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ABSTRACT

When the accretion disc around a weakly magnetised neutron star (NS) meets the stellar surface, it should brake down to match the
rotation of the NS, forming a boundary layer. As the mechanisms potentially responsible for this braking are apparently inefficient, it
is reasonable to consider this layer as a spreading layer (SL) with negligible radial extent and structure. We perform hydrodynamical
2D spectral simulations of an SL, considering the disc as a source of matter and angular momentum. Interaction of new, rapidly
rotating matter with the pre-existing, relatively slow material co-rotating with the star leads to instabilities capable of transferring
angular momentum and creating variability on dynamical timescales. For small accretion rates, we find that the SL is unstable for
heating instability that disrupts the initial latitudinal symmetry and produces large deviations between the two hemispheres. This
instability also results in breaking of the axial symmetry as coherent flow structures are formed and escape from the SL intermittently.
At enhanced accretion rates, the SL is prone to shearing instability and acts as a source of oblique waves that propagate towards
the poles, leading to patterns that again break the axial symmetry. We compute artificial light curves of an SL viewed at different
inclination angles. Most of the simulated light curves show oscillations at frequencies close to 1 kHz. We interpret these oscillations
as inertial modes excited by shear instabilities near the boundary of the SL. Their frequencies, dependence on flux, and amplitude
variations can explain the high-frequency pair quasi-periodic oscillations observed in many low-mass X-ray binaries.

Key words. accretion, accretion disks – stars: neutron – methods: numerical

1. Introduction

For a non-magnetised accretor with a fluid or solid surface, non-
relativistic disc accretion releases only about half of the gravita-
tional binding energy. The other half is stored as kinetic energy
of the flow (see e.g. Sibgatullin & Sunyaev 2000). As the accre-
tor is unlikely to rotate close to its breakup limit, a greater pro-
portion of this energy will still dissipate close to the surface of
the accretor in what is called a boundary layer (BL). There is
no commonly accepted view of a BL; even its basic geometry is
uncertain.

Boundary layers are expected to appear during disc accre-
tion onto stars and compact objects with relatively weak mag-
netic fields that are incapable of creating a magnetosphere. For
neutron stars (NS), this happens for a surface magnetic field
B . 108 G if the accretion rate is approximately Eddington.
Lower mass accretion rates set a stronger limit for the mag-
netic field that is proportional to the square root of the accre-
tion rate (see e.g. Lamb et al. 1973). This case is relevant for
old NSs in low-mass X-ray binaries (LMXBs). In particular, the
BL apparently plays an important role in the so-called Z and
atoll sources (as classified by Hasinger & van der Klis 1989).
Combined spectral and timing observations of LMXBs allow
the contribution of the BL to be separated from that of the

accretion disc (Gilfanov et al. 2003; Revnivtsev & Gilfanov
2006). Emission of the boundary layer is hotter, with a colour
temperature of about 2.5 keV. The BL spectral component is
more variable than the disc on short, dynamical timescales. In
particular, the highest-frequency, kilohertz quasi-periodic oscil-
lations (kHz QPOs; see e.g. van der Klis 2000) can be interpreted
as some type of BL activity. This is supported by the fact that,
while the properties of all the low-frequency QPO types are quite
similar in NS and black-hole LMXBs, kHz QPOs behave in a
profoundly different way for NS sources (Motta et al. 2017). It
appears natural to attribute this difference to the existence of a
solid surface and a BL.

These QPOs are often observed in pairs, and the distance
between peaks is either close to the frequency of burst oscilla-
tions (itself well consistent with the spin frequency of the NS;
see van der Klis 2000) or to one half of this value (Méndez
et al. 1998; Wijnands et al. 2003). As the observational data
accumulate, the picture becomes more complicated, favouring
rather a universal, sometimes variable frequency difference of
∆ f ∼ 300 Hz (Méndez & Belloni 2007), close to but not equal
or proportional to the spin frequency. Normally, there are only
two kHz peaks present. One explanation is a bright spot rotating
at a frequency of the order of Keplerian frequency (for a con-
ventional NS with a mass of 1.5 M�, and radius 12 km, linear
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Keplerian frequency is fK ' 1.5 kHz) and producing one peak
due to visibility effects and the other due to interaction with
non-axisymmetric structures at the surface of the NS. This inter-
pretation is known as a beat-frequency model (first apparently
proposed by Lamb et al. 1985 in the context of a different QPO
type) and implies strict equality between the difference in the
frequencies of the two QPOs and the spin frequency of the
NS. Also, different types of beat-frequency models that do not
involve a BL were proposed to explain the properties of kHz
QPOs. The best known are the magnetospheric beat-frequency
model (Psaltis et al. 1998), considering LMXBs as magnetised
accretors with very compact magnetospheres, and the sonic-
point beat frequency model (Miller et al. 1998). The latter relies
on the strong gravity effects that for a conventional NS place the
last stable Keplerian orbit at a radius somewhat larger than the
radius of the star. Both models require some mechanism gener-
ating narrow-band variability at the local Keplerian frequency.
Resonances between Keplerian, epicyclic, and vertical epicyclic
frequencies emerging in general relativistic solutions are appar-
ently a good explanation for the kHz QPOs in black hole systems
(Kluzniak & Abramowicz 2001; Kluźniak et al. 2004), but pre-
dict a fixed ratio of 2:3 for the peak frequencies. In NS systems,
the frequency ratio varies in rather broad limits, and 2:3 is only a
crude approximation. The caveats of the conventional resonance
model were considered by Rebusco (2008).

Quasi-periodic oscillation frequencies shift with time,
remaining correlated with the observed flux on short timescales
(hours and less) and uncorrelated on longer timescales. This
creates parallel tracks in the flux versus QPO-frequency plot
(Méndez et al. 1999; van der Klis 2001), suggesting that a BL
possesses a characteristic correlation timescales much longer
than even the viscous timescales in the disc (on which the mass
accretion rate varies). It is difficult to suggest a way in which the
accretion disc could produce the parallel tracks, as its variability
is governed essentially by a single parameter: the mass accretion
rate. If the BL is weakly coupled with the surface of the star, it is
a good candidate for such an “integrator”. The rich phenomenol-
ogy of kHz QPOs is a potentially important source of informa-
tion about the NS itself and the physics of the flows close to its
surface. However, besides the numerous observational clues and
the variety of existing models, little is known about the mecha-
nisms and exact relations between the quantities.

The classical approach to the BL considers the flow as
some part of the disc (Pringle 1977; Popham & Narayan 1995)
where the rotation velocity deviates strongly from Keplerian
rotation and matches the rotation rate of the star at the inner
edge. Strongly non-Keplerian rotation means that the approxi-
mations used as the basis for the thin disc approach are no longer
valid, and the radial structure of the flow is strongly affected by
the radial pressure gradient. Another problem is the efficiency
of angular momentum exchange in the BL. In a hot (ionized)
accretion disc with a rotation law close to Keplerian, there is
an outward angular momentum transfer provided by the mag-
netohydrodynamic (MHD) turbulence generated by magneto-
rotational instability (MRI; introduced in the astrophysical
context by Balbus & Hawley 1991), which is only operational
when the angular velocity decreases with the cylindrical radial
coordinate. For a BL, the rotation profile does not in general ful-
fil the necessary condition for MRI. It is unclear which phys-
ical mechanisms are responsible for the angular momentum
exchange between the accreted matter and the surface of the
star. In practically any possible BL model, the Rayleigh stability
criterion (Rincon et al. 2007) is satisfied. Hydrodynamic turbu-
lence is still produced for large enough Reynolds numbers (see

Zhuravlev & Razdoburdin 2018 for a detailed analysis), but the
amplitudes of turbulent motions are apparently insufficient for
efficient angular momentum transfer. The very existence of the
extremely long correlation timescale mentioned above suggests
that irrespective of the mechanism of angular momentum trans-
fer, it is extremely slow and inefficient.

A good candidate for such a mechanism is supersonic shear
instability at the interface between the star and the BL (Belyaev
et al. 2013; Hertfelder & Kley 2015; Philippov et al. 2016;
Belyaev & Quataert 2018). Unlike the classical subsonic Kelvin-
Helmholtz instability, oblique waves rather than vortices are
generated. Moving in a shear velocity flow, the waves create
Reynolds stress and thus provide effective non-local viscos-
ity not only in the BL but also in the accretion disc. Most
of the numerical studies mentioned above considered a two-
dimensional problem either in the equatorial plane or at a fixed
latitude on a conical surface, as did Philippov et al. (2016).
Belyaev & Quataert (2018) considered a three-dimensional local
MHD problem with a fixed equation of state, mainly address-
ing the structure of the flow in the equatorial plane. Depend-
ing on the particular simulation setup, the contribution of the
wave-mediated angular momentum transfer varies from negligi-
bly small to somewhat comparable to that of the MHD turbu-
lence generated in the disc.

