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ABSTRACT

We propose new analytic formulae describing light bending in the Schwarzschild metric. For an emission radii above the photon orbit
at the 1.5 Schwarzschild radius, the formulae have an accuracy of better than 0.2% for the bending angle and 3% for the lensing factor
for any trajectories that turn around a compact object by less than about 160◦. In principle, they can be applied to any emission point
above the horizon of the black hole. The proposed approximation can be useful for problems involving emission from neutron stars
and accretion discs around compact objects when fast accurate calculations of light bending are required. It can also be used to test
the codes that compute light bending using exact expressions via elliptical integrals.

Key words. accretion, accretion disks – black hole physics – methods: numerical – X-rays: binaries – stars: black holes –
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1. Introduction

Understanding the physical processes in the vicinity of black
holes (BHs) and neutron stars (NSs) requires a detailed treat-
ment of light propagation from a compact source to the dis-
tant observer. In a general case of a rotating compact object,
this is a complex, numerically extensive problem (e.g. Dexter
2016; Nättilä & Pihajoki 2018). For a slowly rotating object,
the Schwarzschild metric can be used; however, even in this
case, numerical, time-consuming evaluations of elliptical inte-
grals that can be used to describe light bending are needed. The
situation becomes acute when one needs to fit the data with a
model varying many parameters, which may require thousands,
if not millions, of iterations. Such a problem exists, for example,
when trying to determine NS parameters from the pulse form
observed from millisecond pulsars which have an oblate shape
(Miller & Lamb 2015; Watts et al. 2016; Bogdanov et al. 2019;
Riley et al. 2019; Miller et al. 2019).

In many applications, the position of the emission point is
defined, for example, by the radius-vector R and by the azimuthal
angle ψ vector R makes with the direction to the observer (see
Fig. 1). We then need to compute the emission angle α that the
photon trajectory makes with R. In order to do so, we would have
to tabulate ψ(α) at a grid of radii R, then reverse the dependence
to α(ψ), and finally interpolate in the resulting tables to find α for
given R and ψ. An analytical formula for α(R, ψ) would simplify
and speed up calculations. It can also be used to test other, more
accurate routines for light bending.

A powerful approximation to the bending integral in the
Schwarzschild metric of the required form α(R, ψ) was discov-
ered by Beloborodov (2002). He showed that there is a nearly
linear relation between cosα and cosψ:

x = 1 − cosα ≈ (1 − u)y = (1 − u)(1 − cosψ), (1)

where u = RS/R is the compactness and RS = 2GM/c2 is
the Schwarzschild radius of the central object of mass M. This

approximation has a high accuracy for direct trajectories (those
that do not pass through the turning point, i.e. periastron) and
for compact stars of a radius exceeding 2 RS. A useful prop-
erty of this approximation is that it is linear in three parame-
ters: cosα, cosψ, and u. Thus, for any known two parameters,
the third can be found easily. For example, if we are interested
in the total bending angle corresponding to a given compact-
ness, we would fix cosα = 0, find ψmax from a simple relation
cosψmax = −u/(1 − u), and the total bending angle as 2ψmax − π.
This approximation can also be used to obtain an approximate
form of the photon trajectory for the given impact parameter,
which depends on α and u (see Eq. (4) below), as given by Eq. (3)
in Beloborodov (2002). Using a similar approach, other approx-
imate forms for the photon trajectory and the total bending angle
are suggested by Semerák (2015).

In this paper, however, we are only interested in a simple
approximation for α(R, ψ). We propose the following approxi-
mation:

x = (1 − u) y
{
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u2y2
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where e is the base of the natural logarithm. It works for trajecto-
ries that make less than half of a full turn around a central object
and for the radii all the way to the horizon. We then compare
our new approximation to other approximations proposed in the
literature and test it on the following two well-known problems:
the light curve from two antipodal hotspots at the NS surface and
the line emission from the accretion disc around a Schwarzschild
BH.

