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In this White Paper we present the potential of the Enhanced X-ray Timing and Polarimetry (eXTP) mission for determining the
nature of dense matter; neutron star cores host an extreme density regime which cannot be replicated in a terrestrial laboratory. The
tightest statistical constraints on the dense matter equation of state will come from pulse profile modelling of accretion-powered
pulsars, burst oscillation sources, and rotation-powered pulsars. Additional constraints will derive from spin measurements, burst
spectra, and properties of the accretion flows in the vicinity of the neutron star. Under development by an international Consortium
led by the Institute of High Energy Physics of the Chinese Academy of Sciences, the eXTP mission is expected to be launched in
the mid 2020s.
neutron, X-rays, dense matter, equation of state
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1 Introduction

The enhanced X-ray Timing and Polarimetry mission (eXTP)
is a mission concept proposed by a consortium led by the In-
stitute of High Energy Physics of the Chinese Academy of
Sciences, envisaged for a launch in the mid 2020s. eXTP
would carry 4 instrument packages for the 0.5-30 keV band-
pass, its primary purpose being to study conditions of ex-
treme density (this paper), gravity [1] and magnetism [2] in
and around compact objects in the Universe. It would also
be a powerful observatory for a wider range of astrophysical
phenomena since it combines high throughput, good spectral
and timing resolution, polarimetric capability and wide sky
coverage [3].

A detailed description of eXTP’s instrumentation can be
found in ref. [4], but we summarize briefly here. The scien-
tific payload of eXTP consists of the spectroscopic focusing
array (SFA), the polarimetry focusing array (PFA), the large
area detector (LAD), and the wide field monitor (WFM). The
SFA is an array of nine identical X-ray telescopes covering
the energy range 0.5-10 keV with a spectral resolution of
better than 180 eV (full width at half maximum, FWHM)
at 6 keV, and featuring a total effective area of ∼0.7 m2 at
2 keV to ∼ 0.5 m2 at 6 keV. The SFA angular resolution is
required to be less than 1′(HPD). In the current baseline, the
SFA focal plane detectors are silicon-drift detectors (SDDs),
that combine CCD-like spectral resolutions with very small
dead times, and therefore are excellently suited for studies

of the brightest cosmic X-ray sources at the smallest time
scales. The PFA consists of four identical X-ray telescopes
that are sensitive between 2 and 8 keV with a spectral reso-
lution of 1.1 keV at 6 keV (FWHM), have an angular resolu-
tion better than ∼ 30 arcsec (HPD) and a total effective area
of ∼ 900 cm2 at 2 keV (including the detector efficiency).
The PFA features gas pixel detectors (GPDs) to allow polar-
ization measurements in the X-rays. It reaches a minimum
detectable polarization (MDP) of 5% in 100 ks for a source
with the Crab-like spectrum of flux 3×10−11 erg s−1 cm−2 (i.e.
about 1 milliCrab). The LAD has a very large effective area
of ∼ 3.4 m2 at 8 keV, obtained with non-imaging SDDs, ac-
tive between 2 and 30 keV with a spectral resolution of about
260 eV and collimated to a field of view of 1◦ FWHM. The
LAD and the SFA together reach an unprecedented total ef-
fective area of more than 4 m2. The science payload is com-
pleted by the WFM, consisting of 6 coded-mask cameras cov-
ering about 4 sr of the sky at an expected sensitivity of 2.1
mCrab for an exposure time of 50 ks in the 2-50 keV energy
range, and for a typical sensitivity of 0.2 mCrab combining
1 yr of observations outside the Galactic plane. The instru-
ment will feature an angular resolution of a few arcminutes
and will be endowed with an energy resolution at 6 keV of
about 300 eV (FWHM).

The nature of matter under conditions of extreme density
and stability, found only in the cores of neutron stars (NSs),
remains an open question. eXTP’s capabilities will allow us
to statistically infer global properties of NSs (such as their
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mass and radius) to within a few percent. This information
can be used to statistically infer the equation of state of the
matter in the NS interior, and the nature of the forces between
fundamental particles under such extreme conditions. This
White Paper outlines the current state of our understanding
of dense matter physics, the techniques that eXTP will ex-
ploit, and the advances that we expect.

2 The nature of dense matter

One of the overarching goals of modern physics is to under-
stand the nature of the fundamental interactions. Here we fo-
cus on the strong interaction, which controls the properties
of both atomic nuclei and NSs, where gravity compresses
the material in the core of the star to extreme nuclear den-
sities (Figure 1) [5]. NSs are remarkable natural laborato-
ries that allow us to investigate the constituents of matter and
their fundamental interactions under conditions that cannot
be reproduced in any terrestrial laboratory, and to explore the
phase diagram of quantum chromodynamics (QCD) in a re-
gion which is presently inaccessible to numerical calculations
[6].

The quest to test the state of matter under the most ex-
treme conditions and to determine the equation of state (EOS)
encompasses both laboratory experiments and astronomical
observations of stars (Figure 2). Heavy-ion collision experi-
ments currently going on at the Relativistic Heavy Ion Col-
lider (RHIC) at Brookhaven and at the Large Hadron Col-
lider (LHC) at CERN can probe the high temperature and
low density region of the strong interacting matter phase di-

agram. The next generation of heavy-ion colliders such as
the Facility for Antiproton and Ion Research (FAIR) at GSI
in Darmstadt, and the Nuclotron-based Ion Collider Facility
(NICA) at JINR in Dubna will be able to probe high temper-
ature and dense matter (up to ∼ 4 ρsat, see Figure 1) and to
search for the possible existence of a critical endpoint of a
first-order quark deconfinement phase transition. Laboratory
EOS constraints through heavy ion collisions will also be pur-
sued at rare isotope facilities such as RIKEN/RIBF and FRIB
(where the collisions will have less energy but more neutron
richness).