If the angular momentum exchange rate between the accret-
ing matter and the material of the star is smaller than the angu-
lar momentum supply from the disc, rapidly rotating matter
would accumulate on the surface, pushed to higher latitudes
by pressure gradient. The radial dimension of such a flow, as
well as of a conventional BL, is second order in relative disc
thickness, much smaller than its vertical (along the polar angle)
extent (Papaloizou & Stanley 1986). Consequently, one can treat
the flow as two-dimensional (2D) on the surface of the NS
fed by matter and angular momentum injection from the disc.
This approach, known as the spreading layer (SL) approach,
was introduced by Inogamov & Sunyaev (1999) and further
developed in Suleimanov & Poutanen (2006) and Inogamov &
Sunyaev (2010). For the case of accreting white dwarfs, this
model was considered by Piro & Bildsten (2004a) and used to
explain a certain type of QPO observed in cataclysmic variables,
the so-called dwarf-nova oscillations (DNOs; Piro & Bildsten
2004b). The angular momentum transfer within the SL depends
on the dynamics of the flow itself as well as existing oscilla-
tion and instability modes. It is quite probable that certain hydro-
dynamical phenomena will provide an efficient way to transfer
momentum within the SL and thus define its internal dynam-
ics. In this paper, we try to address the issue of angular momen-
tum transfer within the layer using numerical hydrodynamical
simulations.

Two-dimensional hydrodynamics on a rotating sphere is
an important subject in geophysics and astrophysics, as many
spherical bodies, including planets, stars, and NSs, have fluid
atmospheres. Vertically integrated equations of hydrodynam-
ics lead to the system of shallow water equations (see e.g.
Vreugdenhil 1990), normally used in geophysics for weather
forecasts in combination with spectral methods (Jakob-Chien
et al. 1995). Spectral methods provide much higher accuracy
than finite-difference methods on an equally fine grid, and are
quite robust and stable for subsonic flows. However, rotation in a
SL is almost always supersonic, which makes the flow compress-
ible and its simulations potentially prone to numerical insta-
bilities. This makes numerical simulations of spreading layers
technically challenging. On the other hand, using spherical
harmonics is natural in spherical coordinates and allows the
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singularity of the spherical grid near its axis to be avoided. We
provide our full simulation code SLayer as open-source soft-
ware 1.

The paper is organised as follows. In Sect. 2, we formulate
the physical problem and derive all the basic equations. Results
of the simulations are given in Sect. 3. Applications and limi-
tations of the model are discussed in Sect. 4. We conclude in
Sect. 5. A detailed description of the numerical techniques is
given in Appendix B.

2. Physical model

2.1. Scales and dimensionless quantities

Natural timescale in the vicinity of a relativistic object of mass
M is

tg =
GM
c3 ' 7 × 10−6 M

1.4 M�
s, (1)

which is the approximate light-crossing or dynamical timescale
at the event horizon. The corresponding radius is

Rg =
GM
c2 ' 2

M
1.4 M�

km· (2)

The radius of the NS is taken as R∗ ' 12 km ' 6Rg assuming
a mass of 1.4 M� (see e.g. the estimates of masses and radii in
Miller & Lamb 2016; Nättilä et al. 2017).

All the geometrical and kinematic quantities are naturally
normalised by combinations of these spatial and temporal scales.
In particular, velocities in units of the speed of light c are used.
We use physical quantities (g cm−2) for Σ and internally nor-
malise the surface density by an arbitrary scale set either to 104

or to 108 g cm−2 for the simulations presented in this paper. Evi-
dence for a very long correlation timescale tcorr suggests a char-
acteristic value of

Σch ∼
Ṁtcorr

4πR2 ' 2 × 108 Ṁ
1018 g s−1

tcorr

1 h

(
12 km

R∗

)2

g cm−2. (3)

The physical meaning of this value is the mean surface density
if tcorr is a characteristic time of mass depletion or replenishment
in the SL. The vertical optical depth of the layer is simply κΣ,
where κ is opacity. Here, we set κ to Thomson electron scattering
opacity for Solar metallicity, κT ' 0.34 cm2 g−1.

The problem has a complex hierarchy of timescales, starting
with the dynamical scale, which is normally the smallest. The
characteristic dynamical timescale is the Keplerian period near
the surface of the NS:

tdyn = 2π

√
R3
∗

GM∗
' 6 × 10−4

( R∗
12 km

)3/2 (
M∗

1.4 M�

)−1/2

s. (4)

The local thermal timescale depends on the effective and inter-
nal temperatures. For LMXBs, in Z and brighter atoll states,
mass accretion rates span the range 1015−1018 g s−1 (10−11–
10−8 M� yr−1) which implies effective temperatures of the order

Teff '

(
GMṀ

8πσSBR3
∗

)1/4

' 1.4
(

M
1.4 M�

)1/4 ( R∗
12 km

)−3/4 (
Ṁ

1018 g s−1

)1/4

keV. (5)

1 https://github.com/pabolmasov/SLayer

As half of the accretion power is emitted by the disc, we use 8π
in the denominator for this estimate. Internal temperature, Tin,
is about a factor (κΣ)1/4 ∼ 100 times larger if Σ ∼ 108 g cm−2

is taken as a representative value. The thermal timescale is then
easy to estimate, separating contributions of the radiation and
gas pressure. If β is the gas pressure fraction,

tthermal, gas ∼
E

Q−
∼

12
5

1 − β/2
β

2kTinΣ

mpσT 4
eff

∼ 40
1 − β/2

β

Σ

108 g cm−2

( Tin

100 keV

) ( Teff

1 keV

)−4

s,
(6)

where Q− represents the energy lost via radiation (introduced
more rigorously in Sect. 2.5). Dependence on the gas pressure
fraction follows from the relations between the vertically inte-
grated and local quantities derived below in Sect. 2.3. As the
gas becomes radiation-pressure dominated, β approaches zero,
and the thermal timescale becomes longer. As we show below
(Eq. (15)), the gas pressure ratio is related to the Eddington fac-
tor κQ−/cgeff = 1 − β. Violation of the local Eddington limit
in our model is impossible as it makes the effective gravity
negative, and the material of the layer unbound. On the other
hand, the amount of internal energy stored in the layer is essen-
tially unlimited (E ∝ β−1). However, for very small β, the ver-
tical thickness of the layer (see Eq. (21)) becomes comparable
to R∗ and thus limits the thermal energy stored in the SL. For
Tin = 100 keV, the minimal possible gas pressure fraction is
about βmin ' 10−4, which corresponds to a thermal timescale
longer than a day, meaning that very rapid accretion effectively
runs in a radiatively inefficient regime. If energy release is close
to equilibrium with radiation losses, the effective temperature
does not change significantly, and most of the variations of the
thermal timescale are related to the energy stored by gas and
trapped radiation. Thermal and dynamical timescales become
comparable if the surface density is small, Σ . 103 g cm−2.

The challenge of SL simulations for the case of LMXBs is
in the relatively long accretion timescale. While phenomena like
kHz QPOs manifest themselves on dynamical timescales of mil-
liseconds, the accretion rate is relatively stable at the scales of
minutes to hours (viscous times of the inner disc), and the puta-
tive time of mass growth and depletion in a SL is apparently of
the same order. However, these timescales are much longer than
both the thermal and dynamical timescales.

Hence, all the dynamical and thermal-timescale phenomena
we intend to consider appear in fact in a quasi-stationary SL
where mass accreted during the considered timescales is neg-
ligibly small. However, to reach such an equilibrium state, one
needs to simulate either an episode of much more rapid accre-
tion or, alternatively, accretion atop a much thinner atmosphere,
where the surface densities of pre-existing and newly accreted
material would be comparable on a reasonable timescale of the
simulation run. We try both approaches.

2.2. Geometry and mass conservation

Continuity equation for density ρ and velocity vvv in the most gen-
eral Newtonian form is

∂ρ

∂t
= −∇ · (ρvvv) + source/sink terms. (7)

Integration over r yields

∂Σ

∂t
= −∇ · (Σvvv) + S + − S −, (8)
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Fig. 1. Illustration of the model geometry. The tilted blue arc near the
equator shows the source of mass and momentum. The spin axis of the
star, marked with Ω∗, is inclined with respect to the disc axis (Ωd), by
an angle i.

where S ± are the source and sink terms for surface density. The
source term is set explicitly as an inclined belt (to account for the
case where the disc is inclined with respect to the rotation axis
of the NS),

S + = S +
norme−(cosα/ cosα0)2/2, (9)

where α is the angular distance from the direction of the adopted
disc rotation axis,

cosα = cos θ cos i + sin θ sin i cosϕ, (10)

where disc inclination i with respect to the spin axis of the star
sets the direction of the symmetry and rotation axis of the source
(see Fig. 1). Here, we use a spherical coordinate system consist-
ing of radial coordinate r, co-latitude θ, and longitude ϕ. Instead
of θ, latitude λ = π/2 − θ is used below for visualisation. The
system is aligned with the rotation of the star, but is itself non-
rotating (inertial). The SL is considered thin in the radial direc-
tion, making r, in a sense, a vertical coordinate, along which
hydrostatic equilibrium is assumed to hold. See Sect. 2.3 for
more details.

Adding a sink allows to limit the growth of the mass of the
SL and approach a quasi-stationary state. Matter existing long
enough on the surface of the NS should adopt its velocity and
physical properties. As our model adopts a simplified vertical
structure, adding a sink allows to draw an effective boundary
between the SL and the material of the NS. In this paper, we
ignore the sink term, but include it in the equations for future
use in the form

S − =
Σ

tdepl
, (11)

where tdepl is a depletion timescale set explicitly. This form is
valuable for its simplicity and allows us to study the role of the
mass of the SL by considering a gradual depletion regime (mass

accretion is switched off but the sink is not) and the steady-state
spreading regime by turning simultaneously on both the source
and the sink.

