM channels C and A in the hard state as
a function of the (a) orbital and (b) superorbital phase. (c) Contour plot of
the smoothed distribution of the HR C/A over the orbital and superorbital
phases.

absorbing column, the flux in the A channel is reduced but the B
and C channels are only weakly affected, so this case yields a B/A
ratio increase but not C/B. On the other hand, at a column yielding
a substantial reduction of the B flux, the C/B ratio increases, but
the absorbed flux in the A channel is so low that it is dominated by
the constant unabsorbed component, which results in no substantial
increase of the B/A hardness.

In the hard-state data, we have found 1151 dips (814 with B/A >2
and 387 with C/B > 2.5) among 31211 observations, while in the
whole 10-yr data set without any selection we have found 1336 X-
ray dips (995 with B/A >2 and 437 with C/B > 2.5) among 60127
independent observations. Thus, most of the dips happen during
the hard state. This is expected because the spectral softening and
increase of the luminosity in the soft state strongly increase the
ionization level of the wind, which results in a weaker photoelectric
absorption (BC00; Wen et al. 1999). This also strongly confirms the
accuracy of our criterion defining the hard state.

Fig. 6(a) shows the distribution of the dips over the orbital phase
renormalized to the number of ASM observations in each bin. Figure
looks relatively similar to Fig. 5 in BC00 (based on ∼2 yr of the
data, that is five times less than in our data set). The peak is at

Figure 6. The distribution of X-ray dips over (a) orbital and (b) superorbital
phase corrected for the coverage. The solid histogram is the hard state studied
by us, while the dashed histogram is for the entire ASM data set. The fraction
scale corresponds to the solid histograms. (c) Contour plot of the smoothed
distribution of all X-ray dips over the orbital and superorbital phases.

φ � 0, and it is relatively symmetric, especially for the hard-state
data only. We have also checked that the distributions of the dips
selected separately in the B/A and C/B look very similar. On the
other hand, the additional peak at φ � 0.6 claimed by BC00 is
not found by us, and appears to be due to a statistical fluctuation
in the previous data set. Indeed, the total number of counts in the
three bins forming that excess was 34, whereas the continuum level
(i.e, without the excess) in those three bins corresponds to about 25.
Thus, the excess corresponds to only ∼1.5σ in the Poisson statistics.
The existence of the feature at φ � 0.6 is also not supported by the
dependence of the HR, which shows no signs of spectral hardening
at this phase [see Fig. 5(a) and (c)].

Then, we have studied the distribution of the X-ray dips over
the superorbital phase. The results are shown in Fig. 6(b). We see
a maximum around � � 0.05–0.1, which is consistent with the
position of the flux minimum [see Fig. 3(a)]. The distribution is
clearly asymmetric relative to the peak, with a slower rise and faster
decline, and it looks like the inverted flux (i.e. − ln F ) of Fig. 3(a).

Then, the two-dimensional distribution of the dips in φ and � is
shown in Fig. 6(c). We see that most of the dips that give rise to the
peak in the orbital phase distribution around φ � 0.0 ± 0.2 happen
around the superorbital phase of � � 0.1 ± 0.2. (The statistical

C© 2008 The Authors. Journal compilation C© 2008 RAS, MNRAS 389, 1427–1438



Superorbital variability of Cyg X-1 1433

significance of the presence of two, rather than one, separate peaks
there is rather low, ∼2σ .) The distributions of the dips resemble
strongly that of the HR, which is natural because the dips just
represent a tail of the HR distribution.

5 T H E O R E T I C A L I N T E R P R E TAT I O N

5.1 Wind geometry in Cyg X-1

Let us first summarize our findings. In the radio, we see no modu-
lation of the orbital variability with the superorbital phase, while in
the X-rays such a modulation is visible. In addition to the previously
known spectral hardening at orbital phase φ ∼ 0 (visible in the HR
and distribution of the X-ray dips), we find a significant increase in
the HR around superorbital phase � = 0. This effect can be tracked
in the dependence of the HR as well as the distribution of the X-ray
dips.

Our interpretation of the observed dependencies is as follows.
The absence of statistically significant superorbital dependence of
the orbital modulation of the 15-GHz radio emission is consistent
with the radio being emitted by a jet in the system, in which case
the orbital modulation is caused by wind absorption far away from
the disc (Szostek & Zdziarski 2007). For the X-rays, the situation
is more complicated.