Neutron stars, by contrast, access a unique region of the
QCD phase diagram at low temperature (T ≪ 1 MeV af-
ter a few minutes from the NS birth) and high density (up
to ∼ 10 ρsat) which cannot be explored in the laboratory. In
the simplest picture the core of a NS is modeled as a uni-
form charge-neutral fluid of neutrons n, protons p, electrons
e− and muons µ− in equilibrium with respect to the weak in-
teraction (β-stable nuclear matter). Even in this simplified
picture, the determination of the EOS from the underlying
nuclear interactions is a formidable theoretical problem. One
has to calculate the EOS under extreme conditions of high
density and high neutron-proton asymmetry (see for exam-
ple ref. [7] and Figure 2), in a regime where the properties
of nuclear forces are poorly constrained by nuclear data and
experiments.

Due to the large central densities additional constituents,
such as hyperons [8,9] or a quark deconfined phase of matter
(see for example refs. [10,11]) may also form. The reason for
hyperon formation is simple: the stellar constituents npe−µ−

are different species of fermions, so due to the Pauli principle

Nuclei get 
more
neutron rich
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Figure 1 Schematic structure of a NS (not to scale). The outer layer is a solid ionic crust supported by electron degeneracy pressure. Neutrons begin to leak
out of ions (nuclei) at densities ∼ 4 × 1011 g cm−3 (the neutron drip density, which separates inner from outer crust), where neutron degeneracy also starts to
play a role. At the very base of the crust, nuclei may become very deformed (the pasta phase). At densities ∼ 2 × 1014 g cm−3, the nuclei dissolve completely
and this marks the crust-core boundary. In the core, densities could reach up to ten times ρsat∼ 2.8 × 1014 g cm−3 (ρsat being the density in normal atomic
nuclei). The matter in the core is highly neutron-rich, and the inner core may contain stable states of strange matter in deconfined quark or baryonic form. See
also Figure 1 of ref. [5].
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Figure 2 Hypothetical states of matter accessed by NSs and current or planned laboratory experiments, in the parameter space of temperature, baryon number
density and nuclear asymmetry α = 1 − 2Y where Y is the hadronic charge fraction (α = 0 for matter with equal numbers of neutrons and protons, and
α = 1 for pure neutron matter). NSs access unique states of matter that are either difficult to create in the laboratory—such as nuclear superfluids and perhaps
strange matter states like hyperons—or cannot be created, such as deconfined quarks and the color superconductor phase. For simplicity, the transition region
is shown only in projection on the density-temperature axis. Figure adapted from Figure 2 of ref. [12]; for an alternative visualisation in the parameter space of
temperature and baryon chemical potential, see Figure 2 of ref. [5].

their Fermi energies (chemical potentials) are very rapidly
increasing functions of the density. Above some threshold
density (∼2-4 ρsat) it is energetically favorable to form hy-
perons via the strangeness-changing weak interaction. This
means that there may be different types of compact stars—
nucleonic, hyperonic, hybrid or quark—the latter two con-
taining deconfined up-down-strange quark matter in their
cores.

Various superfluid states produced through Cooper pair-
ing (caused by an attractive component of the baryon-baryon
interaction) are also expected. For example, a neutron su-
perfluid (due to neutron-neutron pairing in the 1S 0 chan-
nel) is expected in the NS inner crust. Many possible color
superconducting phases of quark matter are also expected
[13] in quark deconfined matter. Matter may also be char-
acterized by the formation of different crystalline structures
[14, 15]. These superfluid, color superconducting and crys-
talline phases of matter are of crucial importance for model-
ing NS cooling and pulsar glitches.

Connecting NS parameters to strong interaction physics
can be done because the forces between the nuclear parti-

cles set the stiffness of NS matter [16]. This is encoded in
the EOS, the thermodynamical relation between pressure, en-
ergy density and temperature. The EOS of dense matter is a
basic ingredient for modeling various astrophysical phenom-
ena related to NSs, including core-collapse supernovae and
binary neutron star mergers (note that for most neutron star
scenarios—except immediately after formation or merger—
we can consider the temperature to be effectively zero). The
EOS and NS rotation rate set the gravitational mass M and
equatorial radius R via the stellar structure equations. By
measuring and then inverting the M-R relation, we can thus
recover the EOS [17-19] (Figure 3). To distinguish the mod-
els shown in Figure 3, one needs to measure M and R to pre-
cisions of a few percent, for multiple sources with different
masses.

Most efforts to date to measure the M-R relation have in-
volved modelling the spectra of thermonuclear X-ray bursts
and quiescent low-mass X-ray binaries (see for example refs.
[20-26]). The constraints obtained so far are weak. The tech-
nique also suffers from systematic errors of at least 10% in
absolute flux calibration, and uncertainties in atmospheric
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(a) (b)

Figure 3 The pressure-density relation (EOS) (a) and the corresponding M-R relation (b) for some example models with different microphysics. Nucleonic
(neutrons, protons): models AP3 and AP4 from ref. [27], also used in ref. [28]. Quark (u, d, s quarks): models from refs. [29, 30]. Hybrid (inner core of uds
quarks, outer core of nucleonic matter): models from ref. [31]. Hyperon (inner core of hyperons, outer core of nucleonic matter): Model from ref. [32]. CEFT:
range of nucleonic EOS based on Chiral Effective Field Theory (CEFT) from ref. [33]. pQCD: range of nucleonic EOS from ref. [34] that interpolate from
CEFT at low densities and match to perturbative QCD (pQCD) calculations at higher densities than shown in this figure. All of the EOS shown are compatible
with the existence of ∼ 2 M⊙ NSs.

composition, residual accretion, non-uniform emission, dis-
tance, and identification of photospheric touchdown point
for bright bursts that exhibit Photospheric Radius Expansion
(PRE) (see the discussions in refs. [35-37]). The planned
ESA L-class mission Athena has the right energy band to ex-
ploit this technique [38]: however the systematic uncertain-
ties will remain. The X-ray timing instrument NICER (the
Neutron Star Interior Composition Explorer, see ref. [39]),
which was installed on the International Space Station in
2017 and which will instead use the pulse-profile modelling
technique, is discussed in more detail in sect. 3.4.