We also use a tracer quantity a to separate the contributions
of the pre-existing and newly accreted material. It is assumed to
be a passive scalar quantity transferred with the flow and initially
equal to zero. The source of this quantity is designed in such
a way as to reproduce the evolving fraction of newly accreted
matter,

∂a
∂t

+ (vvv · ∇)a = (1 − a)
S +

Σ
· (12)

2.3. Vertical structure

In the vertical (radial) direction, SL is supported by thermal (gas
and radiation) pressure together with the relevant centrifugal
force component. As we consider the vertical extent of the SL
to be infinitely small, the timescale of vertical dynamical relax-
ation should also be small, and therefore we neglect the effect of
radial velocity in momentum and energy equations. This allows
us to write down a hydrostatic balance equation

1
ρ

∂p
∂r

= −geff = −
GM
r2 +

v2
θ + v2

ϕ

r
, (13)

which needs to be supplemented by another equation to cal-
culate the vertical profiles of pressure and density simultane-
ously. Let us assume, following Inogamov & Sunyaev (1999)
and Suleimanov & Poutanen (2006), that the heat is released at
the bottom of the SL, and the optical depth is high enough to use
the radiation diffusion approximation. Hence, radiation flux F is
constant with height

F = −
c
κρ

∂prad

∂r
, (14)

where prad is radiation pressure. Total pressure is assumed to be
contributed by prad and gas pressure pgas. Together, Eqs. (13)
and (14) imply a constant pressure ratio β = pgas/p as long as
opacity is constant with height. Hence, gas, radiation, and total
pressure scale with each other, and the gas-to-total pressure ratio
equals

β = 1 −
κF

cgeff

· (15)

Proportionality of pressures also implies p ∝ ρT ∝ T 4, which
leads to p ∝ ρ4/3, an effectively polytropic law. This implies a
relation between the pressure p0 and density ρ0 at the bottom
of the SL and the corresponding vertically integrated quantities,
pressure Π =

∫
pdr and surface density Σ =

∫
ρdr,

Π =
4
5

p0

ρ0
Σ. (16)

Constancy of β allows also to link surface energy density E =∫
εdr (where ε is the volumetric energy density) and inte-

grated pressure Π with each other. Local energy density may be
expressed as

ε = 3
(
1 −

β

2

)
p, (17)

which implies an identical relation for the vertically integrated
quantities

E = 3
(
1 −

β

2

)
Π. (18)
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The pressure ratio itself may be found as a function of E (or Π)
and Σ. At the bottom of the layer,

β =
ρ0kT0

mp0
=

k
m
ρ0

p0

(
3
4

c
σSB

(1 − β) p0

)1/4

, (19)

where m ' 0.6mp is the mean mass of a massive particle, which
allows us to solve implicitly for β, taking into account the expres-
sion for p0 = geffΣ arising as a solution to Eq. (13) and Eq. (18)
and substituting them into Eq. (19):

β

(1 − β)1/4 (1 − β/2)
=

12
5

k
m

(
3
4

c
σSB

geffΣ

)1/4
Σ

E
. (20)

The thickness of the layer may be found as the solution of hydro-
static equation, taking into account the constancy of β (see also
Eq. (32) in Suleimanov & Poutanen 2006) as

H =
5Π

geffΣ
=

5
β

2kTin

mpgeff

· (21)

Strictly speaking, the adopted dissipation at the bottom of
the layer is a very simplified picture, as the energy dissipation is
in general distributed along the vertical coordinate in a way that
is dependent on the unknown mechanisms involved. As long as
diffusion approximation is valid, vertical distribution of the dis-
sipation processes leads to two systematic effects: a decrease in
the effective optical depth, and deviation from the effective ver-
tical polytrope used in this section. Both are likely to introduce
correction factors of the order unity, which would be easy to cal-
culate once our model is extended to three dimensions with a
reasonable set of boundary conditions on the surface of the NS.

2.4. Momentum equations

We start with Euler equations with additional source and sink
terms related to the momentum of the matter being accreted and
to the friction between the SL and NS surface. Their general
vector form is

∂vvv

∂t
+ (vvv · ∇)vvv = −

1
ρ
∇p + ggg + source and sink terms, (22)

where ggg is gravity without the contribution of centrifugal force
and is assumed to be directed along the radius vector. At the
same time, the surface of the NS is close to being equipoten-
tial and thus is deformed due to rotation (we neglect all the
other sources of deformation, such as magnetic fields and non-
equilibrium stresses in the crust), which makes the polar-angle
component gθ = − 1

r
∂Φ
∂θ

, where Φ is gravitational potential, non-
zero even after vertical integration.

The radial component of the momentum equation reduces to
the hydrostatic equation considered in Sect. 2.3. The two tan-
gential components of the equation are convenient to re-write in
terms of the two scalar quantities normally used in shallow-water
approximation: vorticity,

ω = [∇ × vvv]r =
1

r sin θ

(
∂

∂θ

(
vϕ sin θ

)
−
∂vθ
∂ϕ

)
, (23)

and divergence,

δ = (∇ · vvv) =
1

r sin θ

(
∂

∂θ
(vθ sin θ) +

∂vϕ
∂ϕ

)
. (24)

Multiplying Eq. (22) by ρ and integrating over the total vertical
extent of the SL yields

∂vvv

∂t
+ (vvv · ∇)vvv = −

1
Σ
∇Π + ggg + source and sink terms. (25)

A detailed derivation of the equations for vorticity and diver-
gence is given in Appendix A.

Taking the radial curl component of Eq. (25) results in an
equation for vorticity

∂ω

∂t
+ ∇ · (ωvvv) = −∇ ×

∇Π

Σ
+ (ωd − ω)

S +

Σ

+

[
(vvvd − vvv) × ∇

S +

Σ

]
r

+
1

tfric
(2Ω∗ cosα − ω) ,

(26)

where Ω∗ is the angular frequency of the NS. The velocity field
of the accreting matter vvvd is assumed to be uniform rotation with
the angular frequency cKΩK, where cK is the deviation from the
Keplerian rotation law in the disc, set to 0.9 in all the simula-
tions. Vorticity of this velocity field is ωd = 2cKΩK cosα, where
α is given by Eq. (10). The last term in (26) describes viscous
coupling between the SL and the surface of the NS. Our lack
of knowledge about the nature and strength of this coupling is
included in the unknown friction timescale tfric. Preceding terms
containing S + appear due to accretion of matter with a given
vorticity. In addition to this, the right-hand side of the equation

includes a baroclinic term ∇ ×
∇Π

Σ
equal to zero if a fixed equa-

tion of state is adopted, or if the distributions of pressure and
density are exactly axisymmetric. This term can create vorticity
through entropy variations.

Taking divergence of Eq. (25) provides an equation for δ

∂δ

∂t
= [∇ × (ωvvv)]r − ∇

2
(
v2

2
+ ∆Φ

)
− ∇ ·

(
1
Σ
∇Π

)
− δ

S +

Σ
+ (vvvd − vvv) · ∇

S +

Σ
−

δ

tfric
·

(27)

The term ∆Φ = 1
2 Ω2
∗R

2
∗ originates from the rotational deforma-

tion of the NS.

2.5. Energy conservation

In general form, energy conservation implies (Suleimanov &
Poutanen 2006):

∂

∂t

(
1
2
ρv2 + ε

)
+ ∇ ·

([
1
2
ρv2 + ε + p

]
vvv

)
= qNS + q+ − q−, (28)

where the right-hand side accounts for heat exchange with the
NS (qNS), heat released within the layer (q+), and radiation losses
q−. After integration, all the q quantities result in correspond-
ing capital Q quantities: fluxes through the surface and energy
release per unit area.

We treat the hydrodynamics of the SL as ideal, though
the numerical solution techniques used (described later in
Appendix B) provide dissipation on small scales close to the spa-
tial resolution used. If momentum transfer is dominated by tur-
bulent motions forming a direct cascade similar to Kolmogorov
cascade (Monin et al. 2007) where energy is transferred from
larger to smaller scales, the exact nature and properties of the
viscous dissipation at the small scales are irrelevant. However,
conservation of energy implies that viscous dissipation should
act as an additional source of internal energy. All the kinetic
energy lost by the flow should reappear as heat. We assume this
heat to appear at the bottom of the flow and to diffuse upwards
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leaving the SL from its upper surface. As already mentioned in
Sect. 2.3, for dissipation taking place throughout the volume,
this introduces a systematic uncertainty of the order unity in the
equations of vertical structure.

Taking into account momentum conservation, friction, and
viscous dissipation, and integrating the energy equation verti-
cally, we end up with the equation

∂E
∂t

+ ∇ · (Evvv) = −δΠ + Q+ − Q− + QNS + Qacc, (29)

where Q+ is the heat released in the spreading layer, QNS is the
heat received from the neutron star, Q− is the radiation flux lost
from the surface, and the additional term Qacc corresponds to the
thermal energy introduced with the accreting matter and released
during its mixing with the pre-existing material. Vertically inte-
grated pressure and energy are related by (18). Dissipation is
calculated as kinetic energy lost by the flow:

Q+ = −Σvvv ·
dvvv
dt

∣∣∣∣∣
dissipation

, (30)

where the dissipation in velocity is related both to the friction
term in Eqs. (26) and (27) and with numerical dissipation on
the grid scale, which we discuss in detail in Appendix B. The
energy radiated away from the surface is set by radiation energy
diffusion (see Sect. 2.3):

Q− =
cgeff

κ
(1 − β) , (31)

where κ is the Rosseland average opacity which we assume
to be equal to the Thomson scattering opacity, κ = κT '

0.34 cm2 g−1. If β approaches zero, the SL becomes a “levitat-
ing layer” supported mainly by radiation pressure (Inogamov &
Sunyaev 1999). For β � 1, the energy loss term is nearly inde-
pendent of the physical conditions inside the layer.