The X-ray orbital modulation is due to variable absorption by the
wind of the X-rays emitted close to the disc centre. The absorption
can be separated into two components. One is independent of the
superorbital modulation, and is due to absorption in the part of the
wind steady in the comoving frame, as usually assumed. The other
component is due to the part of the flow feeding the outer edge of
the disc, and thus forming a bulge.

In Cyg X-1 system, though the OB star does not fill completely
the Roche lobe, the wind density is enhanced inside the Roche lobe,
which is an analog of the Roche lobe overflow but by the wind. Such
a focused wind (Friend & Castor 1982; Gies & Bolton 1986b) in
some way forms the accretion disc, known to exist in the system. The
main argument for the existence of the disc is an overall similarity
of the X-ray spectra and timing properties of Cyg X-1 to those of
low-mass X-ray binaries, in which case accretion has to form a disc
(see, e.g. Zdziarski & Gierliński 2004). The disc formation, most
likely, leads to a condensation of the wind matter near the disc outer
edge on the side of the companion in the form of a bulge, similar
to the disc bulge inferred to be present in low-mass X-ray binaries,
for example White & Holt (1982), White & Swank (1999), Parmar
& White (1988), Hellier & Mason (1989), as illustrated in Fig. 7.
On the other hand, the bulge can also be formed (see, e.g. Boroson
et al. 2001) by a shock wave in the wind when it encounters the
gravity of the companion, the disc, or a wind from the disc, which is
also likely to be present. In any case, when the fast, >1000 km s−1,
wind is stopped, the density increases dramatically. A fraction of the
focused wind might pass the black hole and be visible as additional
absorption at orbital phase φ ∼ 0.5, however, we find no evidence
for that in the X-ray data.

An issue in the above scenario is the position of the bulge rel-
ative to the line connecting the stars. Consider the accretion pro-
cess in the corotating frame of the binary. In the case of low-mass
X-ray binaries, the accretion stream leaves the L1 point with a small
velocity and, being deflected by the Coriolis force, hits the disc (with
the outer edge defined by the stream orbital angular momentum) at
an azimuthal angle φb ∼ 60◦, which is measured from the line con-
necting the stars with the origin at the compact object [see Fig. 7(c)
and the entry for φh − 180◦ in table 2 in Lubow & Shu 1975]. For

Figure 7. A drawing illustrating the effect of a bulge at the outer edge of
a precessing inclined disc. The material in the bulge absorbs some of the
X-ray emission originating close to the disc centre. The orbital modulation
due to the bulge is seen to strongly depend on the superorbital phase. In
addition, there will also be orbital modulation due to the direct wind from
the supergiant, not shown here for clarity. The elongation of the supergiant,
almost filling its Roche lobe, is not shown here. A view along the orbital
plane: (a) the superorbital phase of zero, when the disc is seen closest to
edge-on and the effect of the bulge is strongest; (b) the opposite case of the
superorbital phase of 0.5. (c) A view from the top, with the arrow showing
the direction of the observer. The angle φb gives the azimuthal displacement
of the bulge centre relative to the line connecting the stars, and it is >0 in
the case shown here. The maximum of the absorption corresponds then to
φ = −φb. This view is for any value of � except for the shown orientation
of the elliptical image of the disc, which corresponds to � = 0 or 0.5.

the mass-ratio in Cyg X-1, q = MBH/MC = 0.36 ± 0.05 (Gies
et al. 2003), the gas freely falling from L1 point would hit the disc
at φb ∼ 70◦. However, these considerations neglect the radiative
acceleration of the stream as well as the diffusive spreading of the
accretion disc and therefore its potentially much larger size, with
both effects significantly reducing φb.

An additional complexity is brought by a possibility of the non-
synchronous rotation of the companion in high-mass systems. For
example, a slower stellar rotation allows the wind to be launched
with a non-zero angular momentum in the corotating frame and
leads to the increase of φb, while the opposite is true for the faster
rotation. The rotation of the companion in Cyg X-1 is compatible
with corotation (Gies & Bolton 1986a), and therefore probably does
not affect much the gas kinematics. Then, if we measure this angle,
φb, in units of the 0–1 orbital phase, absorption of the X-ray emission
in the bulge will peak at the orbital phase of φ � 1 − φb. Indeed,
the typical phase of major X-ray dips in low-mass X-ray binaries
is �0.8–0.9 (Parmar & White 1988). Some other high-mass X-ray
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binaries show dips at φ � 0.8–0.9, also thought to be caused by the
accretion stream passing through the line of sight (Boroson et al.
2001 and references therein).

