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ABSTRACT

Aims. This paper introduces a kinetic code that simulates gamma-ray burst (GRB) afterglow emission from the external forward shock
and presents examples of some of its applications. One interesting research topic discussed in the paper is the high-energy radiation
produced by Compton scattering of the prompt GRB photons against the shock-accelerated electrons. The difference between the
forward shock emission in a wind-type and a constant-density medium is also studied, and the emission due to Maxwellian electron
injection is compared to the case with pure power-law electrons.

Methods. The code calculates the time-evolving photon and electron distributions in the emission region by solving the relativistic ki-
netic equations for each particle species. For the first time, the full relativistic equations for synchrotron emission/absorption, Compton
scattering, and pair production/annihilation were applied to model the forward shock emission. The synchrotron self-absorption ther-
malization mechanism, which shapes the low-energy end of the electron distribution, was also included in the electron equation.
Results. The simulation results indicate that inverse Compton scattering of the prompt GRB photons can produce a luminous >TeV
emission component, even when pair production in the emission region is taken into account. This very high-energy radiation may be
observable in low-redshift GRBs. The test simulations also show that the low-energy end of a pure power-law distribution of electrons
can thermalize owing to synchrotron self-absorption in a wind-type environment, but without an observable impact on the radiation
spectrum. Moreover, a flattening in the forward shock X-ray light curve may be expected when the electron injection function is
assumed to be purely Maxwellian instead of a power law. The flux during such a flattening is likely to be lower than the Swift/XRT
sensitivity in the case of a constant-density external medium, but a wind environment may result in a higher flux during the shallow

decay.

Key words. gamma-ray burst: general — radiation mechanisms: non-thermal — methods: numerical

1. Introduction

Gamma-ray burst (GRB) afterglows are produced by relativis-
tic electrons radiating mainly via the synchrotron and inverse
Compton mechanisms. According to the standard afterglow
model, the electrons are accelerated to highly relativistic en-
ergies at two shock fronts, the forward shock and the reverse
shock, which are the result of the interaction between the rel-
ativistic jet from the GRB central engine and the surrounding
medium (for reviews, see, e.g., Piran 2004; Mészaros 2000).

The earliest afterglow models invoke pure synchrotron radi-
ation from the forward shock in a constant-density interstellar
medium (ISM) or a wind-type environment and yield analytic
time-evolving synchrotron spectra of the decelerating blast wave
(Sari et al. 1998; Chevalier & Li 2000; Granot & Sari 2002).
The role of inverse Compton scattering of the synchrotron pho-
tons has also been investigated, typically relying on an approxi-
mate treatment of the scattering process because no analytic so-
lution for the inverse Compton spectrum is available (Panaitescu
& Meszaros 1998; Chiang & Dermer 1999; Panaitescu & Kumar
2000; Sari & Esin 2001).

Article published by EDP Sciences

The GRB observations by the Swift and Fermi satellites have
revealed some surprising features in the afterglow and prompt
light curves, resulting in a need to improve the models for
GRB emission. For example, the Fermi/LLAT telescope has ob-
served >100 MeV emission from several GRBs. In the litera-
ture, the high-energy radiation has been attributed to the prompt
emission (e.g., Abdo et al. 2009), to pure synchrotron radia-
tion from the external shock (Gao et al. 2009; Ghisellini et al.
2010; Kumar & Barniol Duran 2010), to a combination of ex-
ternal synchrotron photons and synchrotron self-Compton emis-
sion (Tam et al. 2013; Wang et al. 2013; Liu et al. 2013; Fan
et al. 2013), and to a superposition of the prompt and afterglow
emission (Maxham et al. 2011). Another possibility is that some
of the high-energy emission stems from prompt photons being
Compton scattered to higher energies by the afterglow-emitting
electrons (Beloborodov 2005b; He et al. 2012; Beloborodov
et al. 2013; Fan et al. 2013).

Owing to the Swift observations, it has been discovered that
a typical X-ray light curve begins with a phase of steeply de-
caying flux, which is often followed by a shallow decay seg-
ment. The late-time afterglow, on the other hand, can often be
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explained by the standard synchrotron model (Granot & Kumar
2006; Fan & Piran 2006). Energy injection to the blast wave
is currently the most popular explanation for the shallow decay
phase observed both in X-ray and optical afterglows (Granot &
Kumar 2006; Fan & Piran 2006; Nousek et al. 2006; Zhang et al.
2006; Panaitescu & Vestrand 2011; Li et al. 2012). Other mod-
els introduced to explain the shallow decay phase include the
evolution of microphysical parameters (Panaitescu et al. 2006;
Granot et al. 2006), emission due to an outflow ejected before
the prompt GRB (Yamazaki 2009; Birnbaum et al. 2012), an
off-axis viewing angle of the jet (Eichler & Granot 2006), dust
scattering of X-rays (Shao & Dai 2007), late prompt emission
(Ghisellini et al. 2007; Murase et al. 2011), and an adiabatic evo-
lution of the shock following a radiative phase (Dermer 2007). It
has also been suggested that the main contribution to the after-
glow could come from a long-lived reverse shock, which may
also explain the shallow decay phase in the X-ray afterglows
(Uhm & Beloborodov 2007; Genet et al. 2007).

Models aiming to explain all the different slopes seen in the
light curves have also been presented, including accretion of dif-
ferent layers of the progenitor star (Kumar et al. 2008) and the
curvature effect that is usually only invoked to explain the early
steep X-ray decay (Qin 2008).

The evolution of the GRB blast wave is described well by
the self-similar solution by Blandford & McKee (1976), which
is valid in the deceleration phase while the blast is still highly
relativistic. The evolution in the late non-relativistic phase is
given by the Sedov-Taylor solution (Sedov 1959; Taylor 1950).
A mechanical model of the relativistic blast ensuring mass,
energy, and momentum conservation has been presented by
Beloborodov & Uhm (2006), and it is nearly identical to the
Blandford-McKee solution at late times after the shock has
started to decelerate. However, the mechanical model gives an
accurate description of the blast also before the deceleration
time, while earlier models unphysically assume an equal pres-
sure at the forward and reverse shock. The evolution of the shell
in the mildly relativistic phase can be found by means of hydro-
dynamic simulations, which can then be coupled to a radiation
code to find the radiation spectrum from the shock. Such sim-
ulations can also be applied to calculate the afterglow emission
for an observer with an off-axis viewing angle (van Eerten et al.
2010a).

Results of one- and two-dimensional hydrodynamic simu-
lations of the blast wave have been presented by Kobayashi
et al. (1999), Meliani et al. (2007), Mimica et al. (2009), and
Ramirez-Ruiz & MacFadyen (2010) but without discussing the
radiation mechanism of the afterglow. A calculation of the syn-
chrotron radiation from the blast has been coupled to the hy-
drodynamic simulations of Downes et al. (2002), Zhang &
MacFadyen (2009), van Eerten et al. (2010b, 2011), and Wygoda
et al. (2011). However, none of these works calculate the after-
glow component due to Compton scattering, which is expected
to appear at high energies.

Simulations including an accurate treatment of both syn-
chrotron and Compton processes, as well as pair production,
have been presented by Petropoulou & Mastichiadis (2009)
(PMO09), who use the solution of Blandford & McKee (1976)
to evaluate the evolution of the emitting shell. The code devel-
oped by PMO09 is similar to the one presented in this paper, but
it does not account for the electron heating due to synchrotron
self-absorption.

For the first time, we present simulations of afterglow emis-
sion from the forward shock with a relativistic kinetic code that
treats synchrotron emission and absorption, Compton scattering,
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and electron-positron pair production/annihilation in a self-
consistent way. The kinetic equations determining the time evo-
lution of the electron and photon distributions are solved simul-
taneously at each timestep. We also consider electron heating
due to synchrotron self-absorption, which shapes the electron
distribution at low energies.

Our treatment accounts for the fact that electrons injected at
different times also have different cooling histories. For exam-
ple, the magnetic field that determines the synchrotron cooling
rate evolves while the electrons are cooling. It follows that there
are no sharp cooling breaks in the electron distribution (Uhm &
Zhang 2014).

The current version of the code applies a one-zone model of
the emission region. It does not account for the different loca-
tions of the particles behind the shock and assumes a constant
magnetic field throughout the shell. A more accurate treatment
of synchrotron emission would require a model of the magnetic
field structure behind the shock. Also, knowledge of the spatial
photon and electron distributions is required for an exact calcu-
lation of Compton scattering.