Constraints have also been derived via radio pulsar tim-
ing, where the masses of NSs in compact binaries can be
measured very precisely: high mass stars yield the strongest
EOS constraints. However even the discovery of pulsars with
masses ≈ 2 M⊙ (Refs. [40-42]) has left a broad range of EOS
viable, producing radii ranging from 10-14 km for a typical
1.4 M⊙ NS [33]. The next generation of radio telescopes (the
Square Kilometer Array and its precursors) will deliver im-
proved mass measurements. Precision radius measurements,
however, will be more challenging: there is only one system,
the Double Pulsar, for which we expect a radius measurement
with ∼ 5%-10% accuracy (via its moment of inertia) within
the next 20 years [12, 43, 44].

The gravitational wave telescopes Advanced LIGO [45]
and Advanced VIRGO [46], have now made the first direct
detection of a binary NS merger [47]. Gravitational waves
from the late inspirals of binary NSs are sensitive to the EOS,
with departures from the point particle waveform due to tidal
deformation encoding information about the EOS [48]. The
statistical constraints from the first detection are comparable
to and in agreement with those obtained from X-ray spectral

fitting. In the event of a very high signal to noise event, Ad-
vanced LIGO/VIRGO may be able to constrain R to ∼ 10%
[49,50]. More realistic estimates indicate a few tens of detec-
tions are likely to be required to reach this level of accuracy
[51-54]. There may also be systematic errors of comparable
size due to approximations made or higher-order terms ne-
glected in the templates [53,55]. The coalescence can also ex-
cite post-ringdown oscillations in the supermassive NS rem-
nant that may exist very briefly before collapse to a black
hole. These oscillations are sensitive to the finite temperature
EOS [56-58], but detection will be difficult because there are
no complete waveform models for the pre- and post-merger
signal [59]. The eventual detection of NS-black hole binary
mergers may also yield EOS constraints (see for example ref.
[60]). See ref. [3] for other aspects of compact object merger
astrophysics where eXTP can provide information on elec-
tromagnetic counterparts.

The large area and spectral-timing-polarimetric capabili-
ties of eXTP open up new techniques and different sources
to constrain the dense matter EOS, which should allow us to
measure M and R to within a few percent. In the sections that
follow, we outline the various techniques that eXTP will use
to measure the dense matter EOS, and explore its expected
performance in more detail.

3 Pulse profile modelling

3.1 Basic principles of pulse profile modelling

Pulse profile modelling exploits localised, radiatively intense
regions (hereafter ‘hotspots’, specific examples of which will
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be discussed in subsequent sections) that can develop on the
NS. As the star rotates, a hotspot generates an observable pul-
sation in X-rays. Prior to observation, the photons propagate
through the curved exterior spacetime of the spinning com-
pact star. Extensive work on propagation of electromagnetic
radiation through such spacetimes has now quantified fully
the relativistic effects on the photons, and thus on the pulse
profile [61-69]; the simulations in Figure 4 illustrate such ob-
servables, using a realistic Schwarzschild exterior spacetime.

Strictly, the Schwarzschild exterior spacetime is exact only
for spherically symmetric (stress-isotropic, non-rotating)
stars. However the mathematical structure of both the interior
and exterior spacetime of a spinning NS is well understood
in general relativistic gravity; high-accuracy spacetimes for
rapidly spinning NSs can be computed numerically, albeit ex-
pensively (for a review, see ref. [70]). For families of EOS,
there exist (numerically computed) approximate universali-
ties relating first-order (and higher) spacetime structure to
the lowest-order properties—specifically, the mass monopole
moment, the (circumferential) equatorial radius, and the spin
frequency (see for example the review of ref. [71]). In or-
der to simulate observable radiation for the application of
statistical inference, various approximations are employed
which demonstrably reduce computation time. Given univer-
sal relations, one typically embeds an oblate surface—from
which radiation emanates—in an ambient (exterior) space-

time, and either: (i) exploits spherical symmetry of the ex-
terior (Schwarzschild) solution (see for example ref. [66]);
or (ii) permits axisymmetry, but neglects structure beyond
second-order in a metric expansion in terms of a natural vari-
able (see for example refs. [69, 72] and references therein).
The accuracy of these approximations are well understood
(see the discussion in ref. [5]); embedding an oblate star
in an ambient Schwarzschild spacetime introduces negligi-
ble systematic errors in the best-fit masses and radii at spin
rates typical for observed millisecond pulsars. We expect
the statistical uncertainty incurred due to noise in eXTP ob-
servations to dominate systematic biases which would arise
from low-order exterior spacetime approximation. In prac-
tice this should be proven for each relevant generative model
via blind parameter estimation studies, given synthetic data
generated using a higher-order exterior spacetime. Neverthe-
less, in the coming years, algorithmic advances which im-
prove both numerical likelihood evaluation speeds (via, e.g.,
extensive GPU exploitation) and Bayesian posterior sampling
efficiencies may permit us to condition on generative models
using higher-order exterior spacetimes.