A crucial further complication in Cyg X-1 is that the disc is
inclined with respect to the binary plane and thus precesses. The
precession causes changes of the position of the bulge with respect
to the line of sight. During a single binary revolution, the bulge
moves up and down, while the inclination of the disc remains ap-
proximately constant (since Psup � P ), see Figs 7(a) and (b). At
� close to zero, we see the disc at the highest angle, that is most
edge-on. The displacement of the bulge centre φb relative to the
line connecting the stars [see discussion above and Fig. 7(c)] will
also cause a small shift of the superorbital phase at which the bulge
absorption is maximal. On the other hand, we see the disc close
to face-on at � = 0.5, see Fig. 7(b), and then the bulge is always
outside the line of sight to the X-ray source. Thus, that additional
absorption component is absent.

The above considerations explain the dependence of HR on
orbital and superorbital phases as well as the distribution of the
X-ray dips. Based on the two-dimensional distribution of the dips
[Fig. 6(c)], we have calculated that at least 1/3 of all the X-ray
dips are caused by the bulge, and the rest are due to the isotropic
part of the stellar wind. Fig. 7 can also be used to calculate the
expected X-ray orbital profiles caused by the wind and bulge ab-
sorption. We can assume a specific density profile of the wind and
the bulge, and calculate the optical depth during a revolution for a
given superorbital phase.

5.2 Model

Let us consider first the isotropic component of the wind. The wind
mass density as a function of distance from the centre of the star, r,
can be estimated from the mass-conservation law

ρiso(r) = Ṁ

4πr2v(r)
, (8)

where Ṁ is the mass-loss rate. We assume v(r) ∝ (1 − R∗/r)ζ ,
where R∗ is the stellar radius, and consider the attenuation cross-
section independent of the distance. We thus get the absorption
coefficient in the form

αiso(r) = α0

( a

r

)2
(

1 − R∗/a
1 − R∗/r

)ζ

, (9)

where a is the separation between the black hole and the companion,
and α0 is the absorption coefficient at r = a. We define here the
characteristic optical depth, τiso,0 = aα0.

The focused wind can be described by the cone of half-opening
angle θmax centred around the line connecting the stars [see Fig. 8(a)
for geometry]. The additional opacity can be scaled to the opacity
of the isotropic component and its angular dependence can be ap-
proximated by a parabola (Friend & Castor 1982; Gies & Bolton
1986b)

αfw(r, θ ) = α0(ηfw − 1)

[
1 −

(
θ

θmax

)2
]

, θ < θmax, (10)

where θ is the angle measured from the line connecting the stars
and ηfw is the ratio of the wind density in the direction of the black
hole to that of the isotropic component. The total wind absorption
coefficient is defined by the sum αw(r, θ ) = αiso(r) + αfw(r, θ ).

Let us now compute the optical depth through the wind along
the line of sight. It depends on the position of the observer. We
introduce the coordinate system centred at the black hole with the

Figure 8. (a) Geometry of the wind. (b) Geometry of the bulge.

z-axis along the normal to the orbital plane, and the observer in the
x–z plane, so that the direction to the observer is n = (sin i, 0, cos i).
Position of the companion is then a = a(cos φ, sin φ, 0), where φ

is the orbital phase. The angle between the line-of-sight n and a
varies with phase:

cos ξ = n · a

a
= sin i cos φ. (11)

The impact parameter is a sin ξ and the distance of some point in
the wind to the supergiant centre is r =

√
s2 + a2 sin2 ξ , where s

is its distance to the point of the closest approach (which can be
negative). The corresponding radius vector is r = n(s+a cos ξ )−a
[see Fig. 8(a)]. The angle between r and −a is then

cos θ = r

r
· (−a)

a
= 1

r

(
a sin2 ξ − s cos ξ

)
. (12)

The optical depth through the wind is computed as

τw(φ) =
∫ ∞

−a cos ξ

αw(r, θ )ds. (13)

