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We derive the relativistic kinetic equation for Compton scattering of polarized radiation in strong
magnetic field using the Bogolyubov method. The induced scattering and the Pauli exclusion principle are
taken into account. The electron polarization is also considered in the general form of the kinetic equation.
The special forms of the equation for the cases of the nonpolarized electrons, the rarefied electron gas and
the two-polarization mode description of radiation are found. The derived equations are valid for any
photon and electron energies and the magnetic field strength below about 10'¢ G. These equations provide
the basis for formulation of the equation for polarized radiation transport in atmospheres and magneto-

spheres of strongly magnetized neutron stars.
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L. INTRODUCTION

Observations of the soft gamma-ray repeaters and
anomalous X-ray pulsars showed that these objects can
be associated with the strongly magnetized neutron stars
(NSs) with the magnetic field exceeding the Schwinger
critical value of B,, = m2c®/eh = 4.412 X 103 G [1,2].
This has revived the interest in theoretical studies of the
interaction processes between radiation and matter in such
fields [3].

Compton scattering is an important process shaping the
radiation spectra of the NS atmospheres. Its properties in
the magnetic field differs substantially from the case when
the magnetic field is absent. Even the classical nonrelativ-
istic limit of the scattering cross section has a resonance at
the energy related to the Lorentz frequency and is strongly
dependent on the photon energy, polarization, and the
B-field strength [4,5]. While the classical description has
been useful for understanding the approximate effects of
energy, angle, and polarization dependence of the cross
section in the magnetic field, it does not include the pos-
sibility of the electron excitation to a higher Landau state
corresponding to the resonances at higher harmonics,
which required fully relativistic treatment. In the relativis-
tic regime the recoil of the electron is important and the
natural line width of the cyclotron resonances depends on
the spin of the electron. The relativistic scattering cross
section for the simplest case of ground-to-ground state
scattering in the magnetic field was derived in [6]. These
results were extended to a more general case of scattering
to arbitrary Landau states in [7,8] and discussed further
in [9]. The derived expressions have been applied to
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modeling the cyclotron line formation in accreting neutron
star atmospheres, but only for the case of one-dimensional
thermal electron distribution because of the complexity
of the expressions [10—14]. When the incident photons
propagate along the magnetic field, the resonance appears
only at the fundamental frequency and scattering to the
higher Landau levels can effectively be neglected. This
allows to simplify the expressions for the relativistic cross
sections and to approximate them by analytical formulas
[15].

The transport of photons through the atmosphere in-
volves multiple scattering, which have to be considered
either by the Monte Carlo methods or using the kinetic
equations. The former approach was used for a qualitative
study of the line formation process in Her X-1 [16,17], but
it becomes impractical for a large optical depth and when
the induced scattering has to be accounted for, and there-
fore has a limited field of applications. In the cold plasma
approximation, assuming the coherent scattering, the ra-
diative transfer equation can be formulated as a set of
coupled equations for two normal polarization modes
[18]. The influence of the electron temperature on the
radiation transport can be accounted by the Fokker-
Planck approximation, for example, by modifying the
Kompaneets equation [19] to allow for the resonances in
the scattering cross section [20]. Such a treatment, how-
ever, does not account for the effects of the photon angular
distribution and polarization. Photon polarization, how-
ever, influences the photon redistribution over the energy
[21,22].

In a sufficiently strong magnetic field, owing to the large
Faraday depolarization, the radiation can be described in
terms of two polarization modes. Under certain conditions
(depending on the field strength, photon energy, and propa-
gation direction), however, the vacuum resonance is ac-
companied by the phenomenon of mode collapse and the
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breakdown of Faraday depolarization [23-25]. In this case
the two-mode description fails and instead the kinetic
equations have to written in terms of the Stokes parameters
or the coherency matrix. In the case when the induced
scattering needs to be accounted for, the situation compli-
cates further as there is no intuitive way to get such an
equation.

The aim of this paper is to derive from first principles a
general kinetic equation for Compton scattering in any
magnetic field accounting simultaneously for photon po-
larization in terms of the Stokes parameters, for the in-
duced scattering and the Pauli exclusion principle for
electrons. We use methods of quantum statistics and follow
an approach similar to that used for derivation of the
kinetic equation for Compton scattering without magnetic
field [26]. The resulting equations are valid for any photon
and electron energies, and for the magnetic field strength
below about 10'® G. In the most general case, the electron
polarization is also taken into account. We also consider
several special cases and derive the kinetic equations
when the electron gas is nonpolarized and rarefied as
well as when the radiation can be presented via two polar-
ization modes. The derived equations provide the basis for
construction of the models of radiation transport in atmos-
pheres and magnetospheres of strongly magnetized neu-
tron stars.

II. DESCRIPTION OF THE ELECTRON
AND PHOTON GASES

We use the system of units where 4 = ¢ = m, = 1. We
assume that the magnetic field is locally homogeneous,
which is justified, because the scales of changes of the
B-field are orders of magnitude larger than the microscopic
magnetic scale for conditions in atmospheres of NS and
even the geometrical depth of the atmosphere. The mag-
netic field is described by the dimensionless parameter
b = B/B,. We choose the reference frame in any space-
point so that the z-axis coincides with the magnetic field
direction. The following assumptions about the time scales
are used:

(1) The typical time scale on which the distribution
function changes (for electrons and photons) is
much larger than the typical time scale between
the interactions.

(2) The plasma is sufficiently rarefied, so that we can
use a generalization of the Bogolyubov method for
the case of quantum statistics to derive the kinetic
equation.

(3) The typical time scale of a single interaction is much
smaller than the typical time scale between the
interactions.

A. Descriptions of single particles

The electron states are described by the wave-functions
W, (r, Y, Z). Its arguments are the space-time coordinates,
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the momentum projection Z on the direction of the mag-
netic field, Y describing location of the center of electron
gyro-orbit (its y-coordinate), the Landau level n, and the
spin projection ¢ on the magnetic field direction (o = *=1
in 7/2 units). Dimensionless energy of an electron in this
case,

R,(Z) =1+ 7% + 2bn, (1)

is independent of Y. The energy levels are degenerate with

the spin projection on the magnetic field direction, except

for the ground Landau level with n = 0, where o can have

only one value —1. The full electron wave function is

presented through the partial solutions of the Dirac equa-

tion for the electron in the magnetic field:

dYdz

r) = —Vv,,. (Y, 2)b,, (Y, 2Z), 2

10 =3 [ Vel V202 2
where b, are coefficients.

The photon state is described by four parameters: the
wavenumber k, the two angles 6 and ¢, which define the
direction of the photon momentum, and the polarization
state s = 1,2. The 3-dimensional photon momentum can
be represented as

k = (k,, ky, k,) = k(sinf cosg, sinf sing, cosf).  (3)

The corresponding photon 4-momentum is k = {k, k},
k = |k|. Photon polarization is described by the polariza-
tion basis. It consists of two unit vectors, which are or-
thogonal to the photon momentum k:

e, = (sing, — cose, 0),

“4)
e, = (cosf cosg, cosl singp, — sinf).
The 4-vector potential can be defined as:
Ar) =ee®r, e ={0e} s=12. (5

We note that the photons are described in the same manner
as in the case when the magnetic field is absent. We assume
that the dispersion relation for the photons in magnetized
vacuum does not differ from the dispersion relation in the
case when the magnetic field is absent. This approximation
constrains the strength of the field and energies of photons.
For estimations one needs to know vacuum dielectric
tensor and the inverse permeability tensor for the case of
magnetized vacuum [27,28]. It is known that the indices of
refraction differ from unity by more than 10% only for the
fields with strength » > 300 [29]. This restricts application
of the developed formalism to B < 10'® G.