As an example of the applications of the code, we report
the results of a simulation where the afterglow-emitting elec-
trons interact with an external source of photons roughly corre-
sponding to prompt GRB emission. The shocked electrons are
expected to upscatter a small fraction of the prompt photons to
GeV-TeV energies as long as the prompt emission overlaps with
the shocked electrons (Beloborodov 2005b; Fan et al. 2005).
Some of the high-energy photons then produce pairs with the
prompt MeV photons, which in turn are able to scatter radiation
to higher energies.

In addition, we compare the forward shock emission in a
wind environment with the emission in a constant-density ISM.
The results indicate that a power-law electron distribution can
thermalize at low energies thanks to synchrotron self-absorption
heating in a wind medium with a typical density structure ex-
pected from the surroundings of a Wolf-Rayet star. Along with
the ambient density, the importance of thermalization is mainly
determined by the fraction of shock-generated energy given to
the magnetic field. Our simulations imply that the thermalized
electrons are unlikely to produce an observable signature in the
afterglow spectrum.

In our final example, we study the difference between the
forward shock radiation due to Maxwellian and power-law elec-
tron injection. The standard afterglow model assumes that the
injection function is a pure power law, even though a large frac-
tion of the shock-generated energy goes to a thermal population
of electrons. We find that pure Maxwellian injection can lead to
a flattening in the X-ray light curve. The flux during this phase
is found to be very low compared to Swift/XRT detections for a
constant-density ISM, but detectable flux levels during the shal-
low decay may be achieved in a wind-type environment.

2. Physical model of the afterglow
2.1. Hydrodynamic evolution

The relativistic shell ejected by the GRB central engine initially
propagates into the surrounding medium with a constant Lorentz
factor I'y. After sweeping an external mass My /Iy, where M is
the initial mass of the ejecta, the shell starts to decelerate ac-
cording to a self-similar solution found by Blandford & McKee
(1976). The self-similar solution is no longer valid if the reverse
shock is long-lived (Uhm et al. 2012) or if there is significant
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lateral spreading of the shell after the jet break time (Rhoads
1999). In the rest of the paper, except for Sects. 3.1 and 3.3, the
quantities measured in the fluid comoving frame are indicated
by primes and the unprimed quantities are given in the observer
frame. However, the electron Lorentz factor y and dimensionless
momentum

p=P-1, (1)

along with the electron number density per unit energy (N(y))
or momentum (N(p)) interval, are always expressed in the fluid
frame but left unprimed to simplify the notation. In the follow-
ing, we assume an adiabatic hydrodynamic evolution of the blast
wave, which means negligible radiation losses. This assumption
is valid even if the electrons cool rapidly as long as the main
fraction of the shock-generated energy is given to the protons,
which do not radiate efficiently.

The bulk Lorentz factor of the shocked fluid evolves with
radius r approximately as

T(r) = To(r/Rp)"™*, 2)

where the value of the index g depends on the structure of the
ambient medium. If the medium has a constant density,

_ 1 ifr<RB
9= {5/2 if r > Ry, 3)

where Rg = Rgec/2%? is the approximate radius at which the
Lorentz factor starts to decrease from its initial value I'y, and
Rgec is the so-called deceleration radius, i.e., the radius where
the shell has lost half of its initial kinetic energy and I' = T'y/2
(Rees & Meszaros 1992). According to this definition,

1/3
) , “4)

where E| is the isotropic equivalent energy of the blast wave af-
ter the prompt GRB emission, and ny the electron number den-
sity of the external medium.

In the case of a wind-type medium with a density profile
n(r) = Ayr~2, where A,, is a constant giving the number of par-
ticles per unit length,

o (3
dee = 47rn0mpc2F(Z)

_ 1 ifr < RB
g‘{3/2 if r > Rp, ®)
where Rp = Rye./4, and
Ey
Rgee = ———2 . 6
dee 4rAmpc?T) ©)

The shock radius and the Lorentz factor of the shocked ejecta
are related to the fluid comoving time #' according to

, dr
dr = T (7

and the observed time can be obtained from

(1 +z)dr
dr= SO
! 2c2(r)’

where z is the redshift of the GRB. Before the deceleration time,
i.e., r < Rgec,

®)

B 2CF(2)1 9
r_(1+z)' ©)

For r > Rgec, the radius evolves in time as

[3E0t/@rnomye( + 2] ™ (asm
r =

12 (10)
|Eot/(nAumye(1 +2)| 7 (wind)

and the bulk Lorentz factor evolves as

[3E0(1 + 27/ mngmyc)| " (1sM)
I'= s (1
[Eo(1 + 2)/(647Amycp)| (wind).
One of the main uncertainties of the afterglow model is the
strength of the magnetic field in the emission region. We adopt
the typical approach to the problem and assume that a fraction eg
of the shock-generated energy goes into the energy of the shock-
compressed interstellar magnetic field. The comoving magnetic
field B’ then evolves in the emission region with I" and n as

B’ = I {/32nmpepn,

determined from the shock jump conditions (Blandford &
McKee 1976).

12)

2.2. Distribution of the accelerated electrons

The forward and reverse shocks are thought to be capable of ac-
celerating electrons to relativistic energies according to a power-
law distribution (e.g., Achterberg et al. 2001) of the form

dn .
—=N@y)xy™

dy 13)

for Ymin < ¥ < ¥max, Where s is the power-law index, and y
the random Lorentz factor of an electron measured in the fluid
frame. However, simulations by Spitkovsky (2008) and Martins
et al. (2009) show that shock acceleration actually leads to a
hybrid distribution with low-energy Maxwellian electrons con-
nected to a high-energy power-law tail. An afterglow model
that assumes such a distribution is discussed by Giannios &
Spitkovsky (2009).

The number of electrons injected at a shock per unit time is
obtained by multiplying the number density of electrons in the
downstream frame, I'n, by the volume swept by the shock per
unit time, 477%Bc. Dividing this quantity by the volume of the
shell, 4772AR’, one finds that the number of injected electrons
per unit time and volume is

., _I'nfc
ny = AR’ ’
Assuming a pure power-law distribution, the minimum Lorentz

factor determined from the shock jump conditions (Sari et al.
1996) is

(14)

s=2m

s—1me

Ymin = € I, (15)
where €, is the fraction of the shock-generated energy given to
the electrons. This relation holds for ymin < Ymax-

The maximum Lorentz factor ym.x is determined either by
the radiation losses of the electrons, the age of the flow, or the
saturation limit discussed by Sironi et al. (2013), among others.
Typically it has been assumed that the value of yp,x and the cor-
responding synchrotron frequency are too high to affect the ob-
served afterglow properties. After the detection of high-energy
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(>100 MeV) emission from several GRBs, which may be part
of the synchrotron or inverse Compton component of the after-
glow, it has become more important to determine yp,x accurately
to study whether there are electrons at high enough energies to
produce >100 MeV synchrotron radiation.

2.3. Radiation processes
2.3.1. Synchrotron emission and self-absorption

The cooling of the shocked electrons is mainly determined by
synchrotron losses, with a significant contribution from adia-
batic cooling to the distribution of the low-energy electrons. It
is expected that the cooled electrons are distributed according to
N(y) o y~5~! above the injection energy ymi, (Kardashev 1962).
If the electrons are cooling to energies below the injection en-
ergy (the fast cooling case), N(y) « y~2 for y < Ymin as long as
the electrons do not thermalize due to self-absorption heating.
During the late stages of a typical afterglow, the magnetic
field is low, and only the most energetic electrons are cooling
(slow cooling). The uncooled electrons below a critical energy y.
are distributed as N(y) oc vy~ similarly to the injection function.
The different parts of the electron distribution correspond to the
power-law segments in the emergent radiation spectrum as de-
scribed by Granot & Sari (2002). The characteristic observed
synchrotron photon frequency of a relativistic electron is

I'y*eB’

(1+ z)2ﬂmec. (16)

w(y) =

The spectral slope of the electron distribution gradually changes
around the cooling energy Y., which is defined by Sari et al.
(1998) according to the relation

7cmecz = P'(yo)t, (17)
where
, 4 B')?
Pe) = 2orper? B2 (18)
3 8

is the synchrotron power of an electron with y > 1 in the comov-
ing frame. The relation is based on the definition that a cooling
electron loses an energy comparable to its own initial energy in
the lifetime of the flow. Correspondingly, the comoving cooling
time of an electron with a Lorentz factor vy is

, 6mec

o = —— 19
cool O'T(B')z’)/ ( )

In reality, a sharp break at the energy y. does not appear be-
cause the actual electron distribution consists of different elec-
tron populations with their own cooling histories. The radiation
power P’(y.) evolves in time as the magnetic field B’ decreases,
and an integration over P’(y.)d? is required to find the exact en-
ergy lost by each electron population. Both our code and the one
by Petropoulou & Mastichiadis (2009) calculate the shape of the
electron distribution according to the kinetic equation, and the
results show that the transition between the cooled and uncooled
segments in the distribution is very gradual. This effect is taken
into account by, say, Uhm & Zhang (2014), who also point out
that the different locations of the electron populations behind the
shock shape the outgoing radiation spectrum. In our current one-
zone treatment, the structure of the electron distribution and the
magnetic field behind the shock are not resolved. A multi-zone
approach is expected to contribute further to the curvature of the
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particle distributions, and the shape of the resulting spectrum
will be a result of the emissions from varying distances behind
the shock by electron populations with different cooling histo-
ries. Additional smoothing of the cooling break would also be
provided by emission from large angles, but the code assumes at
this stage that all the emission comes from the line of sight to
the observer.