We now describe in a simplified manner how relativistic
effects encode information on M and R. General relativistic
(GR) light-bending, which is highly sensitive to compactness
M/R in the near vicinity of the NS, directly affects both the
amplitude of the pulsations and photon time-delays from

(a) (b)

Figure 4 Stellar rotation modulates emission from a hot region (hotspot), generating an X-ray pulsation. Relativistic effects encode information about M
and R in the normalisation and harmonic content of the pulse profile. These effects are key observables exploited by the pulse profile modelling technique,
and include Doppler boosting and gravitational redshifting, time-delays, and light bending (which renders the far side of the star partially visible). The Figure
illustrates these effects for a rapidly spinning, oblate star. We compare pulse profiles generated by a photosphere embedded in a Minkowski exterior spacetime
to those generated by a photosphere embedded in a Schwarzschild exterior spacetime (see text). For the purpose of illustration, we use: a gravitational mass of
1.8 M⊙; an equatorial coordinate radius of 14 km; a coordinate spin frequency of 600 Hz; and a distance of 1 kpc. The observer is in the equatorial plane. The
local photospheric radiation field is completely specified by the local comoving blackbody temperature. The temperature field is non-evolving in the corotating
reference frame, and is constituted by a hotspot of angular radius of 60◦, centred at a colatitude of 60◦. Its temperature falls smoothly from 2.5 keV at the
centre to 0.5 keV at the boundary, where the latter is the temperature everywhere outside the spot boundary. (a) Monochromatic profiles at two energies (2-
10 keV). (b) The resolved stellar photosphere at two rotational phases. The colour corresponds to the redshifted temperature on a distant image-plane.
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distinct points on the NS surface. Gravitational redshifting of
photons is also entirely dependent on the compactness, and
manifests principally in the energy-dependent normalisation
of the pulse profile. Relativistic beaming introduces asym-
metry (harmonic content) in the pulse profile; locally, beam-
ing depends on the projected velocity of the (relativistically
moving) hotspot along a light-ray connecting a point on the
local NS surface to the observer. The functional form of the
local speed contains R and the (asymptotic) spin frequency
of the uniformly rotating star; these two parameters are de-
generate with respect to influence on local beaming. How-
ever, the spin frequency can be accurately measured from the
observed pulse frequency, thus breaking this degeneracy and
increasing the statistical constraining power on R. Figure 5
demonstrates the sensitivity of the observable to changing R
alone, with all other model parameters fixed. The beaming is
also sensitive to local time dilation at the NS surface, which
is in turn sensitive to the compactness (M/R). The pulse pro-
file model enters in a generative model for telescope photon
data, and thus via existing fitting algorithms yields a statisti-
cal constraint on M and R.

Naturally, there are additional model parameters affect-
ing the pulse profile, which must be properly marginalised
over when statistically inferring M and R. These include
the specific details of the photospheric comoving radiation
field (as a function of surface coordinates, emission direc-
tion, and energy), and a priori unknown geometrical factors
(the hotspot size, shape, and colatitude θ; observer inclination
i), and emission from the rest of the star and disk, which may

also exhibit pulsations [73]. However, the resulting degenera-
cies can be broken, allowing successful recovery of M and R
[74-77]. Knowledge of the geometrical factors (enabled by
the polarimetry capabilities of eXTP) further improves statis-
tical constraining power via degeneracy breaking: M,R, and
the nuisance parameters all enter in generative models for ad-
ditional observable quantities.

Radiation emitted by hotspots is expected to be linearly
polarised because the opacity is dominated by electron scat-
tering [78]. Both the observed polarization degree (PD) and
polarization angle (PA) change with the rotational phase ϕ
following variations of the angle between the spot normal and
the line-of-sight and of the position angle of the projection of
the hotspot normal on the sky (see Figure 6). The variation
of PA χ can be well described by the rotating vector model
[79]:

tanχ = − sin θ sin ϕ
sin i cos θ − cos i sin θ cos ϕ

. (1)

This formula can be corrected for the rapid rotation [80, 81]
and gravitational light bending, but these effects are non-
negligible only for spins in excess of 500 Hz [78]. The phase-
dependence of PA allows us to constrain both angles i and θ.

3.2 Accretion-powered millisecond pulsars

Accretion-powered millisecond pulsars (AMPs) contain
weakly magnetised NSs (with B ∼ 108-109 G) accreting mat-
ter from a typically rather small companion star [82]. We

Figure 5 We illustrate the response of monochromatic pulse profiles to variation of the (circumferential) equatorial radius, whilst all other parameters are fixed
at the values implemented in Figure 4. We use the realistic exterior spacetime described in Figure 4. The two synthetic stars shown are of equal gravitational
mass and spin frequency, but have equatorial radii of 10 and 12 km; these stars require distinct EOS models to exist. The pulse profiles are clearly sensitive to
the equatorial radius, and it is the need to detect such differences that drives the design requirements for eXTP.