B. Description of the particle ensembles
1. Wave functions

We describe particle ensembles by density matrix using
the rules of quantum statistics. Let us define the wave
functions for the case of limited number of particles.
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These functions will be used for construction of the density
matrix. The wave function for a limited number of particles
with defined characteristics of each of them, can be found
from the vacuum wave function by applying the operators
of creation and annihilation. Let G, (k) and a() (k) be the
creation and annihilation operators of a photon in the
state with polarization s and 3-momentum k. According
to the methods of second quantization [30], these operators
satisfy the relation

a(k)a) (k') — ag(ka) k) = k8(k — k)83, (6)

Let bi,(Y, Z) and b, , (Y, Z) be creation and annihilation
operators of an electron on the Landau level n in polariza-
tion state o with momentum projections Y and Z. These
operators satisfy the following relation

b, (Y, 2)b}, (Y, Z') + bl, (Y, Z)b,,(Y, 2)
=R,(2)8(Y — Y)8(Z — 7')8" 6. (7)

The system of N photons with fixed parameters
{s1, ky;...; sy, ky} is described by the wave function
Xl...AN(kl’ e kN) =

ag,(ky) ... ag,)ky)¥o, (8)

1
VN!
where W, is the vacuum wave function of the photon
gas. Analogously, the system of N electrons with fixed

L dez (T
R (Z) "1 RUYFRTITS YN(YI’ZI""’

WYyn, =

YN+,ZN+,k1,...,
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parameters {n;,, o, Y, Z;...;
scribed by the wave function

ny, Oy, YN’ ZN} is de-

Ol N(Y, Zy, . Yy, Zy)

\/%blm(Yl» Z)...blyo,(Yn, Zy) Dy, (9)
where @, is the vacuum wave function of the electron-
positron gas. The wave function for arbitrary state of
particles can be presented as a sum of the wave functions
with fixed particle parameters. For example, the state of N
photons is described by the function

- i

where ¢  (ky,..., ky) are the weight coefficients. The
wave function for an arbitrary state of N electrons can be
represented as

(ky, ... ky)¥s, (k.. ky), (10)

Y] SN

N dY az; .,
q)N_[ ” (Z; nll Ny (Y]erx---) YN)ZN)
X @Zl‘;_'_‘nN Yy, Zy, .., YN, Zy). (11)

The wave function for state with N photons and N elec-
trons can be written as

)P (Y, Zy

Ny,

k¥, (k... Yy, Zy,)

(12)

2. Density matrix

The density matrix is defined as an averaged dyad product of the state vector with its conjugate. For the system
consisting of N photons and N electrons it can be written in the form

PN,N, =N'N ,[

% TON,
Npy, ,S) Sy

ki K
Y. Z, ...,

T —0'/...
X O (Y, Zy, e, Y, Zy)®,"

The expressions in the triangle brackets are the elements of
the density matrix kernel.

3. Algebra of the density matrix kernels

From now on we will operate only with density matrix
kernels. All the equations and the final results are written
through these kernels. It is easy to make a transformation
from the simplest kernels to the distribution functions
or to the coherency matrix. Let us write the density

N dk; dk) fﬁdY dz; dy'dZ,
R, (Z) Ry (Z’)

YN+ZN+,k1, ey

/
o

Ny ! !
Lz
Ny

L "N+ YL Z Y Zh K )
kN)>’\I,S]...SN (kl: [ERE kN)@s/lsg\, (kl’ R k;v)
Yl Zh). (13)

[

matrix kernel for the system of N photons and N,
electrons

! !
Sl Oyl (k kY

Psy..sy04.. ONy > "1 NN k k
1... N

Y)Y 2 2
Yi...Yy.Z,... Zy.

o ..o
_ [« 1 71 1 71 / /
_<c o LY 2 K K)

My oSSy
,kN>>.

(14)

o0y
chl...n s Y (Y])Z]’-“y

Ny S1-SN

YN+ZN+,k|,
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Further, let us write some useful relations for the kernels.
For the sake of simplicity we consider only the photon gas.
These relations can be generalized trivially to the case of
the electron-photon gas. The kernel for the system of N
photons can be written through the density matrix:

s .5 k/ k/ T,
p:~1"“~N< L. N) _ N!\I’s’l...s},(kl’ oo ky)

g (KL (15)

Hereinafter we call it the N —particle kernel. It is normalized
to unity:

[ l—[ dk;
For any m = N the m-particle kernel can be calculated as
' k| ...k,
‘Yl
le Tm( kl )
[ N dk;
(N m) i=m+1 i

X S’]*--S:/nvxm+]~--SN kll v ‘kinkm#»l o -kN 17
P51 S8y k k. k k . ( )
1e-®m®m+1.--ON

The 1-particle kernel can be expressed through the

N-particle kernel as
vo s K'ky.. .k
PRy Y)oas
kky...ky

(K 1 N dk;

g
k N=D'J 73k

It is normalized to the total number of the particles:

Bk
prz(',ﬁ) —N. (19)

The diagonal elements of 1-particle kernel compose the
coherency matrix in the case of photon gas.

i ix("l "N)=Sp(p)=1. (16)
k... ky

4. Transformation from the simplest kernel to the
distribution functions

The transformation from 1-particle density matrix to the
distribution function in the case of electrons in the case of
field-free space can be made using the Wigner function.
The Wigner function is defined as

p(p,r) = /dv exp(ip - v)p,(r + v/2,r — v/2), (20)

where p,(r + v/2,r — v/2) is a 1-particle density matrix
in the coordinate representation. The momentum and co-
ordinate representations are connected through the Fourier
transforms:

1 dpdp' ) /
pulrr) =5 5 — exp(—l(p-r—p’-r’))p(l;) )
Y Pop

2
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Then one can rewrite the Wigner function using the density
matrix in the momentum representation:

1 dp,dp'; /
p(pr)=——= | ———=exp(—i(p )-T)
2m) /p Db
+
% 6<p—pl I’1>p<l’1>‘ 22)
2 P

The inverse transformation from the Wigner function to the
density matrix in momentum representation reads

p<p1> =—“p()lpmfdpdre><p(t(p1 p) 1)

D1
+
xo(p - %)p(p, r). 23)

The time scale of the electron-photon interaction is much
smaller than the time scale of noticeable changes of the
distribution functions. Therefore, in the last equation one
can assume that the Wigner function does not depend on
the space variables. In this case, the integration could be
made easily and we can write

/
P\ _
p<p1) = po10(p} = p)p(py). (24)
Then one can convert the 1-particle density matrix kernel
to the distribution function in the case of spinless particles
or to the coherency matrices in the case of particles with
nonzero spin. In the last case a trivial generalization is
used:

1771(1;1) = poid(py — Pl)P:i (p1). (25)
Egs. (24) and (25) can be written immediately from the
physical meaning of the density matrix and the assumption
that the time scale of the interaction and the time between
interactions are mush smaller than the time scale of notice-
able changes of the distribution function.

One can also write similar relation for the case of
electrons in the external magnetic field. If we consider a
noninteracting electron in the B-field not accounting for
cyclotron radiation (which should be described by another
kinetic equation), then the electron should conserve its
z-momentum and the Landau level. This means that the
kernel should be diagonal over both Z and n, because it is
not possible to have mixed states corresponding to differ-
ent values of the z-projection of momentum or the Landau
level. Nondiagonal elements in the kernel can appear only
if one accounts for interactions between particles, but
because of the smallness of the interaction time scale the
kernel should be diagonal over z-projection of momentum
and the Landau levels. In this case the relation will have
the following form (a detailed derivation is given in
Appendix A):
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Il Y/Zl ! !
ot (7 ) = RA@BL B0~ V)82~ 2)p5 (1. 2),

(26)

where o and ¢’ describe the electron spin-states, n and n’
are the Landau levels, Z and Z’ are the momentum projec-
tions and R,(Z) is the electron energy given by Eq. (1).
A transformation from the 1-particle density matrix to
the distribution function in momentum space is trivial,
but one must again assume that the typical time scale of
changes of the distribution function is much larger than the
typical time scales of interaction between the particles.

C. Description of the interaction
1. Description of the single interaction

Let us mark parameters of the particles before the inter-
action with the subscript “i” and particles after interaction
with the subscript “f.”” There are three conservation laws
for Compton scattering in the magnetic field. They are the
energy conservation, the conservation of the momentum
along the magnetic field and the conservation of the trans-
versal momentum:

R; + ki = Ry + ky, Zi + kjcosO; = Z; + kycosby,

Y; + k;sinb; sing; = Yy + k¢ sinf; singy. (27)

Let us use special designation for product of §-functions
which are describing these conservation laws:

S(n,Y,Z kln'Y' Z' k')
=06(R,(Z2)+k—R,(Z")—k')S(Z+ kcos® —Z' — k' cos®’)
X 8(Y + ksinfsing — Y/ — k'sinf'sing’). (28)

A single interaction can be described by the S-matrix. The
elements of the S-matrix can be calculated using methods
of quantum electrodynamics. In the simplest case the
elements of the S-matrix can be obtained using second-
order perturbation theory. In this case Compton scattering
can be represented by two Feynman diagrams with two
vertices in both of them and one can write an expression for
the S-matrix elements:

Sfi = —47Tia[d4r1d4r2\i’f(£2)

X {[zf_\}(rz)]G(zz, r)lyAi(ry)]
+ [yAi(r2)]G(rs, K1)[ZA}(I1)]}\I'1'(Z1), (29)

where 7y A is the Dirac inner product of a 4-vector and
vy-matrix, and G(r,, r;) is a relativistic electronic propa-
gator in the presence of a constant magnetic field, W;(r)
and ‘Iff(r) are the electron wave-functions in coordinate
representation, and « = e is the fine-structure constant.
The S-matrix elements and the cross-sections for Compton
scattering in magnetic field contain resonances which have
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to be regularized [31]. The calculations are not trivial and
have been performed only in special cases [6-8,15].