Additional terms related to the accreting matter are more dif-
ficult to constrain from a physical point of view. It is natural
to assume that the initial temperature of the newly introduced
material is non-zero, and hence the increase in surface density is
accompanied with an increase in surface energy density as well.
In addition, as the velocities of the accreting and the pre-existing
matter are in general different, some of the kinetic energy is dis-
sipated during the process of mixing (the exact physical mech-
anism could be kinetic, hydrodynamic, or MHD). Energy and
momentum conservation laws predict that the amount of dissi-
pated energy per unit of accreted mass is (vvvd − vvv)2/2, hence

Qacc =

((E
Σ

)
d

+
1
2

(vvvd − vvv)2
)

S +, (32)

where again the “d” index corresponds to the properties of the
mass source.

Our approach to the vertical structure, as well as to momen-
tum and energy conservation, is mostly in line with the
works of Inogamov & Sunyaev (1999, 2010), and Suleimanov
& Poutanen (2006). However, momentum and energy equations
introduced below assume neither axisymmetry nor stationar-
ity, both of which were crucial for the quasi-stationary, one-
dimensional SL model. Relaxing these assumptions requires that
we specify certain physical mechanisms. In particular, the sta-
tionary nature of the flow allows us to relate surface density
and latitudinal velocity in algebraic form independently of the
mechanism of angular momentum loss. In addition, Inogamov
& Sunyaev (1999) do not consider rotational deformation of the

NS, meaning that a co-rotating atmosphere in their assumptions
should strongly concentrate near the equator. However, we take
into account small equilibrium deformation of the star. Apart
from making the simulations more realistic, this equilibrium
deformation allows a simple set of initial conditions with uni-
form surface density and pressure.

2.6. Initial conditions

The simplest possible initial conditions are constant surface den-
sity and pressure in combination with rigid-body rotation. This
may be achieved if the rotation rate is exactly equal to the rota-
tion frequency of the NS, Ω∗, and the deformation of the NS
makes its surface equipotential. Configuration is stable and may
survive for simulation times vastly exceeding the durations of
the runs used in this work. In Appendix B.2.1, we use this ini-
tial condition configuration to check the numerical stability and
dissipation of our numerical scheme.

Vorticity of a rigid-body rotation is

ωinit = 2Ω∗ cos θ. (33)

As the motions are limited to pure rotation, initial divergence
is strictly zero. To the basic initial condition set, a small (5%)
perturbation was added in the form of an over- or under-density.
The perturbation is designed as an entropy variation not affecting
the pressure distribution.

3. Results

3.1. Model setup

The equations derived in Sect. 2, including the equations of mass
(Eq. (8)), momentum (Eqs. (26) and (27)), and energy (Eq. (29))
conservation, were solved using our 2D spectral modelling code.
We refer to Appendix B for a detailed description of the numer-
ical techniques. There, we also describe the tests for numeric
performance, stability, and accuracy. We list all the SL mod-
els calculated for this paper in Table 1. Letters “LR” and “HR”
in a simulation ID always refer to “low” (128×256) or “high”
(256× 512) resolution. Consistency between the corresponding
low- and high-resolution runs is an important test for numerical
effects (noise and diffusion). Below, we describe the setups of all
these models, while the description of the results is given in the
following sections.

All the models include a NS rotating with a spin period
Pspin = 3 ms. Initially, all the matter on the surface rotates
together with the star as a rigid body. As we so far do not include
any friction with the NS surface, rotation of the star affects the
results only through the initial conditions and the deformation of
the stellar surface (potential term in Eq. (27)).

Most models include a mass source corresponding to a
steady-state accretion from a thin disc. To avoid strong veloc-
ity gradients causing high-frequency noise, the mass accretion
rate approaches the steady-state value smoothly, following the
exponential law

Ṁ(t) = Ṁ0

(
1 − e−t/tturn−on

)
, (34)

where the turn-on timescale was set to 10Pspin for all the simu-
lations. The spatial distribution of the source of mass is always a
Gaussian function of cosα as given by Eq. (9) with the standard
deviation of cosα0 = 0.1, corresponding to the width of about
6◦. Rotation rate of the newly accreted material is set to cK = 0.9
in Keplerian units.
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Table 1. Spreading layer simulations.

Model ID Dimensions tmax Σinit Ṁ PDS (a) Comments
s g cm−2 M� yr−1 s

3LR 128× 256 0.5 108 10−3 0.35–0.5
3HR 256× 512 0.08 108 10−3

3LRinc 128× 256 0.6 108 10−3 0.4–0.6 i = π/4
8LR 128× 256 0.32 104 10−8 0.27–0.32
8HR 256× 512 0.07 104 10−8

3LRoff 128× 256 1.0 108 0 0.5–0.68 Starts with the end of 3LR

Notes. (a)Integration limits for calculations of the PDS.

As the timescales observed in real LMXBs differ by six
orders of magnitude, it is difficult to perform a single realis-
tic simulation resolving the dynamic-timescale variability over a
timescale that is sufficient to see the changes in the SL structure.
We use two approaches to avoid this difficulty: first, we consider
“enhanced accretion” with Ṁ = 10−3 M� yr−1 ' 6 × 1020 g s−1

(models 3LR and 3HR); secondly, we consider accretion on top
of a thin layer with Σ0 = 104 g cm−2. Both tricks shorten the
effective evolution timescales by several orders of magnitude.
We expect the hydrodynamics to be equally effective in both
configurations even though the radiation timescales are vastly
different.

As an alternative to both these approaches, we calculate
a model reproducing the evolution of a spreading layer after
switching off the mass source (model 3LRoff). It starts with
the final snapshot of 3LR and then gradually cools down for
another 0.5 s. Finally, in the model 3LRinc, we consider the case
where the source is inclined with respect to the initial rotation
plane.

3.2. General properties

Each simulation covers several tenths of a second, which is
significantly longer than the dynamical timescales, and for the
parameters of our simulations is comparable to the timescale on
which the initial mass content of the layer is replaced by newly
accreted matter. Accretion is concentrated (everywhere except
3LRinc) at low latitudes. As the surface mass and energy den-
sity increase near the equator, matter is pushed toward the poles.
Surface density in the equatorial region tends to become larger
due to accumulation of the accreted material, but often becomes
lower, as the mixing between the streams moving at different
velocities leads to high levels of dissipation (see Eq. (32)). Equa-
torial regions tend to spin faster in all the models (see Fig. 2), but
the excess angular momentum is redistributed by oblique waves
(for rapid accretion modes) or by the heating instability (for
8LH/8HR). The main difference between the models with differ-
ent mass accretion rate is the role of cooling: for rapid accretion,
heating occurs much faster and the layer effectively accumulates
heat, while for the models 8LR/8HR, radiation efficiently cools
down some portions of the flow.

For the low mass accretion rate (model 8LR), the evolution
of the SL is illustrated by Fig. 3. We note the decrease in surface
density at latitudes of about ±20◦ (t '50–100 ms) due to heat-
ing, the gradual north-south symmetry breaking between t '200
and 250 ms, and later dynamical-timescale evolution. In these
simulation runs, β ' 0.99–1, close to 1 with an accuracy of
about 10−5 outside the regions of intense mixing and heating
instability.

For the high mass accretion rate models, 3LR and 3HR, the
main process driving the subsequent evolution is the velocity
contrast between the new and old matter, leading to a shear insta-
bility. A sequence of snapshots of the radiation flux and velocity
field for model 3HR is shown in Fig. 4. The gas-to-total pressure
ratio β for enhanced accretion models varies between about 0.1
in the accretion region and ∼0.9 near the poles.

As we do not include the sinks in this paper, no quasi-
stationary picture is expected to be reached. However, heating
and velocity gradients created by accretion lead to at least two
important dynamical effects relevant for the dynamics of SLs.
In the two groups of simulations, with ‘enhanced’ and ‘nor-
mal’ mass accretion rates, two different instabilities emerge. For
the realistically low mass accretion rate (Ṁ = 10−8 M� yr−1)
and low initial surface density (Σ0 = 104 g cm−2), the equa-
torial belt forming out of the accreting matter during the first
milliseconds of accretion is cooled efficiently, and most of the
subsequent dissipation takes place at higher latitudes where the
newly added material mixes with the old, slowly rotating NS
atmosphere. This results in a heating instability: local displace-
ment of the cool equatorial belt material leads to increased dis-
sipation on the opposite side of the equator, which results in
a pressure gradient increasing the initial displacement. This is
easily seen in Fig. 3, where the later-time evolution (starting
at approximately t ∼ 0.2 s) is marked by a gradual and then
dynamical-timescale development of a strong mass asymmetry
between the southern and the northern hemispheres. Develop-
ment of the instability also breaks the axial symmetry, espe-
cially during the period of rapid evolution. As a large amount
of matter migrates between the polar and equatorial regions,
some part of the flow acquires very large, and some very slow
rotational frequency (even smaller than the rotation velocity of
the NS).

At the same time, for the case of enhanced accretion, cool-
ing and heating timescales are much longer, and all the observed
dynamical effects are purely hydrodynamical. They are rea-
sonably reproduced by the low-resolution simulations, though
increasing resolution reveals more details and adds regularity to
the observed turbulent patterns (see Fig. 5). Spectral simulations
are able to capture the oblique wave patterns and “curling” of
the equatorial spreading layer belt even with the low numeri-
cal resolution runs. For the high-resolution runs, more fine-scale
substructure starts to appear.