In addition to being cooled by synchrotron emission, low-
energy electrons can be heated due to self-absorption of the syn-
chrotron photons (e.g., Ghisellini et al. 1988), leading to some
thermalization of the electron distribution. Full thermalization of
the low-energy electrons takes roughly one synchrotron cooling
time. The cooling time for a given electron energy depends on
the magnetic field as oc(B’)™? o« n~'T""? (see Eq. (12)). Because
the density in a wind-type medium at small radii is considerably
larger than in a typical constant-density ISM, the magnetic field
is also higher and correspondingly the cooling time is shorter.
This implies that electron thermalization due to self-absorption
is more likely to occur in a wind environment.

2.3.2. Inverse Compton scattering

Some of the synchrotron afterglow photons are Compton scat-
tered to higher energies by the same electrons that emit the
synchrotron radiation. If the prompt GRB photons overlap with
the afterglow-emitting region, some of these photons are also
upscattered by the relativistic electrons up to >TeV energies.
Compton scattering depends on the photon density and conse-
quently the geometry of the emission region, which is discussed
in Sect. 3.2.

In the Thomson regime, the location of the inverse Compton
peak is determined by the scattering of the peak photons of
the vF, Band spectrum against the peak electrons of the y>N(y)
distribution. However, if the scattering of the peak photons
against the peak electrons is suppressed due to the Klein-Nishina
(K-N) effect, the peak of the Compton scattered photons is lo-
cated at a lower energy. Noting that the location of the peak
should correspond to the highest possible energy that can be
transferred to a photon from a peak electron with a Lorentz fac-
tor y = y,k, the observed peak energy becomes

21“)/1,1(mec2

(1+2) (20)

Epkic ~

2.3.3. Pair production

Electron-positron pair production and annihilation may have
some impact on the observed afterglow spectra, especially if a
fraction of the prompt photons is Compton scattered to high en-
ergies, after which they are able to produce pairs with the unscat-
tered GRB photons. Defining the dimensionless photon energy
as

hy

Mmec?’

x 1)
high-energy photons of energy xpyg produce pairs with target
photons exceeding the threshold energy

4172

= . o)
xue(1 +2)2 22)

Xthr ~
This value of xy, is obtained from the threshold condition
XeXue(l + 2)2(1 — cos @) > 2, where 6 is the half-angle inside
which the upscattered photons propagate. The condition states
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that the invariant four-product of the photon momenta should be
greater than 2 to be able to produce two leptons with zero kinetic
energy in the center of momentum frame. With a typical angle
6 ~ 1/T’, one obtains Eq. (22). For target photons just above Xy,
the optical depth for pair production reaches its maximum value
(e.g., Zdziarski 1988)

oT oT r
Tyy = ?nphr(l —cosf) = ?nphﬁ,
where npy, is the number density of the target photons above the
threshold energy.

For hard bursts, the pair production opacity is maximal for
high-energy photons for which the threshold energy is Xur ~ Xpk,
where xp is the peak energy of the vF, prompt GRB spectrum.
The distribution of prompt photons is typically described by the
so-called Band function (Band et al. 1993)

(23)

d_n « {x“ exp(=x/xpk) if x < xpk (24)

dx if x > xpi,

where dn/dx is the photon number density per dimensionless
energy interval. Because the number density of the photons of
energy x is npp ~ x dn/dx oc x¥*! or ny, o« ¥#*! and the opacity
is proportional to np, according to Eq. (23), one finds that 7, o

+1 —a-1 2,1 -2 +1 -1
Xgo o X for xyg > 4I" xpk(l +2z)7 and 7, xﬁlr X Xk

for xpyg < 4I‘2x;k1(1 + z)72. For a typical GRB with o ~ —1,

the opacity remains relatively constant at xyg > 4I‘2x;k1 (1+2)72%
One also notes that the opacity increases for softer and decreases
for harder bursts.

The number density np;, is dominated by the prompt photons
while they are going through the shell of ejecta and can be esti-

mated as

L
Tph dnrcEy (25)
which is obtained by dividing the prompt GRB luminosity L by
the volume covered by the photons per unit time, 477%c, and by
the average energy of a photon, which we now assume to be the
prompt peak energy Epy.

Using the expression for n,, together with Eq. (23), one finds
that 7,,, o #~'T"2 for high-energy photons for which the thresh-
old energy is Epx. The prompt photons mainly overlap with the
ejected shell during the coasting phase when I' = Ty and r .
In this case, the optical depth evolves as 7, o 7! o 71, After
the deceleration time, r o« /4 and T’ o r=3/2 in the ISM case,
from which it follows that 7,, o 2 o /2. The probability for
pair production is thus expected to decrease during the coasting
phase but increase after R if the prompt photons are still pass-
ing through the emission region. The rising opacity is due to the
increasing angular spread of the emitted high-energy photons,
which offsets the decrease due to the declining target photon
density. Taking into account the beaming of the prompt radia-
tion, the suppression of pair production is not exponential even
at 7, > 1. In this case there always exists an escape cone at
sufficiently small angles, within which high-energy photons can
escape. In a wind medium, where I' o 2 Tyy /O after
the deceleration time, that is to say, the optical depth remains
constant.

The above discussion on the pair production opacity applies
to the high-energy photons for which the threshold energy of
target photons is Ep, and the energy of the former is generally
changing with time. However, if one assumes the canonical pho-
ton index @ ~ -1, the photon number density n,y o xotl = 0

below the peak energy. In this case, the density of target photons
below Epy is still given by Eq. (25) and the pair production opac-
ities obtained above apply to any high-energy photon for which
the threshold energy is below Epy.

Once the prompt photons have crossed the emission region,
the synchrotron emission provides the target photons for pair
production with upscattered high-energy photons. The number
of synchrotron photons providing the pair production opacity is
proportional to the number of electrons emitting at x,.. The en-
ergy of these electrons can be estimated from xy,, = 41“2)@}5(1 +
)% = Xgyn I2y? (Eq. (16)), where Xsyn 18 the dimensionless
synchrotron photon energy. This yields that the electron energy
corresponding to the threshold photon energy is yu, = constant
for a fixed xyg. In the slow cooling regime the number of these
electrons is Negr o 7 (Yir/Ymin)**! o« #T*7! (Eq. (15)). For
example, in the ISM case with s = 2 one gets an optical depth
Tyy & T o t1/8 (Egs. (10) and (11)); i.e., the pair production
opacity is increasing in time, although very slowly.

3. Numerical treatment
3.1. Kinetic equations

The numerical code we use to simulate GRB afterglows is based
on the code developed by Vurm & Poutanen (2009), which has
successfully been applied to, say, modeling prompt GRB (Vurm
etal. 2011) and black hole emission (Veledina et al. 2011, 2013).
The code calculates the time-evolving particle distributions in an
astrophysical plasma by solving the full relativistic kinetic equa-
tions for each particle species without any energy limitations.
This means that the equations include both differential and in-
tegral terms, depending on the nature of each radiation process.
If the energy losses of a particle are approximately continuous,
differential terms are used to describe the process. An integral
term is necessary if the particle loses a considerable fraction of
its energy due to a single interaction. In this section, all quanti-
ties except for r and I are expressed in the fluid comoving frame
and are left unprimed for ease of notation.