2. Evolution of the density matrix

The evolution of the density matrix can be described by
equation:

. dp(1)
;0P

S — Hp() = p()H (), (30)

where the Hamiltonian is
O = —e [ariwya0pe. 6D

Equation (30) is written here in noncovariant form, but
it can be transformed to the explicitly covariant form
using the Tomonaga-Schwinger equation [30]. It means
that the form of the equation is covariant for the longitu-
dinal Lorentz transformations (along the magnetic field
direction). The solution of Eq. (30) can be presented by
the operator of evolution Ul(x, y):

ﬁt agg/t )dt/ = p(t) - p(to) = U(t, [0)p(t0) — p(t())U([, t0)~

(32)

On the other hand, the operator U(z, t,) can be represented
in the following form:

Ut ty) = j-t dt [t dt”f dr’f dr'S(', ')
fo 1o v v

= [ @ [ drse e, (33)
% v

where V = [t,, t] X V is the volume in Minkowski space
and

2 YdZ Y/ Z/ !
St g — i fd dz dv'dz' dk dk

——bT,;Z/
2m)° & & &P
k'Y 7

X a, (k' k n'als!
bno’( )a(s)( )a(s)( )Nna's (k Y 7

7/
£”)'
(34)

The space integral of N can be represented through the
elements of the scattering M-matrix:

D k/ Y/ Z/ Il
[vd4r/,[vd4r//w:‘gss<k Yz z”)

L lylzl
—@mpatn v,z kv 2 kg ("
nYZ

K
k

) 39
then U(t, 1) can be rewritten in the following form

dydz dY'dZ' dk dk'

i
Ule) =5 [ S )
i e (MY'Z | K
< bao @ @ragdomz (" 7|0} o
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Let us assume that the typical time scale of the density
matrix changes is much larger than the typical time scales
of a single interaction. In that case changes in the dis-
tribution on a macroscopically small times scale can be
represented through the S-matrix because M-matrix can
be considered as the scattering S-matrix divided by the
fine-structure constant:

M;_f;f<”foZf ka) _ oy =S

and the time interval [7,, t, + t] is considered as a macro-
scopically small time. Egs. (32) and (36) determine the
solution formulated through the elements of the scattering
matrix. We reformulate these equations below in terms of
the kernels of the density matrix.

III. DERIVATION OF THE KINETIC EQUATION
FOR THE PHOTON GAS

A. Methodology of the kinetic equation derivation

1. Summary of our assumptions and the
Bogolyubov method

We derive kinetic equation using a generalization of the
Bogolyubov method (for the case of quantum statistics). At
the first step we formulate Liouville’s theorem in terms of
the kernels of density matrix. One can derive the equations
for kernels of different orders (1-particle, 2-particle and
other) by integrating over the parameters of different num-
bers of particles. We use this method to obtain the system
of kinetic equations. If the full ensemble contains N

1ol / Il / /
psl"‘YN(rl"'U—N+nl"'”N+ kl . kN

S| SNO Oy, Ryly
k.. ky

Y)Y 2 2y
Yy...YN.Z, ... 2y,

PHYSICAL REVIEW D 85, 103002 (2012)

particles, the system of equations contains N equations.
In the case of the rarefied gas one can use only a few first
equations from the Bogolyubov hierarchy. The criterion
of rarefaction can be formulated through the ‘““gaseous
parameter,” which depends on the concentration of the
particles and the cross sections of their interaction:

Aoy = \/0'_T(nenph)1/6 <1, (38)
where o is the Thomson cross section, n, and ny, are the
electron and the photon concentrations, correspondingly.
According to the principle of weakening of correlations,
which is satisfied for sufficiently rarefied gases, the corre-
lations are accounted for only in the equation for the
I-particle matrix via kernel by entering the right-hand
side (rhs) of the aforementioned equation. This kernel is
assumed to characterize the electron and photon states after
the interaction. It can be represented via the same kernel
before the interaction and the correlation function. To
derive the kinetic equation for the typical conditions in
the neutron star atmospheres, it is enough to use only the
first and the second equation from the Bogolyubov
hierarchy.

2. Formulation of Liouville’s theorem and the equations
of Bogolyubov hierarchy
We use the following notations: R=R,,(Z), R'=R,(Z'),
etc. There are N photons and N electrons in the system.
The equation, describing the change of (N + N )-particle
kernel during macroscopically small time 7|, is written as

Ty
2

Sll“'sﬁvo'll"‘a'ﬁ\u"/l“'";u kll - k;\/ Y{ - YI/V Z/l - Z;V T, Ty (0% dYdZ dY'd7Z' dk dk’'
= agq...0, ses * * - A 1 — Y 1 17
Psi-snon NPT kl"'kN Yl "'YN+Zl "'ZN+ 2 2 R R/ k kl
/ ! ! !
+ _ ols! n Y Z k
X 8(n, Y, Z, kI, Y, Z, KL, (¥, Z)b, o (¥, 2y (K)a, () ME (n L | ]
N Ni
<3 3| oyow Koy oy oy ~ )8z - 2;)
i=li,=1t " R
s’]...s‘..s;va’l...a...ajh n’]...n...nﬁ\hr (k/l ok k;\l Y{ R Yll\] le A Z?\’ TO)
X PS1 S SNO O Oy, Ryl Ty * - - A
* * * * k].--kl'...kN Y]---Yi+...YN+Zl---Zi+--.ZN+ 2
— 83,80k — k)l 89, 8(Y — Y, )8(Z ~ 7))
s’]...s:....sjvo’l...ah...o'}h ”/1"'”;+"'";\/+ kll .. k{ - kj\/ Y{ - Yll+ - Y]/V+ le - ZL - Z§V+ _ & (39)
Psresdspord o mentonn, \jy K dy | Yy Y Yy, 2y 2 Zy 2 )]

This equation is a formulation of Liouville’s theorem in terms of the density matrix kernels. It can be used to find the
equation describing the evolution of 1-particle photon kernels on the time interval [—T7,/2, T,/2], which is the first

equation of the Bogolyubov hierarchy.

We integrate Eq. (39) over the parameters of (N — 1) photons and N electrons:
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(k!
s 1
pSI(kl

T s (k! T 1 YdZ dY'dZ' dk dk’
_0)_ ( 1| 0) [d dzdvdz dkdk sy 7 kin, v 2, Kbl (Y,2))

k| 2 (N—l)'N+'27r R R kK

2
s Y'Z dk; dk! dY; dz;, dY/ dZ/
< b8, 20 Wy vz () | ) / (k k,) < o )

Iy

. k
{an 87, 8(Y' — Y{+)8(Z’—ZL)[S?,B(k/—k’,)Pﬁ}(k |1,1,J,G)
it 1+ 1 1
; k|
+ Z 85 8(k' — k; )Pﬁ(k | iig,J, G)] — &y, 80, 8(Y-Y,)8(Z2-2;))

s k' N s k'
X [5;] S5(k — k)R] (k} | 11,7, G/> +3 85 8(k —k)R)! (ki | iy, J, G/):I}’ (40)
=2

where the kernels under the integral in the rhs of the equation correspond to time r = —T,/2 and where we used special
designations for kernels describing the system of N photons and N electrons:
P k. |. e} PR S kiky...k...ky |\ Y\Yo...Y ... Yy, Z,Z,...2...Zy,

i\, |95 C) T Pssisvaita vty \ g ek e VY Y Yy, 20202 2y )
Rsa(kc .y G) e kky...ki...ky |Y\Y>...Y; .Yy, Z,Z,...Z;...Zy,

Nkg 177 5SSO O kiky... k... ky | V\Yy. .Y .Yy, Z,2Z,...2...2Zy, )

where J = (s, k) and G = (o, n, Y, Z) are parameters of photons and electrons, respectively. Let us denote the terms under
the sum Y’ , by E. One can transform it:

1 e /deZ dY'd7Z' dk dk’
= l_
(N—=1IN,! 27 R Rk K

(n' Y Z! dk; dk; dy; dz,, dvi dZi N[,
X MZS FY L Y — Y S(Z — 7
. (l’l | ) [ <k k/)l _]( R; R: ){ i, Oiy ( 1+) ( l+)

Iy

I

6(n,Y,Z kln', Y, Z, ’)bT, s Y20, (Y, Z)ay (k') a,(k)

iv=1

N
/ s k! .. k ..
X ééiié(k/ — k;)P;, (ki |1, i, J, G) — &, 85 8(Y =Y, )8(Z—2;) Z 85 8(k — k)Ry! <k1 lz, iv, J', G’)}

dY; dz; dy; dZ;,
( R; R )

Ly

1 , /dkd ' 7 f (dk dk’)
REn Ak 27deYdZdeZ - O Y. Zkln' Y, Z, )lz_] =

X ipv/l kll i I G — ipyll kll i J G
2. i\, i, J, 2. ik, i, J, .