Downloaded to IP: 130.232.105.130 On: 2018-09-04 18:34:46 http://engine.scichina.com/doi/10.1007/s11433-017-9188-4



A. L. Watts, et al. Sci. China-Phys. Mech. Astron. February (2019) Vol. 62 No. 2 029503-9

Figure 6 The pulse profile as well as the phase-dependence of the PD and PA. The black solid line gives the contribution of two antipodal spots, while
the blue dashed and red dotted lines correspond to the contribution of the primary and secondary spot separately. The pulse profile and PD are degenerate to
exchanging i and θ, while the PA shows dramatically different behaviour allowing both angles to be obtained (adapted from ref. [78]).

now know of 16, all transients that go into outbursts every
few years. NSs in these systems have been spun up by ac-
cretion to millisecond periods. Close to the NS, the accret-
ing matter follows the magnetic field lines hitting the surface
close to the magnetic poles. The resulting shockwave heats
the electrons to ∼30-60 keV producing X-ray radiation by
thermal Comptonization in a slab of Thomson optical depth
of order unity [83]. Rotation of the hotspot causes modula-
tion of the observed flux with the pulsar phase because of the
evolving solid angle subtended on the observer’s sky, as well
as of Doppler boosting. As the observed pulsations indicate
that the shock covers only a small part of the NS surface, the
scattered radiation should be linearly polarized up to 20%,
depending on the pulse phase, the photon energy and the ge-
ometry of the system. In addition to the emission from the
shock, pulsating thermal emission from the heated NS surface
is seen at lower energies. In the peaks of the outbursts, when
the accretion rate is high, the pulse profiles are usually very
stable and rather sinusoidal with a harmonic content growing
towards higher energies as a result of stronger contribution
of the Comptonized emission which has a more anisotropic
emission pattern. The pulse shape implies that only a single
hotspot is seen, while the secondary pole is blocked by the
accretion disk. The pulse stability allows the collection of
millions of photons under constant conditions.

One of the challenges for modelling pulse profiles from
AMPs is the absence of first-principles models that predict
the emission pattern from the shock. The angular depen-
dence, therefore, has to be parametrized, based on models
of radiation transfer in an optically thin slab of hot electrons.

Degeneracy between the number of parameters did not allow
strong constraints on M and R using existing data from the
Rossi X-ray Timing Explorer (RXTE) (see refs. [63, 84-86]).
The LAD on eXTP would allow the collection of many more
photons, and significant improvement in the constraints on
M and R. Furthermore, in a 100 ks observation of a bright
AMP such as SAX J1808.4–3654 or XTE J1751–305 the X-
ray polarimeter onboard of eXTP can measure polarisation in
10 phase bins at the 3σ level and thus determine the basic
geometrical parameters such as spot colatitude and observer
inclination (Figure 6). This not only improves the constraints
on M and R (see solid orange contour in Figure 7), but allows
an independent check of the fitting procedure based on the
pulse profile alone.

Observations with the LAD of the PRE bursts from the
AMPs and analysis of their spectral evolution in the cooling
tail give independent M-R constraints (see for example refs.
[20,24,25,37]). Using the currently most accurate method to
directly fit atmosphere spectral models to the data [25], one
would be able to reduce the error in radius to just a few %, al-
lowing us to put strong constraints on the EOS of cold dense
matter (see dotted orange contour in Figure 7).

3.3 Burst oscillation sources

Hotspots that form during thermonuclear explosions on ac-
creting NSs give rise to pulsations known as burst oscillations
[87,88]. The mechanism responsible for burst oscillations re-
mains unknown: flame spread, uneven cooling, or even sur-
face modes may play a role [89]. However burst oscillation
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Figure 7 Constraints from pulse profile modelling (PPM) and burst spectral
fitting expected for eXTP. EOS models as in Figure 3. The orange dashed
contours show the 1σ constraints obtained from the pulse profiles of the
AMP SAX J1808.4–3658 using RXTE data [63, 90]. The constraints ex-
pected from pulse profile modelling and polarization data using the LAD and
PFA on eXTP, for the same source, from an observation of 100 ks, are shown
by the solid orange contour. Spectral evolution during PRE bursts (observed
from this source) as determined using direct fits with atmosphere spectral
models [25] produces more perpendicular constraints on M and R, given by
dotted orange curves. Combining these methods constrains the mass and ra-
dius of the neutron star to lie within the overlapping region (filled orange),
with errors of a few % on both parameters. Pulse profile modelling of burst
oscillations from this source will provide an entirely independent constraint
on M and R with a similar level of accuracy. These techniques can then be
applied to other known sources (including several AMPs that also have burst
oscillations) to deliver the multiple measurements necessary to map the EOS.

sources are particularly attractive for M-R measurement in
that they are numerous (increasing the odds of sampling a
range of masses), have a well-understood thermal spectrum
[91, 92], and offer multiple opportunities for independent
cross-checks using complementary constraints [74, 93, 94],
thereby reducing systematic errors. Detailed studies have
shown that accuracies of a few % in M and R can be obtained
with 106 pulsed photons [74-76]. In addition the technique is
robust, with clear flags if any of the assumptions made during
the fitting process are breached.

To estimate the observing time that eXTP would require to
obtain measurements of M, R at the few % level for known
sources we can scale from the burst fluxes, burst oscilla-
tion amplitudes, burst recurrence times and the percentage of
bursts with oscillations observed by RXTE. For the persistent
burst oscillation sources 4U 1636–536 and 4U 1728–34 we
would require 350 and 375 ks, respectively. For burst oscilla-
tions from the transient AMPs SAX J1808.4–3658 and XTE
J1814–338 we would require 490 and 275 ks, respectively.
These observing times are substantial, but feasible. Burst os-
cillations from AMPs are particularly useful since the M-R
measurements they generate can be compared to the results
obtained from pulse profile fitting of accretion powered pul-
sations from the same sources (sect. 3.2). In addition the con-
straints on system geometry (inclination) acquired from the

phase-dependence of the polarization of the persistent emis-
sion can also be used in fitting the burst oscillations, reducing
uncertainties on M and R. Additional constraints for burst os-
cillation sources will also come from spectral fitting of strong
bursts showing PRE (see sect. 3.2 and ref. [3]).