The equations for photons and electrons in the fluid comov-
ing frame both have the same general form (for a derivation, see,
e.g., Blumenthal & Gould 1970)

ON . . . . N N
— = Ngyn + Nes + Npp + Nog + Oipj — — — —,
o fesc

(26)
where N = N(x) (for photons) or N = N(y) (for electrons) is
the particle number density distribution in the shocked region
per dimensionless photon or electron energy interval. The sub-
scripts syn, cs, pp and ad correspond to synchrotron emission
and absorption, Compton scattering, pair production and adi-
abatic cooling, respectively. Each process produces a term on
the right-hand side of the equation (for a detailed description of
the numerical treatment of the processes, see Vurm & Poutanen
2009). The source term Qjy; gives the contribution of newly in-
jected particles. The electron injection function is assumed to be
a pure power law (Eq. (13)) in most examples presented in this
paper. However, the injected electrons have a Maxwellian dis-
tribution in some of the examples in Sect. 4.3. The term N/fsc
accounts for the escape of particles from the emission region
and N/t gives the dilution of the particle densities due to the
expansion of the emission region, fes. and Zex, being the charac-
teristic time scales for these processes. The adiabatic cooling and
density dilution terms are discussed in Sect. 3.3. The photon es-
cape time 7. is evaluated by solving the plane-parallel radiative
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diffusion equation and is equal to
3AR
[1

lesc = T

A el B } 7)
Vel +e )]

where AR is the comoving radial dimension of the emission re-
gion, 7. = 2AR \/(a/syn + app)(@syn + pp + @) gives the effec-
tive optical depth and € = (agyn + pp)/(@syn + pp + Qcs) 1S the
probability for photon absorption, asyn, @pp and acs being the ex-
tinction coefficients due to synchrotron (syn) and pair production
(pp) absorption and Compton scattering (cs).

The code recalculates the radius r and bulk Lorentz factor I'
at each timestep according to Eqs. (2) and (7) and evaluates the
observed time from Eq. (8). The other time-dependent quanti-
ties such as B, 71¢; and ymin (Egs. (12), (14) and (15)) can then
be evaluated to obtain, for instance, the updated synchrotron
emissivities.

The main difference between our code and the similar one
described in PMO09 is that we include the second-order differen-
tial terms that correspond to electron heating and diffusion due
to synchrotron and Compton processes. The differential terms in
the kinetic equation for electrons take the form

. 0 ON
N(y) = "oy Ac(YN(y) - Be(’)’)%

(28)

for all continuous processes, such as synchrotron processes,
Compton scattering in the Thomson regime and adiabatic cool-
ing, and the coefficients A. and B, depend on the process of in-
terest. Synchrotron self-absorption also contributes a first- and
second-order differential term in the electron equation, where the
coefficients A. and B. depend on the number density of photons
and the synchrotron emissivity of an electron.

The kinetic equations are discretized and solved on finite
grids of photon and electron/positron energies. Both the photon
and electron energy grids consist of 200 points, with the photon
grid ranging from x = 107" to x = 10® (E = 5x 10™%eV to
E = Sg) TeV) and the electron grid ranging from p = 10~ to
p = 10°.

Because of the high-energy boundary of the electron grid,
the maximum energy of the electrons is evaluated as

3me

orB’ ’
The maximum Lorentz factor y.x = V3me/(orB’) is obtained
by comparing the acceleration time to the synchrotron cooling

time. This is the value used by our code as long as it does not
exceed y = 108, the highest electron energy of the grid.

Vimax = min[log, (29)

3.2. Size of the emission region

In the simulations presented here, we consider only the radiation
from the forward shock. The current code applies a one-zone
approximation by assuming that the particles behind the shock
front are homogeneously distributed and that the magnetic field
has a uniform value in the region of interest.

The emission region is the spherical shell between the for-
ward shock and the contact discontinuity that separates the
shocked external medium and the shocked GRB ejecta. The
Lorentz factor of the forward shock is I'y, = \2r (Blandford
& McKee 1976), which means that the contact discontinuity is
moving away from the shock at a velocity c¢/3. This leads us to

define the radial extent of the shell as
AR =ct'/3 (30)
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and the comoving volume of the emission region becomes

V' = dnrict’ /3. (31)
Here it is not taken into account that the shell is most likely not
spherical but a fraction of a narrow jet. However, the luminosity
per unit solid angle is the same in both of these cases before the
so-called jet break time, when the beaming angle of the radiation
exceeds the opening angle of the jet.

3.3. Adiabatic cooling and density dilution

In addition to the radiation processes discussed in this paper, the
code accounts for adiabatic particle cooling due to the spreading
emission region. In this section, all quantities except for r are
given in the fluid frame and are left unprimed. The adiabatic
cooling term for electrons is

_ON®Y) _ 0

Ny = —— [N
ad ” oy [VaaN(Y)]

(32)

where 7,4 is the cooling rate due to adiabatic expansion. The
cooling rate is obtained from the pressure P and internal en-
ergy E of the electrons. For a monoenergetic population of N,
electrons of energy y in a volume V,

IN.
P=_—yB,
3y P

where f3. is the random velocity of an electron in units of ¢, and

(33)

E=(y—-1DN.. (34)

From the first law of thermodynamics, dE = —P dV, one then
obtains the cooling rate

~ yB2 din V
3 dt

Yad = (35)

Evaluating the time derivative of the comoving volume
(Eq. (31)), the cooling rate for a constant value of g (see
Egs. (3)—(6)) becomes

: vB: (2
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(36)

where ¢ is the comoving lifetime of the shock. Because the sim-
ulation extends from the coasting phase of the relativistic shell
to the deceleration phase, the value changes from g = 1 to
g = 5/2 (constant density) or g = 3/2 (wind) according to
Egs. (3) and (5) during the deceleration. This change is grad-
ual in reality, but our approximation of the Blandford-McKee
solution has the side effect that the time derivative of the volume
and the cooling term of Eq. (36) are discontinuous at r = Rp.
In order to avoid the discontinuity, the cooling rate used in the
simulations is

. (2 1
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tg being the comoving time corresponding to the transition ra-
dius Rp. This approach guarantees that the adiabatic cooling
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term is continuous and that the solution is accurate both at early
and late times.

The term giving the dilution of the electron density (the last
term on the right-hand side of Eq. (26)) is obtained by consider-
ing a constant number of particles with density n = f N(y)dy in
an expanding volume V:

d
— @mV)=0. 39
& (nV) (39)
This relation is equivalent to
dN(y) dnV — N(y)

=-N(y)—— = ———, 40
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where
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and 7,4 is given by Eq. (38).

3.4. Test simulations

In order to test the validity of our code, we have compared our
simulation results with those obtained by PM09 who have devel-
oped a similar numerical code. The photon spectra and electron
distributions at 7 = 3.4 x 10!” cm (Fig. 1) calculated by our code
should be compared with Figs. 4 and 5 of PM09, which present
the particle distributions obtained with the same set of parame-
ters. In these simulations, a constant value of the maximum elec-
tron energy, Ymax = 4 x 107, is assumed. Our Fig. 1 shows the
results of several simulations with different combinations of ra-
diation processes. All the photon spectra in this section and the
rest of the paper are presented in the observer frame, with ener-
gies boosted by a factor of 2I'/(1 + z) from the flow frame.

The two codes produce electron distributions with very sim-
ilar shapes: the cooled electrons populate the high-energy end of
the distribution going as N(y) o y~*~!, with the slope of the dis-
tribution gradually approaching the slope of the injection func-
tion at lower energies. The electrons below ypi, ~ 600 have
a nearly flat N(y) distribution in PM09, whereas we obtain a
much steeper decline of the electron density. To study whether
this difference could be due to the inclusion of synchrotron self-
absorption heating, we turned off this process for a test simula-
tion, but this had no visible impact on the electron distribution.
Because the shell is in the deceleration phase and yyy;j, is decreas-
ing, such a steep cutoff may appear if y,,;, declines faster than
the electrons are cooled adiabatically. However, the electrons be-
low ymin do not carry a large fraction of the total electron energy
and have no observable impact on the afterglow emission.

The normalization of our electron distribution is lower by
about half an order of magnitude than that obtained by PMO09,
but the origin of this difference is unclear so far. In our radiation
spectrum, the spectral slopes and the positions of the peak and
break frequencies appear identical to those in PM09, but the nor-
malization of the flux is again slightly different. It is notable that
the relative magnitudes of the synchrotron and inverse Compton
components are clearly different in the two simulations. A pos-
sible cause for this discrepancy is the slight difference in the
geometries assumed in the simulations.