Creation and annihilation operators with the elements of scattering matrix were placed under the integral in the last
transformation. Indices in the round brackets indicate the positions of pairs of parameters (s — s), (n — n'), (Y — Y"),
(Z—-27"), (o0 — o')and (k — k). One notices that all the terms in the sum E cancel out, giving Z = 0. The remaining part
of the equation can be rewritten as

iy=1

(k| T, Kl T « (dYdZ ay'dZ' dk dk' n'Y 7 |k
ST Z0) = o 0) —; el sn, Y, Z k Y’Z’kM”( | )
p"(kl 2) p“(kl 2) el R R xw o™ I ) nY 7 |k
k|YZ kK | YZ
s/ / I\ ~son _SS syon 1
<[ oy o ~ ko, (kl |Y’Z’) 03,50k — ki () lY,Z,)]. 1)

Thus, we have obtained the first equation of the Bogolyubov hierarchy describing the evolution of 1-particle density matrix

kernel through the 2-particle density matrix kernel.
Let us now obtain the second equation of the Bogolyubov hierarchy for the 2-particle kernels. We proceed with the

integration and the summation over the parameters of (N — 1) photons and (N, — 1) electrons in Eq. (39):
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s\ (k’l Y1z

E)_ s’o”n’(k/lYile _E)
s\ vz, | 2) P\ vz | 2

B 1 [dez dy'dz' dk dk'
N, —'2w) R R kK

oMY Z | K dk; dk! dY; dz; dY; dZ;, ol < vt o aror s 1)
X Mg, ( | )f (k v ) 2( e ){[5,1350,15%5(1/ Y82 — 28K — K))

& 5n, Y, Z,kln', Y, Z, Kb, (Y, Z)b,, (Y, Z)ay (K)a, (k)

Ly

Kk Kk
><P;§]<k |1 1LJ, G) + 5550 — k) Z 57 81 8(Y, —YN8(Z,, —Z’)P;;I(k |1, i G)
1 1

iy=2

N N N
/ ! / ¢ k1 = ! !
n' 9o ! ! ! ! K )\ pSt ; a n . ! . !
+ 887, 6(Y' = ¥])8(Z Zl)lz:zésﬁ(k kl)Psl<k1 |1, 1,J,G)+1’2_21_2_25%5,,@5(1/,+ Y)8(Z;, —Z')

X 838k —k )P;]<: | iigJ, G>] — 85885 8(k —k,)8(Y — Y,)8(Z — Z))R’} (';} | L1J, G’)
1

Ny k,
+ 8V ok —ky) Y 8y 85 8(Y—Y,)8(Z— z,.+)le<k, | LinJ, G’) + 88T S(Y —Y)8(Z—2Z)

=2

N
s Ky kl . s on o k L.
><Zasia(k—k,.)lres;(k1 |1,],J/yG/) Zza 5. 8% 8(Y —¥;)8(Z — 7, )5k - k)RS,<kl |l,l+,J/,G/>i|}.

=2 i=2i,=2
(42)

The terms with a double sum YV, Z?ﬁ:z cancel each other. Other terms are transformed into the form containing 2- and
3-particle kernels. As a result, we obtain the equation for the 2-particle density matrix kernel:

S/l g'l] nl] (k/l Y{ Z/l E) _ psl O./n/ (kll Yile o E)
2 NN\ Ey | Y, Z, 2

Spon
lllkl YlZl

=i fdl;ﬂ % ik “Zf/ 8(n, ¥, Z kln', ¥', Z', k' )M (’; 1;’22’ |’;€/)[5;i] 5187, 8(Y' = YDS(Z — 7))
SRR AV ol I B R VS LR AT B ol W)
oo a0 = viat ~ 2 (6 | 15 ) - anomaor = ooz - znl (6 12
SR AT bl VA EETER S ot ol AT )

Thus, we have derived the equations for kernels of  equation describing the evolution of the 1-particle kernel
I-particle density matrix of photons (41) and for the  through the 1-particle kernels, one must use these two
2-particle density matrix (43), which includes both the  equations. We use the “molecular chaos” approximation,
photon and the electron parameters. according to which there is no correlation between the
distribution functions of photons and electrons before in-
teraction. This approximation works better in the case,
when the typical time between the interactions is much
larger than the typical time of an interaction. The indepen-
dence of the photons and electrons distributions can be
Equations (41) and (43) are the first two equations of the =~ expressed through the following equation:

Bogolyubov hierarchy. The hierarchy can be continued,
but using the principle of weakening of correlations, we tr’n’v’( (Y/Z') s’(kl)

g the princip g ’ s Y
have stopped at the first two equations. To obtain an Yz k

B. Completion of the derivation

1. Expression for the 2-particle kernels through
the 1-particle kernels

kK |Y'Z
k | YZ) B

103002-8



RELATIVISTIC KINETIC EQUATION FOR COMPTON ... PHYSICAL REVIEW D 85, 103002 (2012)

The 2-particle kernels of the photon gas and the 2-particle kernels of the electron gas are presented through 1-particle
kernels according to the properties of symmetry and antisymmetry of bosonic and fermionic wave functions:

ssy(Hk2) _ (K sfk2), sk sk 45)
Psys; k1k2 Ps, kl Ps; k2 Ps) k1 Ps, k2 4

! 71 vI 7/ IRy 4) ! 7/ ! 71 17l
prmens(MAYZY) o (VIZ0) o (V222 o (Y222 i (M1Z1) (46)
TN\ YZ, Y12, T\r1z, I\ 12z, "\Y,z, T\ Y,Z,

These equations become more accurate, when photons and electrons gases are sufficiently rarefied. Transformations of the
3-particle kernels in Egs. (41) and (43) are simple because there are no pure photon or pure electron kernels among them
and one can rewrite them easily through the 1- and 2-particle kernels. Then we use Egs. (44) and (45) to complete the
transformation.

2. Closure of the Bogolyubov hierarchy
Substituting Eq. (43) to Eq. (41), we get:

i 136 %)
P, | 2) P\, | 2
a dydZ dy'dZ' dk dk' o (n'Y'Z |k , k| YZ
— i arae a2 O S, v, Z,kln', Y', 7!, k)M K85 (K — k!)pson
lzwnzn,[ R R k& & ) (nYZ Ik)[ sk w"(kl |Y’Z’)
s shon kll YZ a? dyYdZ dY'dz' dy"dz" dy"dz" dk dk' dk" dk'"
— ko3, (k — kl)ps'o"n’(k/ Y’Z’)] o 2 Wf R R’ R AT

nmn,n",n

nYZ k a's n//yllz/l k//

k// Yllz/l yonn
kl | Y/Z/> _ klkl/R/léf nlol' (kl _ k//)

X 5(,,[ Y. Z kln/ YI Z/ k/)a(n// Y// Z// k//ln/ll Y/// ZII/ k///)MU"S’(nIYIZl Ikl)Mg-’”S”’(nl”Y///Z/H |k/”)
y Ly £ ’ ’ ’ > » ’ ’ » > oS 1 g1

I a1

x{a e — k) KRR S5 k3o — pi el

s n'o’
kk// Yl/zl/
klk/// | Y/z/)

k | Yzy'z'
kl// Y/z/ Yll/zll/

k YZ =i coll 1
X 5(P/YZ - sz)pifﬁﬁ’”n’”(k/// | Y///Z///) + k/RW‘SzUU (p;ﬁ’z - PYZ)P??JJ,,/(

1701 o5 I /" 1ol
+ k'k 6§ (k -k )ps 7 //r(

sjono’n stono'n

k/l I YZY”Z”

kl Y/Z/Y///Z///) - klk”BEY(kl - k”)pxgmlfinliu m<

_ kIRII(Sn”(r”( /] ) ss" g n" kK" ymzm + 8 (k —k ) _kk///R///5s’”n”/(r”’(k/// _ k')
O Pyz Pyz pxlsman klk,,/ YZ S 1 s’ln(r 1

=i kll Y//Z// " " I ! kl YZ
X 5(PYZ - P%)Pi/g/n'f (k’ | Y'Z') + kk”RN&;’ (k/ - k”)SZ’rZ (pQ/Z o pgz)pj’l”?”n’”(k/}/ I Y///Z///)
m s s o' n" kK" | Y'Z" " shs! o n" k'k" | Y"Z"
o kR”/(SzU'g (pYZ o plfyz)ps’lx”'(r’n’ (k/]klll | Y/zl) + kR”(SZ,g, (pg’z o pl)ﬁz)ps’ls’”(rn (klk/// | YZ )
n Y k// YZY//Z// " s ono''n" k/l YZY//Z//
- kk”/5§/1 (kll - k”/)Pign” (k' Y/Z/Y///Z///) + kk"@i, (k/ o k”)ps’l”a-’n’o’”n”/(k/// Y/Z/YmZ///):I}’ (47)

where we introduced a symbol for the product of several Kronecker’s deltas: 88 :;;;Sx =TIY, 65;, a symbol for the product

of Kronecker’s deltas and a §-function: 35;;;:{3 (a) = Bﬁi;ﬁx 8(a), and py, = (0,7, Z) is the electron momentum.