3.4 Rotation-powered pulsars

NICER is a NASA Explorer Mission of Opportunity carrying
soft X-ray timing instrument [39] that was installed on the In-
ternational Space Station in June of 2017. NICER applies the
pulse profile modeling technique to X-ray emitting rotation-
powered millisecond pulsars (MSPs) [95]. Since NICER’s
targets rotate relatively slowly (∼200 Hz), the measurements
cannot rely on well-understood Doppler effects to break de-
generacies between M and R. Nevertheless, if the surface
radiation field and mass of the neutron star are known a pri-
ori, NICER could in principle achieve an accuracy of ∼2%
in R [96, 97]. The mass is now known to 5% accuracy for
NICER’s main target, PSR J0437−4715 [98], but is not yet
known for its other top targets. The surface radiation field
depends on the pulsar mechanism and is at present not well
constrained, although theoretical work to address this topic is
underway.

NICER has a peak effective area at 1 keV of 1800 cm2.
eXTP will be a factor of 4-5 larger in the soft waveband,
enabling it to measure energy-resolved pulse waveforms
of the nearest pulsars such as PSR J0437−4715 [97] and
J0030+0451 [99] more efficiently than NICER, thus produc-
ing improved constraints on M-R. Perhaps more importantly,
the larger collecting area and significantly lower background
of the eXTP SFA will enable studies of fainter MSPs that are
not accessible with NICER. Of great interest are nearby MSP
binaries with precise measurements of the NS mass from ra-
dio pulse timing. These include PSR J1614−2230 with M =
(1.928 ± 0.017) M⊙ [42], PSR J2222−0137 (M = (1.20 ±
0.14) M⊙ [100]), PSR J0751+1807 (M = (1.64 ± 0.15) M⊙
[101]), PSR J1909−3744 (M = (1.54 ± 0.027) M⊙ [101]).
The broad range of masses spanned by these systems is par-
ticularly beneficial for mapping out the dependence of R on
M. Figure 8 shows the level of constraints achievable within
∼ 1 Ms exposure times with eXTP for these sources.

4 Spin measurement

NSs with the fastest spins constrain the EOS since the limit-
ing spin rate, at which the equatorial surface velocity is com-
parable to the local orbital velocity and mass-shedding oc-
curs, is a function of M and R (Figure 9). Softer EOS have
smaller R for a given M, and hence have higher limiting spin
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Figure 8 Constraints from pulse profile modelling of rotation-powered
pulsars with eXTP. The orange error contours are for four MSPs for which
masses are known precisely: PSR J1614−2230, PSR J2222−0137, PSR
J0751+1807 and PSR J1909−3744. The 1σ contours shown correspond to
∼ 5%-10% constraints on R with the extent in M corresponding to the 1σ
bounds from the radio measurements. This should be achievable using eXTP
exposures of ∼ 1 Ms for each source. The most stringent constraints on the
EOS are likely to come from the highest mass target, and here more exposure
time would be merited. EOS models as in Figure 3—the underlying model
assumed in the simulations is the AP3 nucleonic EOS (red).

Figure 9 Spin limits on the EOS. The mass-shedding limit can be recast
as an upper limit on radius for a star of a given spin rate [102]. This means
that NSs of a given spin rate must extend to the left of the relevant limit in
the M-R plane (shown as thick violet lines, for various spins). EOS models
as in Figure 3. The current record holder, which spins at 716 Hz [103] is
not constraining. However, given a high enough spin individual EOS can be
ruled out. Above 1000 Hz, for example, some individual EOS in the pQCD
band, and one of the quark star models, would be excluded.

rates. More rapidly spinning NSs place increasingly stringent
constraints on the EOS. The current record holder (the MSP
PSR J1748–2446ad in the Globular Cluster Terzan 5), which
spins at 716 Hz [103], does not rotate rapidly enough to rule
out any EOS models. However the discovery of a NS with a
sub-millisecond spin period would place a strong and clean
constraint on the EOS. There are prospects for finding more

rapidly spinning NSs in future radio surveys [12], however
since the standard formation route for the MSPs is via spin-
up due to accretion [104-106], it is clear that we should look
in the X-ray as well as the radio, and theory has long sug-
gested that accretion could spin stars up close to the break-up
limit [107]. Interestingly the drop-off in spin distribution at
high spin rates seen in the MSP sample is not seen in the cur-
rent (albeit much more limited) sample of accreting NSs [5].

Since eXTP would have a larger effective area than all
preceding X-ray timing missions [4], it is well suited to dis-
cover many more NS spins, using both burst oscillations and
accretion-powered pulsations. We know from RXTE that
the latter can be highly intermittent [108-110], perhaps due
to the way that accretion flows are channeled onto weakly
magnetized NSs [111], or because these systems are close to
alignment [112]. In addition, weak persistent pulsations are
expected in systems where magnetic field evolution as ac-
cretion progresses has driven the system towards alignment
[113]. Searches for weak pulsations can exploit the sophisti-
cated semi-coherent techniques being used for the Fermi pul-
sar surveys [114-117], which compensate for orbital Doppler
smearing.

eXTP will be able to detect burst oscillations in individ-
ual Type I X-ray bursts to amplitudes of 0.4% (1.3%) rms
in the burst tail (rise) assuming a 10 s (1 s) integration time;
by stacking bursts, sensitivity improves. In estimating de-
tectability of accretion-powered pulsations with eXTP we
consider three source classes: bright (e.g. Sco X-1), mod-
erate (e.g. Aql X-1) and faint (e.g. XTE J1807–294)1). We
consider both coherent and semi-coherent searches. Coher-
ent searches consider a simple FFT in a short data segment
so that we do not lose coherence of the signal as a conse-
quence of Doppler shifts induced by the orbital motion. We
consider a duration of 128 s, comparable to the duration of
intermittent pulsation episodes seen in Aql X-1 [109]. Under
these assumptions, eXTP will be able to perform a coher-
ent search for intermittent pulsations down to amplitudes of
0.04% (bright), 0.3% rms (moderate), 1.9% rms (faint) (5 σ
single trial limits).