Let us apply this formalism to Cyg X-1. We take the ratio of the
separation to the supergiant radius a/R∗ ≈ 2.3 (Ziółkowski 2005),
the inclination i = 40◦ (see Paper I and references therein), the ve-
locity profile exponent ζ = 1.05, and the focused wind parameters
θmax = 20◦ and ηfw = 3 (Friend & Castor 1982; Gies & Bolton
1986b). In this case, the optical depth through the isotropic com-
ponent of the wind from the black hole to the infinity in the radial
direction away from the companion is about 0.73τiso,0, in the per-
pendicular direction it is 1.26τiso,0 (i.e. at phases φ = 0.25, 0.75)
and at zero orbital phase along the line-of-sight τw(0) ≈ 3τiso,0. The
typical optical depth provided additionally by the focused wind
across its cone is ≈ θmax(ηfw − 1) 2

3 τiso,0 ≈ 0.45τiso,0. Thus, for Cyg
X-1 at orbital phases φ ∼ 0, the focused wind adds only 15 per
cent to the opacity produced by isotropic wind, while at φ ∼ 0.5,
its contribution can reach 60 per cent, but the absorption itself at
this phase is low. Thus, in the first approximation, we can use only
the isotropic wind model and include the corrections introduced by
the focused wind later.
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In the case of the bulge, we first need to compute the position of
the bulge centre, b, relative to the black hole. For the prograde pre-
cession (see L06) the unit vector along the normal to the precessing
accretion disc is d = (− sin δ cos �, − sin δ sin �, cos δ), where δ

is the precession angle. Assume now that the bulge centre lies at the
disc plane and the projection of b on the orbital plane x–y makes an
angle φb with the line connecting the black hole to the companion
[i.e. the azimuth of b is φ + φb, see Fig. 7(c)]. We then get the unit
vector of the bulge centre

b = [cos(φ + φb), sin(φ + φb), tan δ cos(φ + φb − �)]√
1 + tan2 δ cos2(φ + φb − �)

. (14)

The angle it makes to the line of sight is given by [see Fig. 8(b)]

cos β = b · n

= sin i cos(φ + φb) + cos i tan δ cos(φ + φb − �)√
1 + tan2 δ cos2(φ + φb − �)

. (15)

Let us assume an exponential dependence of the absorption co-
efficient on the distance p from the bulge centre,

αb(p) = αb,0 exp(−p/rb), (16)

with rb being the bulge scale-height. This gives the optical depth
from the bulge centre to infinity of τb,0 = rbαb,0. On the other hand,
the optical depth from the black hole through the bulge along the
line of sight,

τb(φ,�) =
∫ ∞

−R cos β

αb(p)ds, (17)

depends on the orbital as well as superorbital phase. Here, R is the
distance to the bulge centre from the black hole (i.e. approximately
the disc size) and p =

√
s2 + R2 sin2 β.

For simplicity, we assume that the wind and the bulge are inde-
pendent and therefore the orbital modulation profile is given by

F (φ,�) = F0(cos ψ) exp[−τw(φ)] exp[−τb(φ,�)], (18)

where F0 is the intrinsic flux (which depends on �) without absorp-
tion in the direction of the observer and ψ is the angle between the
disc normal and the line of sight:

cos ψ = n · d = cos i cos δ − sin i sin δ cos �. (19)

The retrograde precession can be modelled by substituting � →
−� in the above formulae.

5.3 Modelling the data

In order to describe the profiles presented in Fig. 2 with the model
of Section 5.2, we need to specify the angular distribution of the
intrinsic flux, F0(cos ψ). In Paper I, we have considered four simple
analytical models.

(a) The blackbody, with the flux proportional to the projected
area, F0(cos ψ) = A cos ψ .

(b) An anisotropic model of F0(cos ψ) = A cos ψ(1 + η cos ψ)
with parameter η giving the degree of deviation from the black-
body. Such anisotropy can be produced for example by thermal
Comptonization (Paper I; Sunyaev & Titarchuk 1985; Viironen &
Poutanen 2004), which the dominant radiative process giving rise
to X-rays in the hard state of Cyg X-1 (e.g. Gierliński et al. 1997;
Poutanen 1998; Poutanen & Coppi 1998).

(c) The steady jet model, F0(cos ψ) = A[γj(1−βj cos ψ)]−(1+�),

where βj = v/c is the jet velocity, γj = 1/
√

1 − β2
j is the jet

Lorentz factor, and � is the photon index of the X-ray radiation. By

the ‘jet’, we mean here either the base of the jet in the direct vicinity
of the black hole or an outflowing corona (see e.g. Beloborodov
1999; Malzac, Beloborodov & Poutanen 2001; Markoff, Nowak &
Wilms 2005).