The electron distribution resulting from synchrotron cooling
without adiabatic cooling or self-absorption heating is also pre-
sented in Fig. 1, showing that especially the low-energy elec-
trons are strongly affected by adiabatic cooling. The distribution
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Fig. 1. Simulated afterglow spectrum in the observer frame (top panel)
and the electron distribution in the fluid frame (bottom panel) at ra-
dius 7 = 3.4 x 10'7 cm. The particle distributions have been obtained
with four different combinations of radiative and adiabatic processes.
Synchrotron emission/absorption, Compton scattering, pair produc-
tion/annihilation and adiabatic energy losses are indicated in the figure
by the abbreviations syn, IC, pp and ad, respectively. In the simulation
where only synchrotron processes are included, self-absorption heating
of the electrons is not accounted for. The analytic synchrotron solution
by Sari et al. (1998) is also shown in the figures. The simulation param-
eters are £y = 10¥ erg, np = 1ecm™, g = 0.1, &g = 1073, [, = 400
and s = 2.3. The high-energy cutoff of the electron distribution has a
constant value ymex = 4 X 107, and the GRB is located at a redshift
z = 1. In the bottom panel, N(y) = dn/dy is the number density of
electrons per dimensionless energy interval. The distribution function
has been multiplied by orAR’ to find the Thomson optical depth and
by y* in order to visualize which electrons are cooling: a flat segment in
the distribution means that the slope is the same as that of the injection
function, demonstrating that the electrons are uncooled. The figure may
be compared with Figs. 4 and 5 of PMO09.

around the cooling break is highly curved without this process,
and there is a clear cutoff below the injection energy ymi, since
the electrons no longer have a way to cool to lower energies.
The radiation spectrum from this simulation is also presented
in Fig. 1. The curved part of the electron distribution produces
a corresponding curved segment in the radiation spectrum. The
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Fig. 2. Left panels: time-evolving observer frame photon spectrum without absorption on extragalactic background light (fop panel) and electron
distribution (bottom panel) from the forward shock together with an additional photon injection term that roughly represents prompt GRB emission.
The electron distributions are plotted as a function of the dimensionless electron momentum p (Eq. (1)) instead of y (note that p — y for y > 1).
The number of electrons per unit dimensionless momentum is N(p) = dn/dp. The parameters of the forward shock emission are Ey = 1.4x10%%erg,

-3

ng =3x102cm>, e =02, g = 10°° Ty = 800 and s = 2.4. The injected photons are distributed according to a Band function, with the
parameters & = —0.61, 8 = -3.8 and E,x = 730 keV (as defined in Eq. (24)). The Band function cuts off at E = 1 GeV and the injection lasts
for t = 22 s, after which the photon luminosity decreases exponentially with time. The GRB takes place at z = 1.8. The black long-dashed lines
show the photon and electron distributions at # = 0.1 s without pair production, and the solid magenta line in the bottom left panel represents the
positron distribution at r = 0.1 s. Right panels: the evolution of the observer frame photon spectrum (top panel) and electron distribution (bottom
panel) without photon injection. The forward shock parameters are same as in the simulation presented in the left panels.

low-energy end of the spectrum, which basically consists of ra-
diation from monoenergetic electrons at ypi,, has the same shape
in all cases. All in all, adiabatic cooling has a clear observable
effect on the emergent spectrum but the contribution of syn-
chrotron self-absorption heating seems negligible.

The analytic synchrotron solution by Sari et al. (1998) is in-
cluded in Fig. 1 for comparison with the numerical solution. It
is clear that a spectrum consisting of pure power-law segments
with sharp breaks deviates from the actual curved synchrotron
radiation component, and fitting the simple analytic model to
observed afterglow spectra may lead to an inaccurate determina-
tion of the forward shock parameters.

4. Examples

4.1. High-energy emission due to Compton scattering
of MeV photons

As an example of an important application of the code, we
present the results of two simulations where the injected elec-
trons interact with an external source of photons distributed ac-
cording to a Band function (Eq. (24)), which represents a typical
prompt GRB spectrum. Some of the GRB photons are scattered
to higher energies by the shock-accelerated electrons, producing
an additional spectral component extending up to TeV energies
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in the observer frame. The high-energy end of the spectrum can
then be further modified as some of the high-energy photons pro-
duce electron-positron pairs with the MeV photons. The >TeV
component may be observable in the case of a low-redshift GRB;
otherwise the very high-energy gamma-rays are absorbed by
the extragalactic background light. The simulations presented
here demonstrate that our code can be applied to study whether
the >100 MeV GRB emission is due to Compton scattering
of the prompt photons at the external shocks. However, further
modifications of the code are needed to improve especially the
treatment of the early high-energy emission.

The current version of the code calculates the emission from
the forward shock only, although the reverse shock emission can
be significant in the case of a long burst. In addition, electron-
positron pair production in the external medium due to the in-
teraction with the prompt gamma-rays is likely to affect the
afterglow emission (Beloborodov 2005a). This effect is not ac-
counted for in the code at the moment. However, both the reverse
shock emission and the pair loading of the external medium are
expected to shape the afterglow at relatively early times, and thus
the late-time afterglow emission is likely to be fairly consistent
with the results of the forward shock simulation.

Figure 2 shows the simulated time-evolving forward shock
spectrum and the corresponding electron distribution both with
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Fig. 3. Time-evolving observer frame photon spectrum without absorp-
tion on extragalactic background light (top panel) and electron dis-
tribution (bottom panel) from the forward shock with the same pho-
ton injection term as in Fig. 2. The other simulation parameters are
Ey=14x10% erg, ng = 3cm™>, = 0.8, g = 1078, Ty = 450 and
s = 2.4. The redshift is z = 1.8. The black and red long-dashed lines
show the photon and electrons distributions at # = 0.1 sand = 10 s
without pair production, and the positron distribution at r = 0.1 s is
presented by a solid magenta line in the bottom panel.

and without an additional Band injection term, and Fig. 3
presents the results of a simulation with the same Band injection
function but different external shock parameters. The positron
distribution at = 0.1 s is also presented in the cases where pair
production is important, meaning in the simulations with a pho-
ton injection term. At the moment, the positron distribution has
a lower numerical accuracy than that of the electrons.

The simulation parameters have been chosen to reproduce
the Swift/XRT afterglow light curve of GRB 090902B, which
was a bright burst with a long-lasting high-energy component
(Abdo et al. 2009). The Band function used in the simulations
is kept constant in time for simplicity and corresponds to the
time-integrated spectral fit presented in Table 1 of Abdo et al.
(2009). The Band photon density npy, in the observer frame is
evaluated from Eq. (25), where the luminosity is obtained from

dividing the isotropic equivalent energy of the prompt GRB,
Eiso = 3.6 x 10°* erg, by the burst duration, # = 22 s. The num-
ber of injected photons per unit time and area is then ~cnpy in
the observer frame, and the injection rate per unit volume in the
fluid frame is

» cnpy(1 +2)
n, ~———,
ph 2TAR’

where the shell thickness AR’ is defined in Eq. (30). We do not
inject the additional power-law component that is observed in
the prompt emission below ~50 keV and above 100 MeV.

The allowed forward shock parameter space based on the
late-time afterglow data has been calculated by Kumar & Barniol
Duran (2010), who claim that the >100 MeV emission can be
explained as pure synchrotron radiation. The simulations pre-
sented in this section correspond to two points in the allowed
n — €p space given in Figure 3 of their paper, with £, and €. be-
ing evaluated from their Egs. (12) and (13). Our Fig. 2 shows
the results in the case of a lower density and a higher magnetic
energy fraction than in Fig. 3. We assume that the ejecta begin
to decelerate at the end of the prompt burst. This assumption
is used to evaluate the initial bulk Lorentz factor of the emit-
ting shell, I'y. The extragalactic background light absorption of
the >TeV photons is not accounted for in the example presented
here, and these photons would in fact be unobservable from the
redshift of GRB 090902B, z = 1.8. However, a very high-energy
component could be observed in the case of a low-redshift burst
with similar parameters.

The left-hand panels in Fig. 2 show that the Band emission
at energies £ < 1 GeV dominates over the underlying forward
shock synchrotron radiation at ¢ = 0.1 s, while a double-peaked
inverse Compton component appears at higher energies. The
break at ~100 GeV is due to pair production with the peak Band
photons, which are located at the threshold energy for pair pro-
duction with the photons at ~100 GeV according to Eq. (22).
For target photons with a Band distribution, the optical depth
peaks at ~10xy,;, where the lowest point between the two VHE
spectral peaks is located. The maximum optical depth can be ap-
proximated using Eqgs. (23) and (25) to obtain 7,, ~ a few. The
importance of pair production can be confirmed by looking at
the electron and positron distributions, which are nearly identi-
cal below Ypin ~ 10°. The VHE peak in the radiation spectrum
is due to the scattering of Band photons against the peak elec-
trons with ypx = ¥min. According to Eq. (20), the peak energy is
E ~ 30 TeV, which agrees with the figure.

The right-hand panels, showing the results of the simulation
without the Band injection term, confirm that the synchrotron
spectral component at + = 0.1 s is clearly below the Band
emission, and the contribution from the Compton scattered syn-
chrotron photons is also negligible. In the simulation with the
additional photon injection term, a low-energy tail forms in the
electron distribution. This is mainly caused by pair production
with a contribution from scatterings in the K-N regime, which
can take a large fraction of the energy of an electron in one
scattering.