2. Light bending in the Schwarzschild metric

2.1. Bending angle

Here, we consider a photon passing near a gravitating centre (BH
or NS) and escaping to infinity (see Fig. 1). In the Schwarzschild
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Fig. 1. Geometry of light bending in the Schwarzschild metric. The
observer is situated on the right at ψ = 0.
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Fig. 2. Light bending relation between the cosine of the emission angle
α and the angle ψ between the line of sight and the radius-vector
of the emission point computed using exact relations (6)–(11) for the
Schwarzschild metric for six different emission radii R/RS = 1.1, 1.3,
1.5, 2, 3, and 10, which are marked next to the corresponding curves.

metric, the shape of the photon’s trajectory is described by the
following equation (Misner et al. 1973, p. 673):(

1
R2

dR
dψ

)2

+
1

R2 (1 − u) =
1
b2 , (3)

where R is the circumferential radius, ψ is the azimuthal angle,
and b is the impact parameter. The impact parameter and the
angle, α, between the radial direction and the photon trajectory
are related by (e.g. Beloborodov 2002)

b =
R

√
1 − u

sinα. (4)

In a BH case, a photon with an impact parameter of b ≤ bcr =

RS 3
√

3/2 (Misner et al. 1973, p. 675) may be captured by the
central object. The critical impact parameter bcr corresponds to
the critical emission angle

αcr = arcsin
(
3
√

3 u
√

1 − u/2
)
. (5)

If the emission radius is small, R ≤ 1.5 RS (i.e. u ≥ 2/3), only
photons with α ≤ αcr can escape to infinity. For a larger emission
radius of R > 1.5 RS, all photons with α ≤ π/2 escape. In these
cases, the observer angle ψ(R, α), that is, the angle between the

radius vector of the emission point and the photon momentum
at infinity, is given by the integral (e.g. Pechenick et al. 1983;
Beloborodov 2002)

ψ(R, α) =

∫ ∞

R

dr
r2

[
1
b2 −

1
r2

(
1 −

RS

r

)]−1/2

, (6)

where b is given by Eq. (4).
If R > 1.5 RS, the critical emission angle is instead π − αcr,

and the condition for photon capture can be written as

α > π − αcr > π/2 (7)

or

cosα < −

√
1 −

27
4

u2 (1 − u). (8)

Thus, photons emitted at an angle of π/2 < α ≤ π − αcr escape,
but they first pass though the turning point (see Fig. 1) at an
azimuthal angle of

ψmax = ψ(p, π/2). (9)

The periastron, p, can be found by setting dR/dψ = 0 in Eq. (3)
and solving the resulting cubic equation p3 = b2(p − RS) to get

p = −
2
√

3
b cos {[arccos(bcr/b) + 2π]/3} . (10)

The observer angle is then given by

ψ(R, α) = 2ψmax − ψ(R, π − α). (11)

A numerical method to accurately compute bending integrals is
described, for example, by Salmi et al. (2018). The resulting rela-
tion between ψ and cosα for different radii is shown in Fig. 2.
We see that ψ diverges when cosα approaches critical values.
This corresponds to many rotations of a photon around the BH
and may result in multiple images.

For the majority of realistic astrophysical situations, we can
limit ourselves only to the primary image with ψ < π, because
other images may be blocked by the accretion disc and the flux
decreases rapidly with the number of turns (Luminet 1979). In
the NS case, the trajectories that pass through the stellar sur-
face are truncated. For a spherical star, this means that we are
only interested in trajectories with cosα > 0. Rapidly rotating
NSs are not spherical anymore and, in principle, some trajecto-
ries with cosα < 0 may also become possible. For the primary
image, the dependence cosα(cosψ) would be sufficient and we
plotted it in Fig. 3.