(d) The slab absorption model, F0(cos ψ) = A exp(−τ/ cos ψ),
which can be associated, for example, with some kind of a disc
outflow.

All the models provide a good fit to the superorbital variability
of Cyg X-1 (Paper I). Models (b) and (c) can be considered as more
physically motivated, but we consider here all of them. In order to
keep the number of parameters to minimum we fix the inclination of
the system i = 40◦. The precession angle δ is not well determined in
models (b)–(d) as it is anticorrelated with other parameters (η, βj, τ ,
see Paper I). Thus, we fix it at three values between 5◦ and 10◦.

The parameters describing the absorption of radiation are the
characteristic optical depths τiso,0 and τb,0 for the wind and bulge,
respectively. Additional parameters are the bulge-density scale mea-
sured in units of the disc size, rb/R, and the phase shift, φb, of the
position of the bulge centre. An arbitrary shift in the superorbital
phase, �� (due to the uncertainty of the superorbital ephemeris),
is also introduced (i.e. we replace � by � − �� in all formulae
of Section 5.2). The parameters describing the radiation pattern are
the normalization, A (for ASM A channel), and the anisotropy pa-
rameter, η, in model (b), βj in model (c) (where we fix � at a typical
hard-state value of 1.7), and the slab optical depth, τ , in model (d).

We consider the prograde precession of the disc (L06). In order
to understand the influence of the model complexity on the results,
we consider first only the isotropic component of the wind (models
W in Table 1) and fit the ASM A profiles only, which show strongest
variability. We find that parameters rb/R and τb,0 are anticorrelated,
and cannot be determined separately. This happens because various
combinations of the two parameters can give the same optical depth
through the bulge at a given impact parameter. Therefore, we fix
rb/R = 0.2. The best-fitting model parameters are presented in
Table 1. For model (a), the precession angle agrees within the errors
with the results of Paper I. The jet model, (c), provides a slightly
better fit for smaller precession angles. The models (b) and (d) also
give statistically similar fits. The phase shifts �� and φb are well
constrained by all the models. The fits require the shift of the bulge
centre from the line connecting the stars by φb ≈ 0.07 [i.e. 25◦, see
Fig. 7(c)]. All the models give similar optical depths through the
wind and the bulge. The wind optical depth τw varies between 0.28
(i.e. ≈ 3τiso,0) and 0.08 (i.e. ≈ τiso,0) for φ varying between 0 and
0.5. For the bulge, τb varies between 0.15 and 0.007 at � = 0 and
between 0.05 and 0.008 at � = 0.5.

We now add an additional focused wind component with the
parameters specified in Section 5.2 and fit the data using jet model
(c). The resulting best-fitting parameters are not very much different
from those obtained with the isotropic wind model (compare entries
5 and 7 in Table 1). This is expected, because the focused wind
affects the total opacity on average at about a 30 per cent level.

Finally, we fit the light curves in channels A and C simultane-
ously. Two additional parameters have to be introduced: the ratio of
the absorption coefficients (and optical depths) in channels C and
A, τC/τA, and the ratio of the normalizations (intrinsic HR), C/A.
The best-fitting results for the main model parameters change only
slightly (compare entries 5 and 8 in Table 1). Because the mean
absorption coefficients in channels A and C differ only by a factor
of 3, the absorbing gas has to be rather strongly ionized.

For the retrograde precession, all these models give much worse
fits to the data.
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Table 1. Best-fitting model parameters.