3.3. Angular momentum transport within the layer

The high-accretion-rate models 3LR and 3HR demonstrate a sys-
tem of oblique waves generated by the velocity discontinuity.
The discontinuity itself in our simulations is a consequence of
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Fig. 2. Time-latitude diagrams for longitudinally averaged angular frequency normalised to the Keplerian rotation frequency at the radius of the
star R∗. The upper and lower panels correspond to the rapid accretion model 3LR and 8LR, respectively.

the initial conditions. In real sources, the existence of old mate-
rial co-rotating with the star is a consequence of angular momen-
tum exchange with the star. Whether or not the velocity drop
exists in a quasi-stationary case with a sink and friction is an
open question that may be resolved by running a simulation with
sink terms for a sufficiently long time. In the new, rapidly rotat-
ing part of the flow, a system of standing waves rapidly evolves
into a non-linear regime, and forms a non-axisymmetric wig-
gle structure seen in Fig. 5 that is subsequently smeared off. At
large latitudes, where the old, slowly rotating matter dominates,
the waves create a correlation between orthogonal velocity com-
ponents. Velocity correlation provides a Reynolds stress compo-
nent

Tθϕ =
〈
Σ(vθ − 〈vθ〉)(vϕ − 〈vϕ〉)

〉
, (35)

where angular brackets 〈. . .〉 denote averaging in time and lon-
gitude. In Fig. 6, we show the value of Tθϕ calculated for the
model 3LR for the period of time 0.1–0.3 s after the start. Appar-
ently, Reynolds stress is small in comparison to pressure but sur-
prisingly stable in its sign, showing a clear poleward angular
momentum transfer. While the SL itself appears to approach a
quasi-stationary axisymmetric state on a timescale of about 1 s,
higher latitudes still show variability and non-axisymmetry up to
the end of the simulation. In real astrophysical sources, the mass
accretion rate is variable on subsecond timescales, meaning that
even if the Reynolds stress is a reaction to the variations in mass
accretion rate, it should always be present.

The existence of a small but significant hydrodynamical
stress suggests a long local viscous timescale corresponding
to oblique-wave-mediated angular momentum transfer. Near
the poles, Reynolds stress partially compensates the advective
angular momentum flow caused by compression of the pre-
existing polar cap material. Near the equator, at the same time,
both advection and viscous transport of angular momentum are
directed polewards.

For the realistic-accretion-rate models, 8LR and 8HR, heating
instability creates a strong flow of mass toward one of the poles.
At the later stage of this process, when most of the accumulated
mass flips to one side, axial symmetry is broken, which effec-
tively creates a very large Reynolds stress spreading the angu-
lar momentum of the rapidly rotating matter over latitudes (see
Fig. 7). Reynolds stress rapidly removes the angular momentum
from the equatorial stream in both directions (we note the sign
change near −10◦ latitude).

3.4. Artificial light curves

To produce artificial light curves, we use a simplified approach
that ignores all the relativistic effects. We choose an inclination
of the observer iobs and integrate the bolometric flux Q− emitted
from the surface:

Lobs = 4
∫
αobs<π/2

Q− cosαobs R2 sin θdθ dϕ, (36)
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Fig. 3. Time-latitude diagram for longitudinally averaged surface density (normalised by the surface density averaged over the sphere) in the
realistic-accretion-rate 8LR simulation. Upper panels: three snapshots of surface density (104 g cm−2 units) during the later stages of the heating
instability development.

where

cosαobs = cos θ cos iobs + sin θ sin iobs cosϕ, (37)

and αobs is the angle at which the surface element is seen by an
observer located at the co-latitude of iobs and at the azimuthal
angle of ϕ = 0 in the spherical coordinate system. Such an
approach allows us to reproduce the effects of visibility of any
moving features on the surface of the star. The factor four in
Eq. (36) allows us to interpret Lobs as isotropic luminosity, equal
to the actual luminosity for an isotropic source.

Power density spectra (PDS) were calculated using the stan-
dard FFT algorithm (Cooley & Tukey 1965) with fractional nor-
malisation. If the light curve is set as a series of observed lumi-
nosities, Lk, at the equidistant instances of time, tk, the Fourier
power density (in Miyamoto normalisation, see e.g. Miyamoto
et al. 1991; Nowak et al. 1999) is found as a function of fre-
quency, f , as

PDS( f ) = 2

∣∣∣∣∣∣
∑

k Lke−2πi f tk∑
k Lk

∣∣∣∣∣∣2 ' 2

∣∣∣∣∣∣∣
∫

Le−2πi f tdt∫
Ldt

∣∣∣∣∣∣∣
2

. (38)

The frequency grid on which the PDS is calculated is equally
spaced with ∆ f = 1/T , where T is the time span. Spectral
power defined this way is a measure of the relative amplitude of

a variability mode. For a broad spectral peak, variability ampli-
tude may be estimated as ∼

√∑
∆PDS , where ∆PDS stands for

the excess spectral power associated with the particular spec-
tral detail, and summation is done over the relevant spectral
interval.

In Fig. 8 we show the dynamic (calculated inside 20 sepa-
rate time bins) power-density spectra for different iobs. We plot
the relative PDS multiplied by f 2 to decrease the contamination
from the low-frequency noise component related to the overall
shape of the simulated light curve. Several oscillation modes are
visible, one of them for a pole-on observer. Their frequencies
evidently correlate with the flux. Most of the non-axisymmetric
structures in this simulation are moving slightly faster than the
star itself: their contribution is visible just above Ω∗. There is
also power at about double spin frequency and in the very begin-
ning near the third harmonic. The perturbation seen during the
first ∼0.1 s of the simulation is mostly related to the initial per-
turbation rotating at the spin frequency. However, very little vari-
ability is seen by a polar observer, except for a single peak
initially close to 1.5Ω∗ and then gradually increasing its fre-
quency towards 700–800 Hz. This signal is visible for all the
inclinations but in general is weaker than the non-axisymmetric
modes absent in the pole-on dynamic spectra. The properties of
this mode fit well into the concept of a latitudinally propagat-
ing surface wave moving in a waveguide, similar to the modes
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Fig. 4. Radiation flux (in Eddington units, GMc/κR2
∗) snapshots for the model 3HR. White streamlines show the velocity field and the black contour

corresponds to the accretion tracer a = 0.5. For all but the first snapshot, newly accreted matter dominates between the black contours.

considered by Piro & Bildsten (2004b). We discuss the implica-
tions of such an interpretation later in Sect. 4.

In Fig. 9 we show how the dynamic PDS changes when rapid
accretion stops (model 3LRoff, that starts with the end of sim-
ulation 3LR). The quasi-periodic features around two-three spin
frequencies retain at least for the period when the layer remains
hot (before t ' 0.95 s). The axisymmetric mode is evidently split
into two QPO features. A hint of such a split is visible also at
t ∼0.3–0.4 s in Fig. 8. All the characteristic features, as in the
original simulation with accretion, correlate with flux.

For the inclined simulation, 3LRinc (Fig. 10), there is an
early stage (0−0.2 s) of the collision between the two flows
inclined to each other. Subsequently, a quasi-axisymmetric con-
figuration forms, and the variability pattern becomes similar to
those of the aligned models discussed above. Unlike the aligned
case, the observed luminosity changes in very narrow limits,
probably because the size of the SL is now determined by the
geometry of the inflow rather than by angular momentum trans-
fer. Dissipation is smoothly distributed over the whole latitude
range between −i and i, and saturates at a level Q− ' cgeff/κT.
The apparent luminosity seen by a pole-on observer is

Lobs, inc '
4cgeffR2

∗

κ

∫
π/2<θ<i

cos θ sin θdθ
∫ 2π

0
dϕ

'
4πcgeffR2

∗

κ
cos2 i ' 1038 erg s−1. (39)

Starting from t ' 0.15 s, the pole-on PDS shows one sta-
ble peak at about 1 kHz and a hint of another peak at about
1.5 kHz, sometimes split in two (see Fig. 14 showing the PDS

integrated over the integral 0.4–0.65 s; a similar picture is seen
for t ∼ 0.2−0.3 s). Unlike the aligned case, non-axisymmetric
modes at later stages appear slower than the axisymmetric. This
is probably related to the overall change in angular momentum
of the layer that is affected by the pre-existing matter rotating in
a different direction.

Peak frequencies in the dynamical PDSs are shown in Fig. 11
as functions of flux. There is an evident signal for the pole-on
simulated light curve both in the original model with enhanced
accretion, and in the switch-off simulation. The axisymmetric
mode discussed above dominates for the pole-on case, for which
a clear correlation between flux and frequency is observed.
For an inclined observer, non-axisymmetric modes are stronger.
Interestingly, an inclined source is capable of exciting variability
modes with frequencies lower than the spin frequency.

We also consider PDSs integrated over time intervals where
the shapes of dynamic PDSs remain relatively stable and/or show
hints of additional spectral features. In Fig. 12, we show such a
spectrum for the 3LR simulation, computed for t = 0.2–0.5 s.
Pole-on PDS is dominated by a single narrow peak at about
800 Hz. At large inclinations, this single QPO transforms into
two, and an additional third peak emerges at about one spin fre-
quency. For 3LRoff, splitting of the main peak for iobs = 0 is
visible at t ∼ 0.5–0.7 s (shown in Fig. 13) and later at t ∼ 0.8 s.
Later, the structure of the layer starts rapidly changing due
to rapid cooling and switching to the gas-pressure-dominated
regime.