For semi-coherent searches, we assume a 10 ks long obser-
vation, which need not be continuous, and coherence lengths
(the segment over which we can search for individual trains of
coherent pulsations) of 256 and 512 s. These assumptions are
extremely conservative, and we would expect to be able to do
better than this for many of our target sources, for which we
know orbital parameters, reducing the number of templates
to be searched. For this type of search eXTP would be sen-
sitive down to amplitudes of 0.01% rms (bright), 0.1% rms
(moderate), and 0.6% rms (faint) (5 σ single trial limits).

1) The assumed fluxes are as follows: Sco X-1, 0.5-10 keV flux of 1.6 × 10−7 erg/cm2/s [118]; Aql X-1, 0.5-10 keV flux of 3.3 × 10−9 erg/cm2/s [119];
XTE J1807–294, 0.5-10 keV flux of 1.7 × 10−10 erg/cm2/s [120].
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eXTP can also conduct blind searches of nearby (less than
3 kpc) Fermi LAT sources that are suspected eclipsing red-
back and transitional MSP binaries similar to the canonical
“missing link” PSR J1023+0038 [121] and XSS J2124–3358
[122]. There are a handful of candidates that seem to be
undetectable even in deep radio pulsation searches, but are
by all other accounts strong redback MSP candidates. The
716 Hz MSP in Terzan 5 is actually one of these eclipsing
redback binaries, so conceivably some of these Fermi sources
may be harboring even faster MSPs.

5 Constraints from accretion flows in the disks

of NS Low Mass X-ray Binaries

The advanced timing and polarimetry capabilities of eXTP
will also enable other methods that could constrain the EOS
for accreting NSs. The methods outlined in this section are
derived from phenomena associated with the inner parts of
the accretion disk. Compared to the spin rate constraint de-
scribed in sect. 4 they are more model-dependent. How-
ever, they are nonetheless powerful as they provide additional
complementary cross-checks and allow us to calibrate differ-
ent techniques to extend our reach to a wider range of sources.
See the eXTP White Papers on Strong Gravity [1] and Obser-
vatory Science [3] for further discussion of accretion flows.

5.1 Kilohertz Quasi-Periodic Oscillations (QPOs)

Kilohertz QPOs are rapid variations in the intensity of NS
Low Mass X-ray Binaries (LMXBs), both persistent and tran-
sient [123]. RXTE observed this phenomenon in a few tens
of sources. The corresponding millisecond time scale is so
short that the QPOs must be associated with dynamical time
scales in the accretion flow in the vicinity of NSs. In many
cases, these QPOs are seen as twin peaks in the Fourier power
spectra. If one of the twin peaks is an indicator of the orbital
motion in the accretion flow, it would put a constraint on NS
mass and radius: the stable orbit must be outside the NS so
at its smallest at either the NS radius or the innermost stable
circular orbit (ISCO) [124].

In addition to the association of the kHz QPOs with or-
bital motion in the innermost accretion flow onto NSs based
on the millisecond time scales, there is increasing observa-
tional evidence that the kHz QPOs do indeed indicate the
orbital frequency in the accretion flow (or boundary layer)
surrounding the NS. The frequency of the lower kHz QPOs is
anti-correlated with the mHz QPO flux in 4U 1608–52, which
is consistent with a modulation of the orbital frequency un-
der radiation force from the NS [125]. The pulse amplitude

changes significantly when the upper kHz QPO passes the
spin frequency in the accretion-powered millisecond pulsar
SAX J1808.4–3654, strongly suggesting that the QPO is pro-
duced by azimuthal motion at the inner edge of the accretion
disk, most likely orbital motion [126].

The behaviour of the QPOs as they approach their highest
frequencies was difficult to resolve with RXTE as both ampli-
tude and coherence drop at this point, although the behaviour
is consistent with that expected near the ISCO [127]. eXTP
will make breakthroughs by being able to track the QPOs
to higher frequencies where the amplitudes are weaker, and
to investigate QPO variability on timescales a factor ∼ 10
shorter. The latter is very important: QPOs in Sco X-1, for
example, have been observed to drift by more than 22 Hz in
0.08 s [128].

The QPO coherence drop and rapid frequency drifts may
be due to radiation force effects on the orbital frequency in the
accretion flow, since an anti-correlation between kHz QPO
frequency and X-ray flux was detected on the time scales of
lower frequency QPOs (where the flux probably originates
from the NS [125, 128]). In sources with the most detections
of kHz QPOs such as 4U 1636–536, the maximum QPO fre-
quency seems to be anti-correlated with the X-ray flux [129].
Both this anti-correlation and the QPO coherence variation
can be explained by radiation force effects. The rate at which
the QPO frequencies change as a function of the QPO fre-
quencies themselves also supports a scenario in which the
inner part of the accretion disc is truncated at a radius that
is set by the combined effect of viscosity and radiation drag
[130]. This in turn can put constraints on the NS EOS by
measurements of the maximum kHz QPO frequency and the
X-ray flux [131], although relativistic magnetohydrodynami-
cal simulations with radiation will be needed to create models
of sufficient accuracy.