Using Eqs. (44)—(46), one can transform 2- and 3-particle kernels in the rhs of the equation to the 1-particle
kernels. Then using Eq. (25), the equation can be represented in terms of the coherency matrix. After some algebra
we get:
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! k’1 T, ! k'1 T, dydz dy'dZ' dk dk'
PG [ -G |5 =3 59 [ S V. 2 ¥, 2, ) A,
a? dydz dy'dz' dy"dz" dy"'dz"" dk dk’ dk' dk'"
T f R R R R kKK K
171 /
X 5(n, Y, Z k|n/, Y/, Z’ ')M o’ ’(” I;ZZ |I;;)5(n//’ Y”, Z”, k”|n”’, Y'”, Z’”, k”/)
o (0"YZ |
MU'” SH ( n//Y//Z// | k/l){Bl + 32 + £3 + B4 + B5 + 36}’ (48)
where
o"s’ n'Y'z | K R n' / o ! / ! S1 s s Sipi
A= M7 ( WYz k) on (pyz — pYZ)pU/n/(pYZ)[k S(k" — ky)o(k — kl)(kl(ss/l ps](kl) - k5s,Ps/ (k)] (49)
By = K8~ K")8% (pyz — P8 (B = PRV RR" S pF, (Piy)
— RR"8%/ p%,, (py2)) (kS (K}, — k)83, (k — ky)p} (k") — ky 8(k; — k)3§5] (k' — k)ps, (ky)), (50)

B, = R/5zl(pYZ - p/yz)po-n (pyz)R”/anm(PW P/);Z ngl,,m(PW [55 (k' — ka)(klk”k/“‘sglll(kl —k")6(k — k/”)Piw(kW)
— KK (k — KBk — kl)p§1 (k) + 85, (k — k )(kk'k"as’” (K — K")3(K' — k") (k')

— KKK 8% (k' — k)3, — k") pll, (k)] o

33 — 65 (k —k )kk/R/R///S(kI _ k//)s(kll _ k///)a:i’(p;/z _ pl,ﬁz)éﬁm(pyz p;;/z)p (k/)pglnl(pyz)[klll5gll/p\W(klll)
K8 (57" = pn,(PY)) (52)

By = —k KK"R'R"S} (k' — k)8(k — k")8(k, — k"), (pyz = P78 (Pyz = PP, (k)P (PYz)

1

X [5 p ,,,(k”l) + 851//(50/” - p 1 !//(pYZ))] (53)

/I/

Bs = KK"8(k — k")5(ky — k)83 (k' = k{)8}" (pyz = PY)8% Py — PPk )IRR "k, 8 p3 (k1) (py2)
+ K'R" 83, p (YRS = R'p%,(Py2))]) Y

Bs = —kk" 8k} — k")S(k' — k)83 (k — k)&% (pyz — PY)S" (Phz — PYp, ,,,(k’”)[RR”k’a",p (KpG, (pyz)
+ k”R’”ﬁs P m(p”/ )(R”B“ _ R/P(,/n/(szz))]‘ (55)

3. Simplification of Equation (48)

The presence of the 5-functions under the integrals in Eq. (48) allows us to reduce a number of integrations. Let us define
two singular measures w; and u,:

dYdz dY'd7Z' dk dk'
du) = — ————60nY,Z kln, Y Z k), (56)

dydz dY'dz' dy'"dz" dy"dz" dk dk' dk' dk"’
R R R R 77 k! k///

sz = 6(”1 Y Z kln Y/ Z/ /)5(’,1//’ Y”, Z//, k//ln/ll, Y/N, ZIN, k///).
(57)

The terms from the rhs of Eq. (48) can be written as:
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dyd o k, s}
S [amn =5 [ m L o W A VSR (5%)

dYdz dY'dZ' dk nan( nYZ |k A (n'Y'Z | K
[ 4t = 3 [ ow =g (0 [ (7 )

"Y'Z' | k nYZ |k,
X i )[87" p21 (Z) — 87 p (2185 plt (k) — 83 o3, (k1)) (59)
dYdZ dY'dZ' dk “ nYZ |k, wn(NWY'Z | k
[d“ﬂ;z - Z[ “r kPR, @e ’(Z/)I: ( YZ | k)MU” ’ ( 'Y'z/ Ikl)

,,,,, n,n’'

1 f / nYZ k i /Y/Z/ k ui 1 1 S
<30 = o7 pil e + g (0| gt (Lo |5 ) o0 = 57wk o0
1

dydz dY'dZ’ dk e "Y'7''| k wanf NYZ |k
fdMZBS Z[ 6(71 Y Z k Ii’l Y/ Z/ k)M(ﬂl( YZ |k1)Mg//S// ( ,Y/Z, | kl)

X p3l (0)py (2085 plhtler) + 8 (85" = p, (2))] (61)

dydz dY’dZ’ dk s (WY'Z VK o/ NYZ | kY
> [szB4 = —Zf — 000 Y, Z kln', Y, 7!, k)Mo ‘( vz | k)M",, S,( yig Ikl)pil (k1)

n,..,n n,n’'

1 ui I

X Pg/nr(Z')[&'; pfm(k) + 5§ (63 - pgwn(z))]’ (62)

dydz dY’dZ’ dk o5 (WY'Z k)N, wnf nYZ | k
> [d,uz.’BS = Z[ 3(n Y, Zkln', Y, Z, k)M, '< V7 | kl>M”HY” ( iz |k1)p§m(k)

///

X [60/ psl (kl)ptrn

dYdz dY'd7Z' dk nYZ |k wn(0'Y'Z kN ¢
Z fd,LLzB6 = _Zf T 5(”1 Y Z kln Y/ Z/ k )MO'S]( /Y/Z/ |k )MU”SH < WY 7 | k)ps’l”(kl)

(2) + 83,20, (287 = p2, (Z))], (63)

n, n'

X [82 py 0)p2, (Z)) + 85 pu, (28 = p2.,(2)] (64)

We use the rhs of Egs. (58)—(64) in the rhs of the final kinetic equation. One can notice that the rhs of expression (59)
vanishes after summation over the electron spin states and the photon polarizations.

4. Transformation of the left-hand size of Eq. (48)

It is necessary to rewrite the lhs of Eq. (48) in terms of the distribution function. Then one can rewrite lhs through the
differential operator. The later transformation is similar to the one, which is made in the quantum field theory for transition
from the limited space-box to the infinite space. Finally, we get:

k!
i 1
psl (kl

where in the later transition the relation 8(k; — k}) = ¢T,/(2) is used. Then one can restore the dependence of the
photon matrix on time and space coordinates. After rewriting the derivative over the line of sight as the full derivative, the
lhs of the equation takes the covariant form

T, s (k' T d k| 27 dr g
g)—ps:(k;|—7°)=r psl(kllz)ﬂok]a(k' k) S Pk = kot — k)27 T plk), (69

27 d k; 0 5!
kB = k)= ) = 2mb(k, - k’)(— 2tk )ps,(kl, rt) = 28k — KDk Yol (kyr. 1) (66)
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IV. DIFFERENT FORMS OF THE KINETIC EQUATION

A. Kinetic equation for coherency matrix

1. The general form of the kinetic equation

PHYSICAL REVIEW D 85, 103002 (2012)