For the realistic mass-accretion-rate configuration, oscilla-
tions appear simultaneously with the development of the heat-
ing instability, and their contribution is only clearly visible at
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Fig. 5. Resolution effects after t = 0.03 s (ten spin periods) of evolution for the high-accretion-rate models 3LR (low numerical resolution;
left panels) and 3HR (high numerical resolution; right panels). Top: vorticity maps. Bottom: emitted radiation flux Q− (normalised by the local
Eddington value) map.
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Fig. 6. Azimuthally- and temporally averaged dynamical quantities for
the high-accretion-rate model 3LR. Visualised quantities are Reynolds
stress (black), mean velocity product vθvϕ (blue), and sound velocity
(red dotted) as functions of latitude. All the quantities were averaged
over the period of time between 0.1 and 0.3 s, and over the azimuthal
angle. Solid and dashed lines correspond to positive (southward motion
or momentum transfer) and negative quantities (northward). Dotted
black curves show the 1σ standard deviation interval for the Reynolds
stress.
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Fig. 7. Azimuthally- and temporally averaged dynamical quantities for
the realistic-accretion-rate model 8LR. Symbols and quantities are the
same as in Fig. 6. Averaging was performed from t = 0.2 to 0.28 s, when
the initial hemisphere asymmetry is developed due to heating instability.

particular inclinations (see Fig. 15). The two poles behave in
a profoundly different way because of the asymmetry formed
by heating instability. Further simulations of the 8LR case are
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described in Sect. 3.4 for the high-accretion-rate model 3LR. The three
upper panels show dynamical spectra for the observer’s inclinations of
π/2, π/4, and 0, respectively. White horizontal lines show the spin
(lower) and Keplerian frequencies. Lowermost panel: corresponding
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difficult because of the very strong density contrasts formed dur-
ing the instability.

4. Discussion

In the dynamical spectra presented in Sect. 3.4, there are clearly
at least two types of quasi-periodic variability signals: one dis-
appears for a pole-on observer and is thus related to non-
axisymmetric structures (waves and vortices produced by shear
instabilities); and the other is present at all inclinations. The fre-
quency of this mode clearly increases with the flux, approxi-
mately as fQPO ∝ L1/3

obs (see Fig. 11). We leave a detailed study of
the properties of the predicted QPOs to a separate paper.

It is natural to interpret this oscillation mode as a surface
mode existing within the SL, as was done by Piro & Bildsten
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Fig. 9. Same as Fig. 8, but for the model with a turned-off mass source,
3LRoff.

(2004b) for dwarf-nova oscillations (DNOs). However, the width
of the SL, independently from the assumptions, should increase
with mass accretion rate. This is especially true for the radiation-
pressure-supported case where the radiative flux is fixed by equi-
librium with effective gravity F = cgeff/κ, and the growth of
the area over which the dissipation is spread should reflect the
growth of the mass accretion rate. Approximately, the width of
the SL grows linearly with the mass accretion rate. As the speed
of sound depends weakly on the mass accretion rate, the fre-
quency of a DNO-like sonic mode for a thin radiation-pressure-
supported SL is

fs ∼
1

2π

cs

H
∝ Ṁ−1, (40)

where cs ∼
√

p0/ρ0 is the speed of sound. However, this
approach assumes that the observed oscillations are produced
near the equator. The equatorial belt is indeed responsible for
most of the energy dissipation, but the radiation flux is broadly
distributed over the surface due to the importance of radiation
pressure, and most of the variability comes from high latitudes
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Fig. 10. Same as Fig. 8, but for the model with an inclined source,
3LRinc.

(see Fig. 16). This is visible in Fig. 16, where most of the dissi-
pation in the system takes place directly at the equator; most of
the radiation flux comes from intermediate latitudes (30−40◦),
while the most variable regions are at higher latitudes. In addi-
tion, the SL itself cannot work as a proper waveguide because
of the very strong velocity shear that exceeds the Keplerian
frequency.

We can only conclude that the oscillations present in the
observational data and in simulations are not the resonance fre-
quencies for sonic waves but rather correspond to a different type
of oscillation. The best candidate for these oscillation modes are
r-modes (i.e. Rossby waves). As we show in Appendix C, their
frequencies at a given co-latitude θ form an equidistant spectrum
with

fr,m =
1

2π
(Ωe + mΩ) , (41)

where

Ωe =

√
2Ω

∂

∂θ

(
Ω sin2 θ

)
(42)

is the epicyclic frequency (the frequency at which a portion of
matter conserving its angular momentum and only affected by
gravity and inertial forces would oscillate in a latitudinal direc-
tion), Ω = Ω(θ) is the rotation frequency, and m is a whole num-
ber. For rigid-body rotation, Ωe ' 2Ω cos θ. If the variability is
excited in a slowly rotating region outside the SL itself, and the
epicyclic frequency changes slowly throughout this region, we
see one peak corresponding to the non-rotating m = 0 mode at
f . 2 fspin and aliases at frequencies differing by ∆ f ' fspin.
This is similar to the spectra obtained in our simulations (see
Sect. 3.4), and at the same time similar to the pair of QPOs in
LMXBs. As seen in Fig. 17, there is a maximum of epicyclic fre-
quency roughly in the interaction region between the SL and the
slowly rotating matter. In addition, the epicyclic frequency in this
region is very close to the local rotation frequency, meaning that
the perturbations are in resonance with rotation. As most vari-
ability comes from higher latitudes, we propose that the oscil-
lations are excited at intermediate latitudes (30−50◦ for 3LR),
probably by shear instabilities in the interaction region, and then
propagate towards the poles.

Let us assume that the oscillations are always generated at
the latitude of the rim of the SL, all the energy is dissipated
within the layer, and the local flux is equal to the Eddington
flux cgeff/κ. Flux scaling with the Eddington limit means that
the luminosity should grow approximately linearly with the sur-
face area of the layer, L ' LEdd cos θSL. The epicyclic frequency
should therefore scale as

fr0 ' 2 fspinθSL ' 2 fspin
L

LEdd
, (43)

which reproduces the characteristic values of the frequency in
our simulations but somewhat over-estimates the dependence on
flux. As the radiating region does not exactly coincide with the
SL, and the width of the SL also depends on the parameters of
the inflow (the extreme case being the case of a strongly inclined
source; see Eq. (39)), and geff is generally smaller than gravity,
we expect the linear scaling to be a very crude approximation,
over-predicting the slope of the actual (seen in simulations) fre-
quency dependence on flux.

A similar type of QPO spectrum consisting of the local
epicyclic frequency and its aliases with the rotation frequency
was obtained by Erkut et al. (2008) and Belyaev (2017) who
considered a BL as a part of the accretion disc. However, in the
case considered in these papers, both Ωe and Ω are close to the
local Keplerian frequency and are not supposed to be sensitive
to the spin of the NS. Belyaev (2017) also studied the condi-
tions for the excitation of the oscillation modes, which are to
some degree also applicable to our results, as the existence of
a strong velocity shear in combination with differential rotation
is a universal feature of any BL model. Shear instabilities may
be excited without an initial velocity discontinuity, but the spatial
scales of velocity variations should be smaller than the size of the
simulation domain (Belyaev & Rafikov 2012), and the velocity
profile should have an inflection point (Hertfelder & Kley 2015).
However, neither this model nor our simulations are so far capa-
ble of explaining clearly why only two peaks are observed in the
PDSs of real LMXBs (though see above, Sect. 3.4), and why,
in a large number of LMXBs, the distance between the peaks
is actually half of the spin frequency. Explaining and predict-
ing the details of QPO features in the PDS requires more pro-
found studies, both analytical and numerical. Both classical and
spreading layer approaches have their limitations, as the real
motions are likely to be three-dimensional (Babkovskaia et al.
2008).
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Fig. 11. Peak frequency (calculated as the position of the maximum of f × PDS ) as a function of observed luminosity (calculated using expres-
sion (36)) for iobs = 0 (black circles), π/4 (red diamonds), and π/2 (blue triangles). Simulation runs 3LR (left) and 3LRoff (right). Error bars show
flux dispersion within the time bin and the size of the frequency bin where the maximum was detected. Horizontal dotted green lines show spin
frequency.
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Fig. 12. Integral PDS (time span 0.2 to 0.5 s) of the simulation 3LR
for different inclinations. Black dots correspond to a pole-on observer
iobs = 0, red diamonds to the intermediate inclination of iobs = π/4, and
green triangles to iobs = π/2.