The energy-dependent time lags of the kHz QPOs [132]
offer an independent constraint on the physical size of the
accretion disc, and hence the NS. Together with the time-
averaged spectrum of the source, a combination of the fre-
quency, amplitude and time lag of these variability features
over very short time scales (see for example refs. [133-135])
will provide the transfer function of the system. This depends
upon the physical size of the accretion disc and the corona,
and hence can be used to further constrain the radius of the
NS. With eXTP, the maximum kHz QPO frequency measured
in bright sources on short time scales, and in sources at lower
flux levels, would increase by about 50 Hz (or 5%). Using the
ISCO model of ref. [124], this would lower the upper limit on
the NS radius by ∼0.5 km or the mass by ∼ 0.1 M⊙ (∼ 5% and
∼ 7% respectively for a 10 km 1.4 M⊙ NS). Corrections for
radiation force effects would modify these estimates some-
what.
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5.2 Constraints from relativistic Fe line modelling

A broad relativistic Fe Kα spectral emission line is observed
from many stellar-mass and supermassive black hole systems
[136-138]. Such a fluorescent line near 6 keV is believed to
be generated by the reflection of hard X-rays from the accre-
tion disk, and is shaped by various physical effects, such as
the Doppler effect, special relativistic beaming, gravitational
redshifting and GR light-bending. The properties of this line
can be used to measure rinc2/GM, i.e., the inner-edge radius
rin of the accretion disk in the unit of the black hole mass M.
By considering the disk inner-edge to be the innermost stable
circular orbit (ISCO), which may be a reasonable assumption
for black holes, one can also infer the black hole angular mo-
mentum parameter for the Kerr spacetime.

A broad relativistic spectral line has also been observed
from a number of NS LMXBs [139-145]. As for black
holes, one can infer rinc2/GM for NSs from the relativistic
Fe line. Since the disk inner edge radius rin ≥ R, the in-
ferred rinc2/GM provides an upper limit on Rc2/GM. One can
therefore use M-rinc2/GM space (instead of M-R space) for a
known spin to constrain EOS models (Figure 10) [146]. This
method requires computations of rinc2/GM for given M, spin
and EOS models. Note that, while rin = rISCO (i.e., ISCO
radius) for a black hole, rin is either rISCO or R, whichever
is greater, for a NS. For a spinning (Kerr) black hole, rISCO

can be analytically computed as a function of M and a. For
a NS in an LMXB, one must compute rISCO and R values

numerically for various EOS models and NS configurations,
using an appropriate rapidly spinning stellar spacetime. Sim-
ulations for the eXTP LAD show that a statistical error of
less than 0.1 in rinc2/GM, sufficient to distinguish models, is
achievable with a 30 ks exposure [147] (Figure 10).

6 Summary

eXTP offers unprecedented discovery space for the EOS of
cold supranuclear density matter. eXTP’s large area will en-
able the most sensitive searches for accretion-powered pul-
sations and burst oscillations ever undertaken. Both yield
the spin frequency of the NS; a single measurement of sub
millisecond period spin would provide a clean and extremely
robust constraint on the EOS.

However, eXTP will also deliver high precision measure-
ments of M and R. The combination of large effective
area and polarimeter will enable us to deploy multiple in-
dependent techniques: pulse profile modelling of accretion-
powered pulsations, burst oscillations, and rotation-powered
pulsations; spectral modelling of bursts, and using phenom-
ena related to the accretion disc such as kHz QPOs and the
relativistic Fe line. Many sources show several of these phe-
nomena, allowing us to make completely independent mea-
surements for a single source, to reduce systematic er-
rors. Examples of targets in this class include the accretion-
powered millisecond pulsar SAX J1808.4–3658, which goes

(a)
(b)

Figure 10 EOS constraints from relativistic Fe line modelling. (a) (Adapted from ref. [146]): M versus rinc2/GM curves for two reasonable values of
spin, and for two currently viable EOS models: one very stiff (A) and one of intermediate stiffness (B). On the straight (near horizontal) portions, rin=R;
elsewhere rin = rISCO. Since the geometrically thin accretion disk, which gives rise to the broad relativistic line, may be truncated by radiation pressure or a
stellar magnetic field at a radius larger than rISCO and R, the observationally inferred rinc2/GM is an upper limit. If M can be measured independently (e.g.
by one of the other methods described in this white paper), this upper limit on rinc2/GM provides an extra constraint on the EOS. In addition, if the upper
limit of rinc2/GM is sufficiently small, softer EOS models can be ruled out without a mass measurement. (b) Simulated relativistic Fe line spectrum for a
30 ks observation with eXTP (residual plot). We assume a wabs(bbody+diskbb+powerlaw+diskline) XSPEC model with reasonable values of 2-20 keV flux
(6.4 × 10−9 erg cm−2 s−1) and line equivalent width (124 eV).
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into regular outburst, and the persistently accreting burster
4U 1636–536. We anticipate that eXTP could delivery preci-
sion constraints on M and R, at the few percent level, for of
order 10 sources for a reasonable observing plan and given
the anticipated mission lifetime. This would be unprece-
dented in terms of mapping the EOS and expanding the fron-
tiers of dense matter physics.
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tron. Astrophys. 543, A157 (2012), arXiv: 1111.6942.
33 K. Hebeler, J. M. Lattimer, C. J. Pethick, and A. Schwenk, Astrophys.

J. 773, 11 (2013), arXiv: 1303.4662.
34 A. Kurkela, E. S. Fraga, J. Schaffner-Bielich, and A. Vuorinen, As-

trophys. J. 789, 127 (2014).
35 M. C. Miller, arXiv: 1312.0029.
36 C. O. Heinke, H. N. Cohn, P. M. Lugger, N. A. Webb, W. C. G. Ho, J.

Anderson, S. Campana, S. Bogdanov, D. Haggard, A. M. Cool, and
J. E. Grindlay, Mon. Not. R. Astron. Soc. 444, 443 (2014), arXiv:
1406.1497.
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