No. Modela δ b τiso,0
c τb,0

d φb
e �� f A g η, βj, τ

h τC/τA
i C/A j χ2/d.o.f. k

deg

1 W+B a 7.5 ± 0.5 0.09 ± 0.03 1.05+0.55
−0.44 0.07 ± 0.04 0.03 ± 0.02 9.2 ± 0.2 – 151.9/154

2 W+B b 10.0 (f) 0.09 ± 0.02 0.8+0.4
−0.35 0.08 ± 0.03 0.04 ± 0.01 11.6 ± 0.8 −0.27 ± 0.06 155.2/154

3 W+B c 5.0 (f) 0.07 ± 0.03 1.35+0.65
−0.6 0.07 ± 0.04 0.03 ± 0.01 2.90 ± 0.10 0.47 ± 0.03 148.8/154

4 W+B c 7.5 (f) 0.09 ± 0.03 1.05+0.50
−0.45 0.07 ± 0.04 0.03 ± 0.01 3.55 ± 0.13 0.36 ± 0.03 151.8/154

5 W+B c 10.0 (f) 0.09 ± 0.02 0.8+0.4
−0.35 0.08 ± 0.04 0.03 ± 0.02 4.04 ± 0.14 0.29 ± 0.02 154.7/154

6 W+B d 10.0 (f) 0.09 ± 0.02 0.8+0.4
−0.35 0.08 ± 0.04 0.04 ± 0.01 14.8 ± 1.2 0.56 ± 0.05 155.9/154

7 F+W+B c 10.0 (f) 0.09 ± 0.02 0.8+0.4
−0.35 0.08 ± 0.04 0.03 ± 0.01 4.20 ± 0.15 0.29 ± 0.02 155.4/154

8 W+B c 10.0 (f) 0.09 ± 0.02 0.9+0.4
−0.35 0.08 ± 0.04 0.01 ± 0.02 4.15 ± 0.14 0.27 ± 0.02 0.3 ± 0.1 1.31 ± 0.03 359.2/318

aThe models described in Section 5.2: W is the isotropic wind model, F is the focused wind and B stands for the bulge. Small letters giving the models of the
intrinsic emission from Section 5.3. The model 8 is fitted to the ASM A and C channels simultaneously.
bThe precession angle.
cCharacteristic optical depth of the isotropic wind.
dCharacteristic optical depth of the bulge.
eThe shift of the bulge centre in orbital phase (fraction of the orbit).
f The shift in superorbital phase.
gThe model normalization in the ASM A channel.
hThe anisotropy parameter, the jet velocity, or the slab optical depth.
iThe ratio of absorption coefficients in channels C and A.
jThe ratio of model normalizations in channels C and A.
kχ2 and the number of degrees of freedom. The errors on the parameters are given at 90 per cent confidence level for one parameter, that is for �χ2 = 2.71.
The size scale of the bulge in units of the disc size, rb/R, is fixed at 0.2 and inclination i is 40◦ in all of the models.

6 DISCUSSION

6.1 The origin of beat frequencies

A collateral effect of the coupling between the orbital and super-
orbital modulations may be appearance of additional frequencies
in the power spectrum. If the two modulations were independent,
there would be simply two peaks in the power spectrum at the
corresponding frequencies. On the other hand, if one modulation
depends on the other, beat frequencies, at ν = 1/P ± 1/Psup, may
appear. Indeed, L06 reported finding the lower of the beat frequen-
cies (albeit at a relatively limited statistical significance), and also
found that its origin from X-ray reflection from the surface of the
companion is unlikely.

Here, we have tested whether the discovered dependence of the
orbital modulation on the superorbital phase may indeed cause beat
frequencies to appear. Using our model (given by equation 18 and
other formulae of Sections 5.2 and 5.3 with parameters of model 5
in Table 1), we have generated a light curve and computed Fourier
power-density spectrum (PDS). We have found that our model gives
rise to strong peaks at frequencies 1/Psup and 1/P with harmonics
as well as to two peaks in the power spectrum at the beat frequen-
cies. Interestingly, the lower beat-frequency peak is 3.7–5.4 times
stronger than the higher one (depending on whether we compute
Fourier transforms from the flux or from the logarithm of the flux).
Fig. 9 shows the flux Fourier transform for this case for the outflow
model. We then compare these predictions with a simpler model
where absorption in the bulge is neglected. In this case, there are
two beat-frequency peaks of equal strength in the PDS of the flux
(see the dashed curves in Fig. 9), while they are missing in the
PDS computed from the logarithm of the flux, because the coupling
disappears. If on the other hand, only bulge produces absorption,
PDS shows both beat-frequency peaks with the strength ratio of
10 and 5 for the flux and its logarithm, respectively. Finally, we

Figure 9. Power density spectra predicted by our models (arbitrary nor-
malization). The solid curves show the power spectrum of the flux for the
outflow model 5 in Table 1. The inset zooms on the frequency range near
1/P . The dashed curves show the model with the absorption only in the
wind, that is neglecting the presence of the bulge.

experimented with the model where intrinsic flux, F0, as a function
of superorbital phase was assumed to be constant and both bulge
and wind are responsible for absorption. Now, the strength of the
peak at 1/Psup has diminished by three orders of magnitude, while
the behaviour of PDS at 1/P and the beat frequencies was almost
identical to the full model with variations of F0 (the ratio of peak
strengths is 6.5 and 5.5 for the flux and its logarithm, respectively).