The amplitudes of the oscillations observed in our simula-
tions are rather small, of the order 10−4, but nevertheless the
peaks themselves are clearly significant. This is much smaller
than the observed ∼10% (Méndez et al. 2001), probably due
to several reasons. First, the observational data provide us with
spectral variability that does not always follow the variations
of the bolometric flux. It appears that the large amplitudes of
the kHz QPOs in harder X-rays (E & 5 keV) are related to
the temperature variations of the radiating surface, converted in
the blackbody approximation to exponentially strong monochro-
matic flux variations. Still, the temperature variations required
to reproduce the observed flux variability is several per cent.
Another reason could be related to the algorithm we use to
calculate the observables: it does not take into account either
relativistic effects or the shape of the photosphere of the SL.
In some of our models, the vertical thickness of the layer
reaches hundreds of meters. The kilometer-scale variations of
the shape of the photosphere potentially have important implica-
tions for the observed variability of BLs. Last but probably most
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Fig. 13. Same as Fig. 12, but for the simulation 3LRoff and between
t = 0.58 and 0.67 s.
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Fig. 14. Same as Fig. 12, but for the simulation 3LRinc and for the time
span t = 0.35−0.5 s.

important, we cannot exclude that the oscillations generated in the
SL resonate or are amplified elsewhere, such as for example in an
optically thin hot corona or in the accretion disc. This suggestion,
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Fig. 15. Integral PDS (time span from 0.27 to 0.32 s) for the simulation
8LR for different inclinations (black circles iobs = 0, red diamonds iobs =
45◦, green upward triangles iobs = 90◦, and blue downward triangles
iobs = 180◦).
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Fig. 16. Time- and longitude-averaged energy dissipation (upper panel)
and radiation flux (lower panel) for the high-accretion-rate 3LR sim-
ulation run. Mean values and root-mean-square deviations are shown,
respectively, with black solid and red dotted curves. In each panel, the
relevant quantity is normalised by the maximal averaged value.

though speculative, can help us to understand why only two har-
monics are normally seen: structures more extended than BLs are
unlikely to have resonance frequencies higher than ∼1.5 kHz.
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Fig. 17. Epicyclic (black solid) and local rotation (red dotted) frequen-
cies for the model 3LR, averaged in time between 0.3 and 0.5 s and over
the azimuthal angle. Green dashed horizontal lines correspond to the
rotation rate of the NS and its second harmonic.

5. Conclusions

In this paper, we consider a time-dependent hydrodynamic SL
on the surface of a NS. We used two-dimensional spectral mod-
elling to resolve the evolution of the differentially rotating flow.
We find that, though challenging due to the super-sonic com-
pressible nature of the flow, spectral simulations of a SL on the
surface of a NS may be quite productive. We mainly consider the
interaction of a new material rotating close to Keplerian velocity
with the old, spun-down atmosphere of the NS, and this inter-
action produces a set of hydrodynamical phenomena that have
a huge impact on the dynamics of the system. In particular, the
velocity shear is susceptible to shear instability modes that pro-
vide angular momentum transfer within the layer and excite iner-
tial oscillation modes closer to the poles where they produce
variability patterns closely resembling kHz QPOs in real LMXB
systems.
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Appendix A: Derivation of the equations for
divergence and vorticity

To get the equations for δ = ∇ · vvv and ω = (∇ × vvv)r, we need to
take divergence and curl of the system of dynamical equations
containing sources and sinks

∂vvv

∂t
+ (vvv · ∇) vvv = −

1
ρ
∇p + ggg +

ρ+

ρ
vvvsource −

fff fric

ρ
, (A.1)

where ggg = −∇Φ is gravity without centrifugal terms, and then
integrate them in radial direction. Gravitational potential has the

form Φ = −
GM

R
+ ∆Φ, where ∆Φ accounts for a non-spherical

shape of the star and depends on the latitude and longitude. For
the friction force fff fric, we use the form fff fric = − 1

tfric
(vvv − vvvNS).

Here, uNS = Ω∗R∗ sin θ is the rotation velocity field of the NS
itself and is directed azimuthally.

Before deriving the actual equations for vorticity and diver-
gence, we note that, for any velocity field, its vector product with
its curlωωω = ∇ × vvv is

vvv ×ωωω =
1
2
∇2vvv − (vvv∇)vvv· (A.2)

Hence,

∇ × (vvv ×ωωω) = −∇ × (vvv∇)vvv, (A.3)

and the curl of the non-linear term (vvv∇)vvv in Eq. (A.1), after appli-
cation of the triple vector product rule, takes the form

∇× (vvv∇)vvv = −∇× (vvv ×ωωω) = δωωω+ (vvv∇)ωωω−vvv(∇·ωωω)− (ωωω∇)vvv. (A.4)

Asωωω has zero divergence, the curl of Eq. (A.1) becomes

∂ωωω

∂t
+(vvv·∇)ωωω = (ωωω·∇)vvv−δωωω+

1
ρ2∇p×∇ρ−∇×

(
ρ+

ρ
vvvd

)
−∇×

fff fric

ρ
,

(A.5)

where ωd = 2cKΩK cosα is the vorticity in the source of matter
(see Sect. 2.3). Taking radial integral of the radial component
of Eq. (A.5) is straightforward, as the equation does not contain
radial derivatives. Finally, we get Eq. (26):

∂ω

∂t
+ ∇ · (ωvvv) = −∇ ×

∇Π

Σ
+ (ωd − ω)

S +

Σ
+

[
(vvvd − vvv) × ∇

S +

Σ

]
r

+
1

tfric
(Ω∗ − ω) . (A.6)

The right-hand side of this equation contains a baroclinic term
capable of creating vorticity out of density and pressure vari-
ations, and three terms related to the vorticity of the accreted
matter ωsource and friction with the surface.

Another equation describing the time evolution of δ comes
from taking divergence of dynamical equation. It is rather non-
trivial to expand the advection term, ∇ · ((vvv · ∇)vvv). Therefore, let
us first note that, according to Eq. (A.2),

∇ · (vvv ×ωωω) = ∇2 v
2

2
− ∇ · ((vvv · ∇)vvv) . (A.7)

Here, the last term on the right-hand side is identical to the
advective left-hand-side term in the derivative of Eq. (A.1),
hence

∂δ

∂t
= ∇ · (vvv ×ωωω) − ∇ ·

(
∇Π

Σ

)
− ∇2

(
v2

2
+ ∆Φ

)
− δ

S +

Σ
+ (vvvd − vvv)∇

S +

Σ
−

δ

tfric
· (A.8)

The potential term ∆Φ appears because of rotational deformation
of the star. As the surface of the star should be an equipotential
surface, total gravitational and centrifugal potential

Φ −
1
2

R2Ω2
∗ = −

GM
R

+ ∆Φ −
1
2

R2Ω2
∗ = const., (A.9)

implying ∆Φ = 1
2 R2Ω2

∗.

Appendix B: Numerical implementation and tests

B.1. Code description

The problem we consider is essentially a more physically elab-
orate version of shallow-water hydrodynamics, supplemented
with energy transfer and source and sink terms. As the prob-
lem is formulated for the surface of a sphere, it is natural to
use a spectral code working with spherical harmonics. We used
the shtns library (Schaeffer 2013) designed for hydrodynamical
and geophysical applications2. A major challenge of our problem
is that, unlike the classical shallow-water physics, it is far from
the subsonic Rossby-approximation motions, and thus the time
step is limited by several processes. One of the requirements for
the time step is the Courant-Friedrichs-Lewy condition (Courant
et al. 1928) of the form

∆t ≤ ∆tCFL =
C
u

∆xmin, (B.1)

where ∆xmin is the minimal physical size of a cell in the simula-
tion domain, u is the fastest relevant signal propagation velocity,
and C . 1 is a constant related to the particular solver used in
simulations. The existence of sources and sinks for several phys-
ical quantities sets additional upper limits for the time step and
requires us to adjust the time step with the physical conditions.
We compute the actual time step as a harmonic sum of several
time steps

∆t =

(√
Csoundc2

s,max + Cadvv2
max∆x−1

min + Cthermal∆t−1
thermal + Caccr∆t−1

accr

)−1

,

(B.2)

where Csound, adv, thermal, accr & 1 are dimensionless adjustable
parameters regulating the role of each time step (note that
a larger coefficient here means a smaller time step). Ther-
mal, ∆tthermal = min E/(Q+ + Q−), and accretion, ∆taccr =
min Σ/(S + + S −), time steps are estimated as the time steps
required to resolve temporally thermal and accretion processes,
respectively. Such a choice for a variable time step ensures that
all the relevant physical processes can be resolved: sonic wave
propagation, dissipation, radiation losses, and accretion.

As spectral methods tend to produce high-frequency noise,
diffusion-like dissipation terms were introduced for all the five
principal quantities ω, δ, Σ, E, and a. This is done for the numer-
ical implementation of Eqs. (8), (26), (27), and (29). In spectral
space, an additional dissipation term may be viewed as a multi-
plier cutting off high frequencies (low-pass filter). A usual form
for this low-pass filter (see e.g. Parfrey et al. 2012) is hyperdif-
fusion

dHD(l) = e
−

∆t
tD

(
L

Lmax

)Ndiss/2

, (B.3)

2 We also used a wrapper class spharmt (https://gist.github.
com/jswhit/3845307) for shtns quantities and operators written by
Jeffrey Whitaker.
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Fig. B.1. Maximal relative error in surface density max ∆Σ
Σ

for the test models NDLR (black) and NDHR (red). The blue horizontal segment in the
lower panel has the length of one spin period. The dotted green horizontal line corresponds to the amplitude of the initial perturbation, 0.05.
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Fig. B.2. Energy evolution and relaxation for the split-sphere test, sub- (left panel) and super-sonic (right panel) cases. Black lines correspond to
the part of kinetic energy related to vθ, red to vϕ. Dotted lines are used for lower-resolution models (s)twistLR, solid lines for high-resolution
(s)twistHR. Blue dashed lines show an exponential law ∝ eΩ∗t.

Table B.1. Test simulations.