Now one can write the final form of the kinetic equation. In the most general case, we formulate it for the coherency
matrix, where the polarization of electrons is taken into account (i.e. for the situation when there can be nontrivial spin-

distribution of the electron gas). The equation for the case of polarized electrons is:

kYol r, ) =1 + 1+ I, (67)
where
. 1 dydz o's (nYZ | k| o (MYZ | Ky
I, = 7 (2| pS (k)M - ‘k MY ) 68
1 ta(zﬂ_)zg_f R P )[P (K1) (nYZ |k1) (k1) ,( vz |k1>] (68)
dydzZ dY’dZ’ dk
Ly & 8k = k)6 (keost — ky cos1)p, (2)p (2)
(277.) e o'n g'n
o's (nYZ | k, w(WY'Z | k os\ (NYZ | ky\, oo (W'Y'Z | kY
X ZMO'SI MU//S S/// k _MO'S] // § { k
[ ( YZ I k) o, (n’Y’Z’ |k1)pf @) (nYZ | k) ( 'Yz’ Ikl)p"( Y
wn(0'Y'Z |k, (nYZ | kN ¢
- MU// Yr Mg; /]r/ k 5 69
( Yz I k) 1(nYZ |k1>”s ( ‘)] (69)
dydz dY’dZ’ dk
I; = (277_)3 Z[ —8(R +k—R —k)8(Z+ kcosd — Z' — k; cosf))
I 1 1 M1 nYZ k i n Y/Z/ k Y/
X 50 (r/ Z - 60/ s Z/ Mgss MU// S// x/lu k
[tz 0@ s o me (1 | s (L | )eiiten
os (MY'Z |k, y nYZ |k\ .
+ M /I// Ma-///‘ v s k k
(YZI e (’Y'z'k)p'()]p()
nYZ o's ’ n Y/Z/ k I I 7
oy (] ,Y,Z,| Wiy | )i 007 DU = 95 (0] = 95, (DB~ 07,2
1ol YZ ols /Y/Z/ k g—”’s’ /YIZ/ k] I nYZzZ k "
Mo-s M // /I M1 k + ! MO-ISI‘ § k . 70
[ 0'51< Iy/ZI | 1) ( |k>p ( 1) o's (HYZ Ik) as' (nly/zl Ikl)p 1( 1)]} ( )
|
There are three terms in the rhs of Egs. (67). The first and -
the second terms describes redistribution only over polar- ; dzf,(Z) = N, (72)

ization. The last one describes the general redistribution of
the photons over quantum states (energies, momentum
directions and polarization).

2. Equation for the case of nonpolarized electrons

The kinetic equation in the case nonpolarized electrons
one can deduced from Eq. (67) by averaging over the spin
states of the electrons. There is a relation between the
distribution function of the electrons f,(Z) and the diago-
nal elements of the electron coherency matrix:

f4(2) = p1,(2) + p3,(2),

where pl (Z) = p3,(Z). The distribution function is nor-
malized to the total number of the electrons:

(71)

Then equation for the case of nonpolarized electrons is:
Kol k) =T+ +1, (1)

where

e 3 [ o ()

~ eomes (Y kl)]
ps/ (kl)MO'SI( |k1 s

Y7 (74)
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deZ dY’dZ’ dk
J,= —5 k—k

fn(Z)fn (2
2

X 8(kcosf — k;cosb,)

YZ |k, n'Y'Z' | k
2Mo‘sl(n )MUHSW( ) s (k
[ vz | k W'z |k, )P ®

M (nYZ |k1)MU,,S ( n'Y'z! | k) (k )
ags YZ k (T”S” /Y/Z/

s,

1 i n'Y'7Z' kl (nYZ | k 5/
Mo (n’Y’Z’ I k )M‘%l <nYZ |k1)ps’l”(k1)]’ (75)

dydz dY’dZ’ dk
Jy= (27)32[ —5(R+k R — k)

X 8(Z + keosd — 7' — k, cosﬂl)l{[fn(Z) )]

Mo Sl 1

X[T3 pgnlky) + Tnvmps. (k)]p (k)+2T p / (k)
_[a(2) ) fa(2)
r 1]

X [TY// y ///(k ) + T //pgI (k )]} (76)

<fu21-

where we use a notation for the product of pairs of the
scattering matrix elements:

Tt = Mm( n'Y'z' |k1>Ma’k( nYZ | k) a7
ym nYZ k) 7"\n'Y'Z k)

After averaging over the spin states of the electrons, the
last term in the rhs of the kinetic equation simplifies. The
o-functions under the integrals in the rhs of Egs. (67) and
(73) can be use to reduce the number of integrations and to
simplify the sum.

3. Equation for the case of nonpolarized rarefied
electron gas

Another form of the kinetic equations can be obtained in
the case of rarefied electron gas. Neglecting in Eq. (73) the
terms containing squares of the electron distribution func-
tion, we get

/_C1YP;I}(k1,"1, =K +K,+K;, (78)
where
L dydz f,(2) nYZ |k
K, = k Ma's
' ’(277)22[ R 2 [ (&) (YZ k1>
nYZ kl
paeomz (1 | kl)], (79)
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K2 = 0, (80)

dydzZ dY’dZ’ dk
Ky= (27T)3Zf —8(R-I—k R —ky)

nn

X &8(Z+ kcosd —Z' —

1 I st s
X —{fn(Z)P“/ (K)[2T)
+ Tsllls’//ps:// (k)= fu (Z’)[p e (T3 + T8 ply (k)

v

2B (kl)(T ///+T// ///p (k))]} (81)

kycosf;)

+T‘/I/”\/ S///(k )

We notice that the first term of Eq. (73) has not changed,
while the second term has now disappeared.

4. Kinetic equation in terms of two polarization modes

In the case of nonpolarized rarefied electron gas,
Eq. (78) can be simplified further if one assumes the
absence of correlations between the two linear polarization
modes: p3(k) = pl(k) = 0. Then one can use only one
polarization index for the diagonal elements of the coher-
ency matrix: p;(k) = p'(k). The kinetic equation then gets
the form:

kiNVpg (ky,r,t) =Ly + L, + L3, (82)

where L; = 0 and L, = 0, and

dydz dY’dZ’ dk
L3=(27T)3Z[ —6(R+k R — k)

X 8(Z + kcosh) — Z' — k, cosb;)
X T {fu(@)p,(O[1 + py, (k)]
= fw(Z)ps, (k)1 + p(K)]}. (83)

This form of the equation is obvious and can be written
immediately using physical arguments [22]. In this case the
two modes are considered independently and a possibility
of correlation between their phases is not taken into
account.

B. Kinetic equation in terms of Stokes parameters

Equations (67) and (73) can be rewritten in terms of
Stokes parameters. Transformation to this form can be
done using trivial linear transformation. Elements of the
coherency matrix {p;(k)} and the Stokes vector N =
(n1, ng, ny, ny)" are connected by relations:
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m=(pl+p3)/2  ng=(pi—p3)/2.  ny=(pi+tp)/2  ny=ilpi—p)/2 (84)

p{ :n1+nQ’ p%:nl_nQ! p%:nU_inV: p;:nUdl—inV' (85)

1. General equation for the case of polarized electrons
Using Eq. (67), one can find the kinetic equation in the case of polarized electrons in terms of Stokes parameters:

where

dydz A

dydz d 'd " dk
= 5 (2 )32[ Ydz dy'dz —5(1( ky)8(k cosd — ky cosby)f% (Z)f%, (Z)F'N + F'Ny] (88)

dydZ dY’dZ’ dk
1§ = 2(2 )32[ — SR+ k= R~ k1)8(Z + kcost) — Z' — ky cos))

I

xA[85" 5, (2) — 87, fZ:f (ZNIRN; +2f7 (287

I

— £, (Z)IR'N = 2f2, (Z)[87 — £2 (D)IR"N,}, (89)

g'n

where N = N(k) and N; = N(k,) are the Stokes vectors, ?’ , j—” i j—” " QA{ R and R” are 4 X 4 complex matrices acting
like linear operators from the real 4-dimensional space to the real 4-dimensional space. The expressions for these matrices
can be found in Appendix B.

2. Equation for the case of nonpolarized electrons

The equation for the case of nonpolarized electrons can be derived from Eq. (73):

]_Clle =J{)+J§+JP, (90)
where
dYdZ f (z)
P _ n 1
d l(zw)zzf F Ob
1 a? dez ay'dz' dk fn(Z) S (Z)
=3 ar2 - 8(k = k) cosd — ky cos) [FN+F'NL - 92)

nn

dydz dY'dZ' dk N
Ji = 5 (2 7 Z[ —6(R +k—R —k)O(Z+ kcosb® — Z' — k, cosﬁl){[fn(Z) — f(Z)]RN,

(ZN)7 ~ Z
- f,,(z)[l —f"; ]’R’N —fn/(Z’)I: Il ):I’R”Nl} (93)
where j—", j—"/, j—"”, ’R, ’f{/, and R" are 4 X 4 complex matrices that can be found in Appendix C.