At t = 10 s, close to the deceleration time, the IC com-
ponent has only one peak left in both simulations. The optical
depth for pair production is expected to decrease until the decel-
eration time according to 7,, o 7! and thus should drop by a
factor of 100 between t = 0.1 s (where 7, ~ 2) and ¢ = 10,
which is in agreement with the simulation results. In the left pan-
els, the prompt emission dominates as the source of seed pho-
tons for inverse Compton, as the resulting high-energy emission
is ~2 orders of magnitude more luminous than with synchrotron

(42)

AT7, page 9 of 16


http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201322520&pdf_id=3

A&A 564, A77 (2014)

self-Compton (SSC) emission alone. The high-energy part of the
synchrotron bump has become visible at # = 10 s and dominates
the emission at £ ~ 100 MeV-10 GeV. The inverse Compton
peak is still located at E ~ 30 TeV, and it seems that the predic-
tion for the location of the peak is very robust during the prompt
emission due to the hard spectrum of the soft target photons. In
the slow cooling regime and in the absence of significant pair
opacity, the spectral slope below the ~30 TeV peak mimics the
low-energy slope of the prompt spectrum. Because the peak en-
ergy is proportional to I'yyin and ymin < €I, a measurement of
the peak energy would provide us with the combination e, I"%.

After the end of the photon injection, the spectrum quickly
becomes identical to the pure forward shock emission, as can
be seen by comparing the spectra at ¢t = 103 s and t = 10° s
in the left and right panels. The electrons are unable to cool by
emitting synchrotron radiation because such a small fraction of
the shock energy is given to the magnetic field. The SSC cooling
of the electrons on synchrotron radiation is not effective either,
which can be seen from the electrons being distributed as N(y) o
™% between Ymin and ymax. The synchrotron spectral component
produced by these electrons now corresponds to a slow cooling
spectrum as described by Sari et al. (1998).

The simulation results presented in Fig. 3 correspond to a
higher density and smaller magnetic energy density than those
in Fig. 2. The VHE spectrum at t = 0.1 s is similar to the one in
Fig. 2. In this case, the spectrum at ¢t = 10 s is also shaped by
the inclusion of pair production, which leads to an increased en-
ergy content in electrons at y < 7y, and correspondingly more
energy in the upscattered photons between ~3 GeV and ~1 TeV.
After the prompt emission is gone, the SSC component is very
prominent compared to the synchrotron bump because of the
high value of € /ep used in the simulation. Even though a large
fraction of the shock-generated energy, €. = 0.8, is given to the
electrons now, it is still valid to assume an adiabatic evolution of
the shock because the radiative cooling is inefficient.

It is notable that a power-law component similar to the one
observed during the prompt phase of GRB 090902B (Abdo et al.
2009) is not seen in our simulations. According to the simple
model presented here, the early power-law component cannot
be of external origin. The low-energy part of the component
might be detectable above the Band emission in the case of
a 1oW ymin (Eq. (15)). Because we assume that the decelera-
tion time is approximately equal to the duration of the prompt
GRB, we can use Egs. (4) and (9) in our paper, together with
Egs. (12) and (13) in Kumar & Barniol Duran (2010) to find that
Ymin = 6 X 10%(neg) /1% ie., ymin depends very weakly on n
and eg. From the allowed n — €5 space presented in Fig. 3 of
Kumar & Barniol Duran (2010), one finds that ., cannot be
much lower than ~10°.

Figure 4 shows the light curves corresponding to the sim-
ulations presented in Figs. 2 and 3 (Band injection is included
in Examples 1 and 3, but not in Example 2) in three different
energy bands: the XRT and LAT bands and a very high-energy
(VHE) band ranging from 0.1 TeV to 100 TeV, where the only
contribution is from the inverse Compton emission due to the
upscattering of either synchrotron or external photons. Because
the Band function is kept constant in time, the flux in both the
XRT and LAT bands is also constant in the beginning of the sim-
ulations with the photon injection term. The inverse Compton
flux in the VHE band rises at early times as the energy of the
shocked electrons increases and the suppression of the flux due
to pair production becomes less important.

The LAT light curves are dominated by synchrotron emis-
sion between ¢ ~ 10 s and 10° s. At 10° s the synchrotron
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Fig. 4. Observer frame light curves in the Swift/XRT band (0.3-10 keV,
red curves at the top of the figure), the Fermi/LAT band (0.1-300 GeV,
green curves in the middle), and a very high energy (VHE) 0.1-100 TeV
band (blue curves at the bottom). The light curves correspond to the
simulations presented in Figs. 2 and 3.
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component falls below the LAT band and there is a break in
the light curves, followed by a more slowly decaying SSC emis-
sion. The X-ray emission from the forward shock is buried un-
der the prompt emission and emerges only after the latter has
ended. In the TeV band the emission is dominated by the up-
scattered prompt photons as long as they are available, resulting
in substantially higher luminosity at early times than would be
obtained by SSC alone.

The simulated XRT band light curves are consistent with the
observed XRT data of GRB 090902B (Pandey et al. 2010) as
intended, but the observed LAT light curve (Abdo et al. 2009)
is not reproduced in the current simulations. This is simply be-
cause we assume a lower value of ynmax (Eq. (29)) than Kumar &
Barniol Duran (2010), who claim that the high-energy emission
consists of synchrotron photons. The maximum photon energy
produced by the synchrotron process is ~2I" x 50 MeV /(1 + z)
in the observer frame (Guilbert et al. 1983), determined from the
balance between the cooling and acceleration times for electrons
radiating in the background magnetic field B’ (for synchrotron
losses taking place in a magnetic field generated by the Weibel
instability, see Sironi et al. 2013). The most energetic photon ob-
served from GRB 090902B, with £ = 33 GeV in the observer
frame, requires a bulk Lorentz factor I' ~ 900 at r = 82 s to
be consistent with the synchrotron model. The Lorentz factor at
this time can be estimated from Eq. (11). For Ey ~ 10 erg and
no = 1073 cm™, the lowest possible external density accord-
ing to Kumar & Barniol Duran (2010), we find that I' ~ 400 at
t = 82 s, not supporting a synchrotron origin for this photon.

The examples in this section show that a luminous >TeV
component can arise due to inverse Compton scattering in the
forward shock, although this radiation is observable only in low-
redshift cases. The Cherenkov telescope MAGIC is the most
likely candidate to catch the upscattered prompt radiation in the
VHE range due to its fast slewing capability, but MAGIC has so
far been unable to detect any emission from GRBs (Albert et al.
2007; Aleksic et al. 2010, 2014). However, the lack of detections
does not rule out the existence of a ~10 TeV spectral component
because of the high redshifts of the observed bursts.

If the external density were higher than in our examples, such
as in the case of a wind-type medium, the inverse Compton flux
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Fig. 5. Left panels: time-evolving observer frame photon spectrum (fop panel) and electron distribution (bottom panel) resulting from synchrotron
emission and absorption together with adiabatic cooling at the forward shock in a wind-type medium. The simulation parameters are E, = 103 erg,
Ayzs =Ay/(10% ecm™) = 3,6 = 0.1, &g = 0.1, Ty = 500 and s = 2.5. The redshift is z = 1. Right panels: observed photon spectra (top panel) and
electron distributions (bottom panel) in the case of a constant-density medium with a typical density ny = 1 cm™>. The other simulation parameters

are the same as in the simulation presented in the left panels.

would also increase and possibly be able to reproduce the mag-
nitude of the GeV photon flux in the LAT band. This idea is sup-
ported by the recent simulations of Beloborodov et al. (2013),
who show that the GeV emission of GRB 080916C is consistent
with inverse Compton scattering of the prompt emission. The
work of Beloborodov et al. (2013) is mainly concerned with the
early stage of the outflow and does not include SSC emission,
which is important once the prompt radiation is gone.

Our current model cannot explain the extended duration of
the observed LAT emission from GRB 090902B, which is how-
ever reproduced by Beloborodov et al. (2013). The delay of the
arrival times of the high-energy photons compared to the MeV
emission may result from the different propagation angle of the
Compton scattered prompt photons compared to that of the un-
scattered photons, which is not accounted for in the code at the
moment. It must be noted that a full treatment of the afterglow
requires a more complete model of the prompt emission, the in-
clusion of the reverse shock emission and the effect of the pair
loading of the external medium.

4.2. Constant-density ISM vs. wind medium

The density structure of the ambient medium has an impact on
the evolution of the bulk Lorentz factor I, the injection rate of
the electrons and the strength of the shock-compressed mag-
netic field. In a wind-type medium with n(r) = Ayr? all the

synchrotron-emitting electrons are likely to be fast-cooling at
early times because of the high magnetic field, provided that the
magnetization parameter € is not too low. Synchrotron cool-
ing is counteracted by self-absorption at the low-energy end of
the distribution. As long as the synchrotron cooling time of the
electrons is shorter than the lifetime of the flow for all electron
energies, the low-energy electrons are able to thermalize due to
self-absorption.