We see that the lower beat-frequency peak is always stronger
than the higher one when absorption is modulated by the bulge
(for prograde precession). The coupling discovered in this work
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thus predicts a presence of beat frequencies with a stronger low-
frequency peak, which is consistent with the discovery by L06 of
only the low-frequency peak.

6.2 Superorbital variability and outbursts of Cyg X-1

It is of interest to consider whether the superorbital variability of
Cyg X-1 is related to other aspects of the source activity. Recently,
the MAGIC collaboration (Albert et al. 2007) reported detecting
TeV emission from Cyg X-1. That detection, on MJD 54 002, took
place in the middle of a strong X-ray outburst of Cyg X-1 (Türler
et al. 2006). We have checked that time corresponds to the peak of
the superorbital cycle, � � 0.5, when the disc and jet of Cyg X-1
are most face-on. On the other hand, L06 found that the superorbital
cycle was uncorrelated with the appearance of other strong X-ray
outbursts of the source of duration of hours (Stern, Beloborodov &
Poutanen 2001; Golenetskii et al. 2003). Thus, the significance of
the coincidence of the TeV burst with the peak of the superorbital
cycle in the present case remains unknown.

Interestingly, the orbital phase of the TeV outburst was at φ � 0.9
(Albert et al. 2007), at which absorption of TeV photons by pair
production on the stellar photons is very strong. A possible way
to obtain detectable TeV emission is then via pair cascades. We
note that the statistical significance of the detection was relatively
limited, 4.1σ , and thus an independent confirmation of this detection
is desirable.

7 C O N C L U S I O N S

We have discovered the dependence of the orbital modulation
strength and the HR on the superorbital phase of Cyg X-1. The
observed effects can be explained by the presence of the absorb-
ing material more or less fixed in the corotating frame of the stars.
We associate this material with the bulge formed by the accreting
stream impacting the accretion disc. Because of the disc precession
(causing superorbital variability), the bulge moves up and down
and its influence on absorption varies. At the superorbital phase 0.5,
the line of sight does not pass through the bulge, while at � ≈ 0
the absorption in the bulge is maximal. We estimate the maximal
optical depth at 1.5–3 keV through the bulge (for our line of sight)
of about 0.15, while the stellar wind produces twice as much of the
absorption.

Using a simple model of the bulge and the stellar wind incor-
porating the angular dependence of the intrinsic X-ray radiation
from the black hole vicinity, we were able to reproduce the detailed
shape of superorbital variability as well as of the orbital modulation
at various superorbital phases. We find the bulge centre is displaced
from the line connecting the stars by about 25◦. We also study the
distribution of the X-ray dips over superorbital phase. We find their
concentration towards the superorbital phase 0.1, which coincides
with the position of the flux minimum. We thus are in position to
claim that the X-ray dips observed in Cyg X-1 at around zero or-
bital phase have direct relation to the bulge which, in turn, causes
variation of the orbital modulation with the superorbital phase. We
Fourier analyse our model, and find it explains the finding of only
the lower beat frequency between the orbital and superorbital fre-
quencies in the observed power spectrum (L06), provided the disc
precession is prograde.

We also find that both the X-ray and radio fluxes of Cyg X-1 in
the hard state on time-scales �104 s have lognormal distributions,
which complements the finding of a lognormal flux distribution in
the hard state on ∼1-s time-scales (Uttley et al. 2005). We stress

out that the lognormal character of the flux distribution requires
that flux logarithms rather than fluxes themselves should be used
for averaging and error analysis. We also correct a mistake in the
treatment of V03 of the uncertainty of intrinsic rms variability of
light curves in the case when the uncertainty is higher than the
intrinsic rms (which is often close to null). The mistake stems from
the failure of the assumption of the uncertainty to be much less than
the estimated quantity, used in the standard propagation of errors.
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Zdziarski A. A., Gierliński M., 2004, Prog. Theor. Phys. Suppl., 155, 99
Zdziarski A. A., Poutanen J., Paciesas W. S., Wen L., 2002, ApJ, 578, 357
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