3. Equation for the case of nonpolarized rarefied electron gas

We derive the equation for the case of rarefied electron gas by neglecting terms containing squared electron distribution
functions in Eq. (90). The equation takes the following form:

k,VN, =K‘f+K§+K§’, 94)
where
p_ . @ dydz f,(2) ,
KP =i (277)22 / T FN,, (95)
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0, (96)

1 o dydz dy'dz' dk
K =3 o Z[ SR+ k — R — k))8(Z + kcosd — Z' — k, cosf;)

X[(f2(2) = fu(@ZNR = fu(Z)R")N, + f,(Z2)R'N], (97)

where _’?—" s ffl R’ and R" are the same 4 X 4 complex
matrices as in Eqs. (90)—(93) and presented in Appendix C.

V. SUMMARY

We have deduced a kinetic equation for Compton
scattering of polarized radiation in magnetic field.
Polarizations of photons and spin states of electrons, the
induced scattering and the Pauli exclusion principle were
taken into account. The equations are written for both the
coherency matrix and the Stokes parameters. Additional
forms of the equations valid for the two-polarization mode
description of radiation are also derived. The equations for
both polarized and nonpolarized electrons were obtained.
There are no significant (for the conditions in neutron stars
atmospheres) limitations on the energies and the concen-
trations of the electrons and the photons. The assumptions
made are usual for the kinetic theory and related to the
typical time scales of the problem and do not limit signifi-
cantly the applicability range.

The equations describe the interaction of radiation and
electrons in strong magnetic field up to about 10'® G.
There is no low limit on the B-field strength. At the same
time, the derived equations become rather cumbersome in
the case of weak magnetic field, because the electrons can
occupy high Landau levels and there will be many terms in
the rhs of the equation, where the summation over the
Landau levels is carried out. On the other hand, in the
case of strong magnetic field in neutron star atmospheres
electrons typically occupy only ground Landau level (or
only a few low levels), because of a rather low electron
temperature and absence of high-energy photons.
Therefore, the sums over n and n’ have only a few terms,
which simplifies the equations significantly.

The most general form of the kinetic Eq. (67) has three
terms. The second and the third terms there contain the
products of two elements of the scattering matrix. These
terms can be rewritten through the interaction of cross
sections. On the contrary, the first term in the rhs of
Eq. (67) contains single elements of the scattering matrix.
This term describes changes of the photon polarization
with no corresponding changes in energy and the momen-
tum direction. The polarization change term has the fol-
lowing form: the changes of the diagonal elements of the
coherency matrix depend only on the nondiagonal ele-
ments and changes of the nondiagonal elements depend
only on the diagonal ones. This term describes the rotation
of the polarization plane when radiation can be well de-

scribed only by the Stokes parameters, and it disappears,
if the kinetic equation is reformulated in terms of two-
polarization modes. It is possible that this term provides
correction to the depolarization in the region of vacuum
resonance, which most likely will not be large because of a
small optical depth of this region.

The second term in the rhs of Eq. (67) describes redis-
tribution of photons with only changes in polarization. It
contains the products of the electron distribution functions
and disappears in the Eq. (78) for rarefied electron gas. The
last term in the rhs of Eq. (67) describes the general
redistribution of photons over energy, directions and polar-
izations. This term can be simplified significantly for the
cases of nonpolarized electrons (73), rarefied electron gas
(78) and for the two-polarization mode description of
radiation (82). In the latter case this term is the only term
in the rhs of the kinetic equation and coincides with
previously known expressions. The derived equations
form the basis for the construction of models of the radia-
tive transfer in strongly magnetized neutron stars atmos-
pheres and magnetospheres.
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APPENDIX A: TRANSFORMATION FROM
DENSITY MATRIX KERNEL TO DISTRIBUTION
FUNCTION FOR THE ELECTRON IN
MAGNETIC FIELD

The transformation from the kernel of density matrix
to the distribution function for the case of charged particles
in magnetic field is slightly more complicated than in the
field-free case. We use the Landau gauge, with the electron
momentum is described by two continuous components
Y and Z (corresponding to the y- and z-coordinates)
and one discrete component, which corresponds to the
x-coordinate. A transformation from the coordinate repre-
sentation to the momentum representation cannot be done
using Fourier transforms. Instead one should use a trans-
formation based on the Ritus eigenfunctions which diago-
nalize the mass operator of electrons in presence of the
external magnetic field [32].
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The kernel of the electron density matrix in the coordinate representation can be obtained from the kernel in the
momentum representation:

/ dydz dy'dz' .., ” (Y7
perr) =3 f T e *Zz>d>n/(u’)d>n(u)pzn"( ) (A1)
n,n' ‘VRn(Z) VRn’(Z/) Yz

where u = x — Y/b, ' = x' — Y'/b and ®,(x) are the functions related to the parabolic cylinder functions:

! D, (1)

J2m/n!

These functions compose the complete system satisfying the relations

D, (x) =

f " 00, (Wdx = 57, Y ()P, () = 5’ — ),
T n=0

The inverse transformation from the kernel in coordinate representation to the kernel in momentum representation can
be written in the following way:

//YlZ/ RnIZ/ RnZ v/, ) /
gnn ( ) _N ( )V4 ( ) [d3rd3r/e—t(Y)z —Yy+Z7Z'z —Zz)@n/(ul)q)n(u)pg (r/’ r)_ (A2)
Yz 2m)
One can define the Wigner function for the electrons in magnetic field:
po(r Y, Z) = [dv),dvzei(Y”>'+Z“z) /dx’qD,,(u’)pZ'(x’, y—v,/2, 2= v, /2, xy+v,/2, 2+ v,/2), (A3)

and rewrite it using the density matrix in momentum representation

o 0.7,2) = apy [N WNAZ} -vse-zagly - Y M\ s(7 - D A gy e (V14
Pon\l’, I, R (Z) R (Z/) 72 3 n Pon Y.Z .
n' n'\£&1 n\&] 141

(A4)

The inverse transformation from Wigner function to the kernel in momentum representation is

pg () =3 ®,(u') [ dydze WO= W E2pg (1, Y, 2). (AS)
n

From (A2) and (AS5) one can obtain relation for kernel in momentum representation through the Wigner function:

17l / ! ,
U/”/(Y Z ) Rn (Z ) RH(Z) [d3 rd3 rle_i(Yly/_Yy+ZIZI_ZZ)q)n’(u/)q)n(u)zq)n”(ul)

“\vz) = @mr

X fdYudZ//e—i[(y—y’)Y”+(z—z’)Z”]pg’nH(r’ Y”, Z”)

R ! Z/ R Z ~ ! d /
_ VRAZWRZ) [ o, pitr-myeiz “24®,(wp (r, Y, Z). (A6)
(277.)2 on

To understand how to simplify Eq. (A6), let us consider a 1-dimensional problem, where the electron is described by its
x-coordinate. The expansion of the density matrix kernel in coordinate representation is given by the following expression

p(x, x) = Zfb,,/(x’)cbn(x)pn,n/. (A7)
The inverse transformation is
P = [ ¥ dxdy ()0, (0p, ). (A8)
Combining (A7) and (A8) one gets:
p(,x) =3 O, ()P, (x) [ dx" dx"" @, (") D, (") p (X", x") = D,y () p (), (A9)
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= fdx”’dx”@nz(x”’)é(x” —x)p(x" X" = fdx’@,,r(x’)p(x’, X).

(A10)

If one considers the density matrix on a sufficiently short time scales, then there are no mixed states in the Landau levels

and the coefficients p,, s in Eq. (A7) have only diagonal terms p,,

= Zq)n’ (x/)q)n (x)pn,n'

p(x', x)

Substituting this to Eq. (A10), we get

pn(x)

= (I)n (x)pn,n'

=& Pun- Therefore,

This proves that in a more general case p(‘l{/n,(r, Y, Z") = ®,(u)pZ,(Z'). This simplifies relation (A6):

p(r’n’(Y/Z/)
on \ yz

enr

VR, (Z)WR,(Z) / dPrel V= Z=2A, (u)D, (u)p? (Z)

= VR (ZWR(2)8(Y' — V)3(Z' — 2)82 p7.,(Z') = R(2)3(Y' — Y)8(Z' — 2)8! pulY, Z).

This completes the proof of Eq. (26).