The difference between the pure synchrotron emission from
the forward shock in a wind-type and a constant-density medium
is illustrated in Fig. 5, which shows the simulated photon and
electron distributions for a typical set of parameters. Compton
scattering and pair production are left out of this simulation in
order to study the effect of synchrotron self-absorption heating
on the particle distributions. Again, we assume that the distribu-
tion of the shock-accelerated electrons is a pure power law.

The deceleration radius (Eqgs. (4) and (6)) is reached earlier
in a wind medium than a constant-density ISM. In the simula-
tions presented in Fig. 5, Rgec = 7.1 X 10 cm in the wind case
and Rgec = 8.6 x 10'% cm in the ISM case. Because most of the
blast energy is dissipated at this radius, the peak luminosity is
higher in the wind case because the same amount of energy is
emitted in a shorter time compared to the ISM environment.

At the observed time ¢ = 0.1 s, the ambient particle density
in the wind case is n = 1.1 x 10® cm™3, explaining the large
difference between the number of shocked electrons in the two
simulations. At this moment, all the electrons are fast-cooling in
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both simulations due to the large fraction of energy given to the
magnetic field. However, the magnetic field in the wind case is
much higher because of the high density, even though the shock
has already entered the deceleration phase before # = 0.1 s. The
electrons have now been able to cool below yni, and form a clear
Maxwellian component centered at y ~ 3. The Maxwellian elec-
trons have had plenty of time to thermalize because their syn-
chrotron cooling time in the fluid comoving frame, téool ~0.2s
(Egs. (12) and (19)) is clearly shorter than the comoving lifetime
of the flow, ¢ = 40 s. The electrons at higher energies are dis-
tributed according to N(y) o y~2 below Ymin and N(y) o y~*!
between ymin and ymax, as expected. It is notable that the elec-
trons would be able to cool to much lower energies in a simula-
tion without the self-absorption heating term. Thus, the inclusion
of this term is necessary for the modeling of a wind-type medium
with a high magnetic compactness. The thermalized electrons,
however, only produce a very small bump in the corresponding
synchrotron spectrum.

At t = 10 s, the Maxwellian component in the electron dis-
tribution in a wind medium is already smaller because of the de-
creasing magnetic field. The bump gradually disappears, and the
slope of the electron distribution at = 10° s between y, ~ 600
and ymin ~ 3 x 10% is becoming slightly shallower because these
electrons are no longer able to cool. At this moment, the elec-
tron and photon distributions in the ISM case look very similar
to those in the wind case.

The simulations presented here show that the synchrotron
self-absorption heating of electrons can produce a prominent
Maxwellian component in the electron distribution for certain
parameter sets. Figure 6 shows how the size of the Maxwellian
bump at ¢+ = 0.1 s decreases if the parameters €z and A,, are
changed from the fiducial values used to obtain Fig. 5 and how
this affects the corresponding synchrotron spectrum. When the
magnetic energy fraction €p is decreased, the synchrotron cool-
ing time is longer and the electrons are unable to cool to very
low energies or thermalize efficiently.

The magnetic field and the size of the thermalized bump also
decrease if the density of the wind goes down: when the coef-
ficient Ay 35 = Ay /(10% cm™) is decreased from Ay3s = 3 by
a factor of 100, the low-energy bump in both the electron and
photon distributions has nearly disappeared. It should be noted
that the bulk Lorentz factor I is lower in the simulation with
Ay3s = 3 compared to the two cases with different Ay, 35, be-
cause the shock is already in its deceleration phase at # = 0.1 s
with I' ~ 300 in the case with the highest density. As a result,
the shock radius is slightly smaller in the case of a decreasing I,
but only by a factor of ~ a few.

In general, the magnetic field (see Eq. (12)) decreases at radii
r < Rgec (Eq. (6)) due to the radial dependence of the wind den-
sity: B' o« Tn'/? o« Tor™! o Ij't7!, s0 a larger Ty indicates a
lower magnetic field B” at a given observer time ¢ as long as the
blast is its coasting phase. The synchrotron cooling time of the
electrons thus becomes longer, working against the formation of
a Maxwellian component.

The deceleration radius Rg.. depends on the parameters
Ey,Ay and 'y but the hydrodynamic evolution at » > Rgec 1S
only affected by Ey and A,, according to Egs. (10) and (11).
The magnetic field then depends on these parameters and time
as B o I'n'? o (A} E;'t)"* (naturally, B’ also depends
on €p). Together with the width of the emission region, AR’ oc I't
(Eq. (30)), the magnetic field determines the magnetic compact-
ness Ig = AR’ Ugor/(mec?), where Ug = (B’)?/(87) is the mag-
netic energy density. An electron with a random Lorentz fac-
tor y is able to cool due to synchrotron emission if the ratio
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Fig. 6. Comparison of the radiation spectrum (fop panel) and electron
distribution (bottom panel) at t = 0.1 s from Fig. 5 (black solid line) to
four cases where the value of one parameter is changed at a time. In two
simulations, the wind density is decreased by a factor of 10 (red dashed
line) and 100 (blue dashed line) from the fiducial value. In the other two
cases, the magnetic energy fraction is decreased by a factor of 10? (red
dash-dot line) and 10* (blue dash-dot line).

t/teool ~ Ylp (see Eq. (19)) is large. Because Iy o< AR'(B’)* o«
A€V/4E0_”4t‘3/4, one can obtain lower values of /.0 at a given
time by increasing E, or decreasing Ay, which may prevent the
thermalization at low energies.

In reality, pair production has a significant effect on the exter-
nal shock emission as long as the wind density is high. Figure 7
presents the time-evolving radiation spectrum and electron dis-
tribution from a simulation where synchrotron, Compton and
pair production processes are all accounted for. At r = 0.1 s,
the interplay of these processes results in a complex shape of
the electron and positron distributions for y < 100. Numerous
leptons appear at these energies because of pair production, and
are able to thermalize at low energies due to the high magnetic
compactness. However, the Maxwellian leptons are now non-
relativistic and do not result in an observable signature in the
corresponding photon spectrum. The spectrum at t = 0.1 s is
clearly different from the pure synchrotron case in Fig. 5. In
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Fig.7. Time evolution of the observer frame photon spectrum (fop
panel) and electron distribution (bottom panel) in a wind medium when
all the relevant radiative processes (synchrotron, Compton and pair pro-
duction) are accounted for in the simulation. The positron distribution
att = 0.1 s is also shown as a solid magenta line in the bottom panel.
The simulation parameters are the same as in Fig. 5.

Fig. 7, the electrons at y < 100 produce a distinct spectral seg-
ment between ~100eV and 100keV, and pair production shapes
the synchrotron and Compton components at high energies. The
pair production opacity decreases at later times and the spectrum
becomes similar to the pure synchrotron case, with the obvious
exception that it extends to higher energies because of Compton
scattering.

4.3. Emission from a Maxwellian distribution of injected
electrons

Because a Maxwellian component can contain as much as ~90%
of the energy of the shocked electrons (Spitkovsky 2008),
we have also simulated the forward shock emission resulting
from a Maxwellian electron injection function. The relativistic
Maxwellian has the general form

/ Y
N(y) oy y? - Lexp [_W},

(43)

where 7" is the temperature of the electrons. The temperature
can be determined from
3KT’ ~ &T'myc?, (44)
where eel“mpc2 is the average energy transferred to a shocked
electron.

A comparison between the simulated photon and electron
distributions resulting from Maxwellian and power-law elec-
tron injection in a constant-density ISM is presented in Fig. 8.
Synchrotron, Compton and pair production processes are all in-
cluded in these examples. The main difference between the two
cases is the width of the synchrotron component, which extends
to higher energies when a large fraction of the electron energy is
in the power-law electrons above the peak Lorentz factor.

In both simulations, the low-energy part of the synchrotron
spectrum at = 0.1 s and # = 10 s consists of the tail emission
from the peak electrons, having the spectral shape vF, o v*/3.
The synchrotron spectral component is naturally broader in the
case of power-law electron injection, since the radiating elec-
trons in the case of Maxwellian injection are nearly monoener-
getic. The ~10 TeV inverse Compton peak is due to the scatter-
ing events by the electrons near the K-N limit. At = 10%s, a
second Compton scattering order appears as the first scattering
order moves to ~100 eV. At all times, a Maxwellian electron
injection results in a spectrum consisting of distinctly separate
components, which is very different from the case of power-law
electron injection.