Model ID Dimensions tmax Σinit Pspin Comments
s g cm−2 ms

NDLR 128× 256 0.1 108 3
NDHR 256× 516 0.04 108 3
twistLR 128× 256 0.15 108 30 Subsonic twist test
twistHR 256× 512 0.15 108 30 Subsonic twist test
stwistLR 128× 256 0.04 108 10 Supersonic twist test
stwistHR 256× 512 0.03 108 10 Supersonic twist test
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t = 0.04s

t = 0.05s t = 0.08s

t = 0.06s

Fig. B.3. Four vorticity snapshots (t = 0.04, 0.05, 0.06, and 0.08 s) of the Kelvin–Helmholtz instability development in the split-sphere simulation,
model twistHR.

Fig. B.4. Snapshot of the stwistLR simulation at t = 0.04 s, when the instability is fully developed and evolves into a system of shock waves.
Vorticity is shown in the left and the surface density in the right panel.
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where L = −l(l + 1)/R2
∗ is the Laplacian acting on the spherical

harmonic of degree l (see Tikhonov & Samarskii 2013), Lmax is
its maximal value (corresponding to the grid resolution), tD is
the characteristic dissipation timescale on the size of the grid,
and Ndiss ≥ 2 is a free parameter describing the shape of the low-
pass filter. If Ndiss = 2, the filtering procedure is equivalent to
a regular diffusion term added to the right-hand sides of all the
main differential equations. The flow as a whole is negligibly
affected if the dissipation factor for the lowest-order harmonic
is indistinguishable from zero tD =& | ln eM|∆t (Parfrey et al.
2012), where eM is machine precision (eM ' 2 × 10−16 in all the
simulations we run).

Effectively, filtering with Ndiss > 2, while more efficient
than normal diffusion, cuts all the high frequencies very sharply.
Such spectral truncation leads to its own noise, especially
close to discontinuities. This is known as Gibbs phenomenon
(Gottlieb & Shu 1997) and leads to oscillations that may be
amplified by the non-linear nature of our system of equations.
For Σ and E that can vary sharply and span several orders
of magnitude, but become unphysical if negative, the Gibbs
phenomenon may become disastrous. A reasonable solution
introducing the little Gibbs effect and providing an extremely
accurate treatment to the large-scale flow is

d(l) = e
−

L
Lmax

(
L

Lmax
+

1
R2
∗Lmax

)
∆t
tD , (B.4)

which we use for all the simulations in this paper.
The energy lost by the flow is added as a source of inter-

nal energy, as described in Sect. 2.5. By adding dissipation as
a source of energy, we are likely to introduce high-frequency
noise to the energy field, and therefore the dissipation field was
smoothed in the same way as the basic quantities (see Eq. (B.3)),
but with a shorter diffusion timescale. The exact value of the
dissipation smoothing parameter affects the thermal stability
of the simulation but does not change the overall dynamics.
From the physical point of view, it only ensures that the dis-
sipation does not significantly vary within a single resolution
element.

The code itself is written as a hybrid Python3/C++ pro-
gram. All the numerically heavy (spectral) calculations are
solved with the C++ shtns library, whereas the main loop and
the related high-level functionalities are operated from the more
user-friendly Python3 driver. In our experience, this provides a
good balance between numerical efficiency and ease of use. The
spherical harmonic calculations are parallelised using the shared
memory paradigm with openMP pragmas. This enables us to
take advantage of multi-core platforms ranging from powerful
desktop computers to occupying one complete node in comput-
ing clusters. The Hierarchical Data Format (HDF5) is used to
save and store the simulation results.

B.2. Tests

In Table B.1, we list the test models we calculated with their
basic parameters.

B.2.1. Zero-accretion-rate, rigid-body rotation case

As one of the tests, we try evolution of a layer with initial sur-
face density Σ0 = 108 g cm−2 and sound velocity cs ' 1.7×10−3c
without accretion or depletion (test models NDLR/NDHR). As in
all the other models, an initial perturbance of 5% was intro-
duced. The NS spin period was set to 3 ms. The Mach number

of this flow is about 50. For this test, we also turn off dissipation
heating and radiation losses. Without thermal effects, rotation
profile in such a model should not change with time, and the
perturbation proceeds rotating with the surface of the star. To
check the accuracy of this solution, it is sufficient to correct for
the rotation angle, interpolate from one grid to another, and esti-
mate the standard deviation or the maximal deviation between
the map calculated by the code and the interpolated initial
map.

Figure B.1 shows how the maximal relative difference in sur-
face density evolves with time. The errors around 10−3 are inter-
polation errors. As we can see, supersonic rotation is reasonably
well tracked for multiple rotation periods, and the accuracy is
better for a finer grid.

B.2.2. Split-sphere tests

The purpose of this test set (twistLR, twistHR, stwistLR, and
stwistHR) was to trace the development of sub- and super-sonic
shear instabilities on a sphere. Rigid-body rotation (Pspin = 10
and 30 ms) was modified by a factor rapidly changing from −1
to 1 near the equator

Ω = Ω∗
π/2 − θ√

(π/2 − θ)2 + ∆θ2
, (B.5)

where ∆θ was set to 0.1 for all the models. The choice of the
effective temperature (set by QNS, see Sect. 2.5) makes some
simulations subsonic and others supersonic. For ∆θ � π, sub-
sonic configuration is unstable to Kelvin-Helmholtz instability.
Instability at high wavenumbers is suppressed by the finite shear
value (Ray 1982), hence the fastest-growing unstable modes
are two- and three-armed, with the increment of about Ω∗ (see
Fig. B.2). The sharper the velocity gradient, the higher the
fastest-growing mode. Conservation of angular momentum pre-
vents the formation of a single vortex. The primary instability
mode changes the overall velocity field into a set of vortices cen-
tered in the initial equatorial region. Vorticity evolution during
the instability development phase is shown in Fig. B.3.

For the mildly supersonic split-sphere test (Pspin = 10 ms), a
supersonic shear instability develops on similar timescales close
to the rotation period is used as the basis for the split-sphere rota-
tion. However, instead of vortices, a system of standing shock
waves is formed (see Fig. B.4).

As we can see, development of shear instabilities conforms
well with the expectations based on analytical and numerical
studies of the subject. First, there is dynamical-timescale expo-
nential growth of the instability, subsequently evolving into an
equipartition turbulent stage. For the subsonic case, numerical
resolution does not affect the results considerably during the time
span of the calculations.

Appendix C: Frequencies of inertial modes on a
differentially rotating sphere

Assuming an axisymmetric, differentially rotating velocity back-
ground, we linearise the set of dynamic equations and derive
a dispersion relation for small-amplitude shallow-water waves
on a unit sphere. Perturbed quantities to be considered are den-
sity ρ = ρ0 + δρ(θ, ϕ, t), longitudinal velocity vϕ = Ω(θ) sin θ +
δvϕ(θ, ϕ, t), and latitudinal velocity vθ = δvθ(θ, ϕ, t), where the
terms with δ are small perturbations. The background flow is
assumed to be pure differential rotation parametrized by angular

A142, page 20 of 21



P. Abolmasov et al.: Kilohertz QPOs from neutron star spreading layers

velocity distribution Ω(θ). All the perturbations are expressed in
exponential form ∝ exp(i(ωt − kθθ − kϕϕ)).

First-order perturbation of the continuity equation in such
assumptions is(
ω − kϕΩ

) δρ
ρ

= kθvθ +
kϕδvϕ
sin θ

. (C.1)

The two tangential Euler equations may, in general form, ignor-
ing the terms containing radial velocities, be written as

∂vθ
∂t

+
vϕ

sin θ
∂vθ
∂ϕ
− v2

ϕ cot θ = −
1
ρ

∂p
∂θ
, (C.2)

and

∂vφ
∂t

+ vθ
∂vϕ
∂θ

+
vϕ

sin θ
∂vϕ
∂ϕ

+ vϕvθ cot θ = −
1

ρ sin θ
∂p
∂ϕ
· (C.3)

For a super-sonic flow, contributions of the pressure variations
on the right-hand side of the equations are of secondary impor-
tance, though in reality they are responsible for pressure and
gravity oscillation modes. If we ignore the pressure variations,
the two Euler equations become, respectively,

ω̃2vθ = −2i Ω(θ) ω̃ cos θ δvϕ, (C.4)

and

ω̃2δvϕ = i ω̃
∂

∂θ

(
Ω(θ) sin2 θ

) vθ
sin θ

, (C.5)

where ω̃ = ω − kϕΩ. Excluding the velocity components vθ and
δvϕ from Eqs. (C.5) and (C.4) yields a dispersion equation(
ω̃2 −Ω2

e

)
ω̃2 = 0, (C.6)

where

Ω2
e = 2Ω cot θ

∂

∂θ

(
Ω sin2 θ

)
(C.7)

is the square of the local epicyclic frequency in the sense that
a particle with a conserved angular momentum, confined to the
surface of the star and being a subject of gravity and centrifugal
force, will oscillate in latitudinal direction at this frequency. The
possible values of kϕ are restricted by the longitudinal periodic
boundary conditions to be kϕ = m, where m is a whole number.
Thus, the spectrum of possible inertial oscillation frequencies
takes the form

ωinertial = mΩ ±Ωe. (C.8)

Without any loss of generality, we choose the sign in Eq. (C.8) to
be plus. In the case of m = 0 and Ω ' Ω∗, the only axisymmetric
inertial mode has ωinertial, 0 = Ωe ' 2Ω cos θ reproducing the
Coriolis oscillation regime. Variability occurring in the regions
co-rotating with the NS would produce an equidistant spectrum
of eigenmodes

ωinertial, co−rotating ' Ωe + mΩ∗, (C.9)

with the frequencies differing by the rotation frequency of the star.
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