APPENDIX B: EXPRESSIONS FOR MATRICES IN EQUATIONS (87)-(89)

The expressions for the matrix F= {F; j} in Eq. (87) can be written in the following form:

Fio=Fu = Fpuy =0,

=i{(r-)

(k,m=1,2,3,4),

F3p = —Fpy, F3y

where we defined

The elements of matrices jf =

Fiy
(, =2(yi1 T ¥ = v £ D)

F21
Fis
(5} =20ttt v = )
23
Fy
( )= (Yl + vl = vis = v3),
Fy i
Fi3
( P =2 D )on 9= = o,
Fis i
— ] K 2
F;/j_ _y;i_ s~ Y2 ™ st
Flh=Fy = —vi— &ty + 45
Fiy =Fj, = ilys — &8 — v + &5
Fjy=—Fh =iy = & + v = &),

where

Fyp =

(1)-

{F};} and F ={F '} can be represented as

Fiy
( / ) (711 - 72 712 + 72%)

F23=<;>_

—Fyy,

a"j(nYZ
K\nyz

k])
k)

),

2

Fa==i((3)+(]))

F22
Fiy
= 21(7’11 - 7’2} * 712 + 722
F,
11 - 72 ?’ 2)
<F42
F34 _
TR I A 2 )
Fl,
(j=1234),
Fly=Fj = —v3 - 31' kGl Sﬁ)
Fiy=—F)=—y3— {5 +vi+45
Fiy=—F=il-yi+ &7 + 73 -3
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) ) 1yl ) ol VIT7! k
][ EMU./J nYZ kl)Mg,///l(n YZ k) Jl EMOJH](n YZ kl)MU”l(nYZ | ) BS
Yin = Mok (nYZ k) om\ny'z | k) b = Bt \ryrz | ke )V o \nvz | k,) B5)
The matrix R is a sum of the products of the elements of vector IV (the Stokes parameters) and four matrices
j\{ = 'j(lnl + j{QI’lQ + '}A{Unu + j\zvnv. (B6)

The elements of the matrices ’}AKLQ’U,V are:

I ()
(o) —at=aneag=az  (30) = () )eatan=ageaz
R12 R14 !
Ry \ _ _ Ry3 \ 1 _ _
(R ) AT A AR T A )= () s g v 2
2 1 ! B7
Ry \ 21 1 22 12 Rs; \" 1 11 21 12 22 e
R ==xC1 + G, =G + Gy, R =\ . J&ECH + Ch =G + C3),
32 34 l
R41 ) R43 (0 1
(R ) — =D + Cll = DR + 12, R =| . |FDi - Ch ¥ Dy - C3H
42 44 !
Ry \@ _ Ri; \@ 1
(o) =ar=a-ag=az ()" = () et e an=ag -3
12 14 l
R, \(@ Ry \ @ 1
(o) =an=a-ageaz ()7 =) =an-menp
22 24 (B8)
R+ @ Rsy; \ @ 1
(R“) ==+ ClFCR - CR (R”) =| . JEcir Tl -5
32 34 1
R, \(@ Ry \@ 1
(o) ==otiectzog-cn (0] =(})eot-cu=ogec
42 44 l
R () R ) 1
(o) —aeaean=an (f)" = (] )eata =anai
12 14 i
R, \() Ry \V) 1
( P ) — Al T A2+ AT AR ( . ) =, )83 = By + BR ¥ BLY),
2 24 (B9)
R () R ) 1
( R31 ) ==l +Ch =B+l ( R33 ) = J=c+ e+ ),
32 34 i
Ry \@ Ry3 © 1y _
(o) ==opean=nprch (0] = (})eos-awop-cy
4 44 l
R \V Rz \V i
( R“ ) = i(—A) ¥ A3} + A}F £ A, ( RB ) =1, (—AY F A3 + A3 = A,
12 14
R \V Ry \V) i
(o) =m=meag=an () =(])Emiean=mm-ap
14 24
R, ) . — 1 11 22 12 R3; ) i 11 - 12 22 e
» =i(¥C5 — Cy * Ci1 + Cj3 R =1 (-cit =¥ + i3 =%
32 34
R, \W Ry \V) i
(o) —ienz-cg=oecn (30) = ())ousa-oz=cn
42 44

where we introduced the following combinations of the scattering matrices:
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A L AT e 1 LA T
AT AT R AT P AT B
g [ v (0 [ ()
Dl = M”,,,j(” 1;5 |];)Mzﬁi<n’,1§é, I:l) - M;’f,f‘-")(":;ZZ/ ';)M”I,’/(3 m)(n”;/é, |If ) (B14)

The elements of the matrices R’ are

R/ R/
(R))=aiverzar=a  (3°)=()etreB=a=ap
12 14
R/ _ R/ 1
(k)-et-a=ai=a  (R)=(i)et-a+ei-ad
.y s (B15)
(k)=arren=agi=as  (x)=(; )(+§% £+ 81+ £
32 34
R/ _ R/
(x)=gi-eh=azep ()= (})=a=a+a -
40 44
where we defined
1yl 7zl
Ty n'Y'Z |kl)M¢r’”1(”YZ | k) B16
i “k( nYZ | k) om\n'Y'Z ki) (B10)
The elements of the matrices R" are
Rlll1 ) (RII 1 R// RII
— ]s ls + ¢23 + QZs 13) _ (+¢ls + le + ¢25 + le 21 — 12
sl - 52 — K52 . —¥s2 — K2 sl s1/ ’
( R, RY, l RY, RY,
R, 1\ _ RY,
(h)-()morzesvon-an () -su=er=aisan B17)
24 32
1 1 1 " _pl
Ry, i ’ ’ ’ ’ Rl —RY, Ry, RY,
where we defined
Iy!—7zl 1yl 7zl
jl EMO./Hj nYZ |k1)M(r,[( I’ZYZ k) jl EMO.WJ(H YZ |k1>M(r”l< I’lYZ | k) B18
Plon <f”k( nYzZ | k) "\n'Y'Z |k{) Cm 7k\nyz k) "\n'Y'Z k) (B18)

APPENDIX C: EXPRESSIONS FOR MATRICES IN EQUATIONS (91)-(93)

Matrix j: = {F; j} in Eq. (91) has the same form as in the case of polarized electrons (B1), but where ¢’ = ¢ should be

substituted in the definitions of (i) Matrices j—"/ and j-"" also have the same forms as in the case of polarized electrons
given by Egs. (B3) and (B4), where ¢’ = o and ¢”’ = ¢ should be used in the expression for y;’ﬁn and ¢!

Matrix R can be represented by expression (B6). The elements of R ; can be represented through tensors Tj’fn defined by
relation (77):
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R\ R\ 1 R-\D R, \D R\
V) mmerergeng () =( Janenierg=rh () =(20) 0 (o)) =0
Ry> R4 l Ry, Ry Ry

R =R, R{=0 RY=RY, RY=i(-TR-TH), R =i(T}+T13), (€n
RG=i(T3+ 1), RE=0, R{ =T} +T1%.

The elements of ’RQ can be represented as

(R“>(Q)=T}1'tsz‘—Tz'%IT%, (RB)(Q):(l)(lelliTllzl—T%%TrTzl%), (Rﬂ)(Q):(Rlz)(Q)’ (RB)(Q):O’
Ry, Ry i Ry Ry, Ry

RO-RQ. KO0 RO-RE. RE =R RO -H-THL KO-TH-TRL
Q) _ Q) _ p)
Ry =0, Ry =Ry

The elements of R y are

R, \© R\© (1 Ry \V' (R \V
(o) =riersen=r, (g =rgem=m, -(5=)"

Ry» Ry Ry Ry
Ry \ V) .

(R ) =0 RY=RY. RY=0 RY=RY. RY=0 R =irH+T13) (C3)
24

RY =i KY =0 RY=TherE Ty 27

The elements of fRV are

R \V) R.-\V) 1 R, \V) R, \V)
(51) —riem-m=r () = (e (2) ()"
Ry, Ry4 i R Ry

Ryz \V) W) _ pV) W) W) _ pV) W) W)
( ) =0, Ry =Ry, Ry =0 Ry=R), Ry=0 Ry =-TH+T3], (C4)
RY =-T+1Y, RY =0 RY=ir}}+715-T1i-T13).
The expressions for the elements of R’ are

Rl

_ il 21 12 22

<R’ =T, +T,, £ 1,7 = Ty,
12

Rl
(e)-ri-m=mpsm  ()-mh-m=mn=r
22 24 (C5)

1
=()Uﬁ+ﬁﬁﬂ%rﬁ&
T

R}, 1
V)= e e .
R5, i

i+ 7= 13 =

R] i
(hr) =t - =13 =1, e,
4

and the elements of R” are as follows:

" 1 1 1 "
R, ’ ’ RY, i)’ ’ RS, Ry, Ry, (Co)

I — pll N — pll — pI — pll — I — pll I — pll I — pll
Ry = Ry, Ry = Ry = Rp = Ry3 =0, Ry = Ry, Ry = Ry Ry = Ry
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