Figure 9 shows the light curves in the Swift/XRT band re-
sulting from both the simulations in Fig. 8 compared to several
cases where one parameter at a time is changed. It is notable
that a flattening or a slight rebrightening appears in all the cases
with a Maxwellian electron injection. The flat segment is pro-
duced when the synchrotron component moves out of the ob-
served energy range and is gradually replaced by the inverse
Compton emission, similarly as described by Petropoulou et al.
(2011), who simulated the external shock emission from power-
law electrons with a narrow energy distribution. A similar ef-
fect is also seen in the simulations of Stern & Poutanen (2004).
They considered prompt GRB emission due to a narrow electron
distribution that has developed due to the balance between heat-
ing and synchrotron/SSC cooling. In this case, a flat section in
the BATSE band light curve develops when the first Compton
scattering order moves out of the observed band and is replaced
by the second scattering order. A spectrum due to power-law
electrons does not contain such dramatic changes of the spectral
slope, and consequently there is no shallow decay segment in the
light curve.

In all the cases shown in Fig. 9, the flux during the flatten-
ing or rebrightening is very low. The flux is higher when Ey,
no, € Or €p is increased, but higher values of Ey, € and €5 also
lead to a delayed start of the flat segment. One can estimate
that the flattening begins when the synchrotron frequency of the
peak Maxwellian electrons decreases below the observed wave-
band. The peak electrons have y ~ I'eim,/m. (Eq. (44)) and
the characteristic synchrotron energy of the emitted photons is
Xeyn & TY2B' o E)*€ley/*17/ (see Egs. (16), (11) and (12)).
Increased values of Ey, €. and e thus correspond to a higher
synchrotron energy at a given time ¢, delaying the moment when
the synchrotron bump crosses the observing window. However,
a higher external density ny does not significantly delay the ap-
pearance of the shallow decay.

A more luminous shallow decay phase may occur in a
wind-type medium. The particle distributions resulting from a
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Fig. 8. Left panels: time evolution of the observer frame photon spectrum (top panel) and electron distribution (bottom panel) resulting from rela-
tivistic Maxwellian electron injection in a constant-density ISM. The radiation processes are synchrotron emission/absorption, Compton scattering
and pair production/annihilation. The simulation parameters are Ey = 10°% erg, ng = 1 cm™, €, = 1072, e = 10 and I’y = 200, and the redshift
is z = 1. The Maxwellian injection function has the temperature 7" ~ €.I'm,c?/k. Right panels: evolving particle distributions in the case of a
power-law electron injection with s = 2.5. The other parameters are the same as in the simulation with Maxwellian injection.

Maxwellian electron injection function in a wind-type medium
are presented in Fig. 10. Similarly as in the case of power-law
injection in a wind environment (Fig. 7), pair production shapes
the electron distribution for y < 10% at # = 0.1 s, where it is
practically identical to the positron distribution. However, we are
now interested in the spectral evolution at later times when the
shallow decay may appear as the observing window becomes
dominated by inverse Compton photons. Figure 11 shows that
the flux during the shallow decay can be high enough to be de-
tected in the wind case. In the simulation presented here, the
flux decay is steeper during this phase than in the ISM case, but
still consistent with many of the observed XRT afterglows. The
flux increases with higher values of, say, Ej and eg, but simul-
taneously the start of the shallow decay is delayed, as described
above.

The simulations with different parameter sets show that a
flattening in the X-ray light curve is likely to take place if the
electron injection function is Maxwellian. In the ISM case, the
flux during the simulated flattening appears to be much lower
than a typical shallow decay flux observed by XRT. A wind en-
vironment, on the other hand, can lead to a detectable photon
flux during the shallow decay.

5. Summary and conclusions

In this paper, we have studied the modeling of GRB forward
shock emission for the first time with a code that treats all the ra-
diation processes self-consistently. The main advantages of our
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code are the inclusion of synchrotron self-absorption heating and
Compton scattering as mechanisms for electron thermalization,
and the exact treatment of Compton scattering and pair produc-
tion. We have shown that our results are in very good agreement
with both analytic estimations and numerical simulations that
have been presented in the literature. Inclusion of an accurate
calculation of radiative transport, a multi-zone treatment of the
emitting region, and the emission from the reverse shock will be
the topics of future research.

We presented the results of test simulations where external
MeV photons, distributed similarly to prompt GRB emission,
interact with the shock-accelerated electrons and are Compton
scattered to TeV energies. Such VHE emission is likely to dom-
inate the synchrotron self-Compton emission at times up to
t > 10 s in GRBs with similar parameter sets and might be an
interesting target for observations of low-redshift bursts with fu-
ture instruments such as the Cherenkov Telescope Array (Inoue
et al. 2013). We also showed that the inverse Compton flux is not
always quenched by electron-positron pair production, owing to
the decrease in the pair production opacity before the decelera-
tion time. A very prominent inverse Compton peak appears dur-
ing the prompt emission, the location of which is determined by
the maximum energy given to the photons by the peak electrons.

Even though the test simulations show that the inverse
Compton scattering of photons distributed according to a Band
function is likely to produce a high-energy spectral component,
the current model does not explain the typical long duration of
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Fig. 9. Observer frame light curves in the Swift/XRT band (0.3-10 ke V)
resulting from different parameter sets. The black solid line in both pan-
els shows the fiducial light curve resulting from Maxwellian electron in-
jection obtained with the same parameters as the spectra in Fig. 8. The
green dash-dot-dot-dot line in the fop panel represents the emission due
to a power-law electron injection function. The other curves represent
simulations with a Maxwellian injection term where one parameter at
a time is varied from the fiducial value. In the fop panel, the dotted
(dashed) lines show the light curves when the blast energy E (external
density ng) is increased/decreased by a factor of 100 (10). In the bot-
tom panel, the long-dashed (dash-dot) lines correspond to the emission
when the electron energy fraction €. (magnetic energy fraction eg) is
increased/decreased by a factor of 10 (100).

the observed LAT emission in the case of GRB 090902B. A pos-
sible explanation for the LAT data is that the unscattered prompt
photons are traveling within a smaller solid angle than the scat-
tered photons, and the arrival time of the upscattered radiation
is delayed as a result (Beloborodov 2005b; Beloborodov et al.
2013). This effect is not accounted for in the current version of
the code. However, the large-angle effect cannot explain the LAT
emission if it lasts much longer than the prompt GRB.

As another example, we compared the synchrotron emis-
sion in a wind-type and a constant-density ISM medium for
a set of typical parameters and studied the effect of different
simulation parameters on the thermalization of low-energy elec-
trons. As long as the synchrotron cooling time is shorter than
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Fig.10. Evolving photon (fop panel) and electron (bottom panel) dis-
tributions from a simulation with Maxwellian electron injection in a
wind-type medium. The magenta line in the bottom panel shows the
positron distribution at # = 0.1 s. The simulation parameters are the
same as in Fig. 8, except for e. = 0.1 and A, 35 = 3.

the lifetime of the flow, the low-energy end of a power-law elec-
tron distribution is strongly thermalized due to synchrotron self-
absorption heating, which is usually neglected in similar numer-
ical codes. The shape of the emerging radiation spectrum is still
nearly identical to the case with pure power-law electrons, al-
though a small bump is seen in the synchrotron spectrum thanks
to the Maxwellian shape of the low-energy electrons. However,
the simulation shows that it is necessary to include the self-
absorption heating term in the electron kinetic equation to pre-
vent the electrons from cooling down to the low-energy edge of
the grid as long as thermalization is important.

Additionally, we have demonstrated that a flattening or re-
brightening segment in the forward shock light curve is expected
in the case of purely Maxwellian electron injection in a wave-
band where the observed flux gradually becomes dominated by
the inverse Compton component, as described by Petropoulou
et al. (2011). Such flattenings are observed in a large fraction of
X-ray light curves, but their physical origin is still under debate.
In the ISM simulations, the flux during the flat segments is much

AT7, page 15 of 16


http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201322520&pdf_id=9
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201322520&pdf_id=10

A&A 564, A77 (2014)

T |||||||I T |||||||I T |||||||I T |||||||I T |||||||I T
102k ' XRT band light curve |
_ _.\.\_\\\ E” — 1054 erg N
o £, =107
' ol =
E 10
»
% L
=
g 10°F
S
=
A L
10%
1 |||||||I 1 |||||||I 1 |||||||I 1 |||||||I 1 |||||||I 1

10" 10° 10' 10° 10° 10*
t[s]

Fig.11. Observer frame Swift/XRT band light curves in the case of
Maxwellian electron injection in a wind medium. The solid line is the
fiducial light curve corresponding to Fig. 10. The dotted (dash-dot)
curve is obtained by increasing Ey (ep) by a factor of 100 from the
fiducial value.

lower than in the case of a typical shallow decay phase observed
by Swift/XRT. However, the shallow decay flux in the wind case
could be detectable.
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