2.2. Lensing factor

Now we turn to a problem of evaluating flux from a surface ele-
ment of the area dS . Without losing a generality, we can assume
that the normal to the surface is along the radial direction R. The
flux observed from this element is proportional to the product
of the radiation intensity I and the solid angle occupied by the
element on the observer’s sky dΩ. The solid angle can be repre-
sented via the impact parameter as

dΩ =
b db dφ

D2 , (12)

with D being the distance to the source and φ is the azimuthal
angle in the spherical coordinate system with the z-axis directed
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Fig. 3. Upper panel: light bending relation between the cosine of the
emission angle α and the cosine of the angle ψ between the line of
sight and the radius-vector of the emission point in the Schwarzschild
metric. The red curves give the exact relation. Our new approximate
relation (2) is shown with the black curves. The blue straight lines are
for the Beloborodov (2002) approximation (1), while the green curves
represent the approximation (16) by La Placa et al. (2019). The red,
green, and black curves practically coincide. The solid, dotted, dashed,
and dot-dashed curves correspond to radii R/RS = 1.5, 2, 2.5, and 3,
respectively. Bottom panel: relative error of the emission angle δα/α for
three approximations as compared to the exact result. Same notations as
in the upper panel.

along the line of sight. Expressing the element area as dS =
R2d cosψ dφ and using Eq. (4), we get (Beloborodov 2002)

dΩ =
dS
D2

b
R2

∣∣∣∣∣ db
d cosψ

∣∣∣∣∣ =
dS cosα

D2

1
1 − u

d cosα
d cosψ

· (13)

We see that the solid angle has two terms: The first is just the
solid angle that the element observed at inclination α would
occupy in flat space dS cosα/D2, while the second factor cor-
rects for light bending. Thus in calculations of the observed flux,
it is not only important to get an accurate estimate of the emis-
sion angle α for a given ψ, but also to evaluate the lensing factor
accurately

D =
1

1 − u
d cosα
d cosψ

, (14)

which is shown in Fig. 4.

3. Approximate light bending formulae

We need to design approximations of the form α(u, ψ) and
D(u, ψ). A simple approximate relation (1) discovered by
Beloborodov (2002) is not very accurate for large emission
angles α and large compactness u & 1/2. This is demonstrated
in Fig. 3, where Beloborodov (2002) approximation (blue lines)
is compared with the exact relation (red curves). We see that
the error of the emission angle δα/α grows systematically with

     

1.0

1.2

1.4

1.6

1.8

2.0

d
c
o

s
 
α

/
d

c
o

s
 
ψ

/
(
1

-
u

)

R/R
S 
=1.5

2.0

2.5

3.0

Exact

Eq. (17)

Beloborodov

La Placa

Eq. (20)

R/R
S 
=1.5

2.0

2.5

3.0

Exact

Eq. (17)

Beloborodov

La Placa

Eq. (20)

R/R
S 
=1.5

2.0

2.5

3.0

Exact

Eq. (17)

Beloborodov

La Placa

Eq. (20)

R/R
S 
=1.5

2.0

2.5

3.0

Exact

Eq. (17)

Beloborodov

La Placa

Eq. (20)

−1.0 −0.5 0 0.5 1.0

 cos ψ

−10

0

10

 
e
r
r
o

r
 
(
%

)

Fig. 4. Same as Fig. 3, but for the lensing factorD. The approximation
(20) is shown by the pink curves.

decreasing cosψ (that is increasing ψ, which corresponds to the
emission points further from our line of sight). For small com-
pactness, u . 1/3 (i.e. R & 3RS), and the NS case, this is not a
problem because we are mostly interested in trajectories with
cosα > 0, where the error does not exceed 0.7%. The error
grows, however, with compactness and for u = 1/2, it is already
10%.

The situation is even worse for the lensing factor (14).
Equation (1) impliesD = 1, while the exact value grows rapidly
at negative cosψ (see Fig. 4), for example at cosψ = −0.7 (i.e.
ψ = 134◦), deviation from unity exceeds 10% for u = 1/3 and
15% for u = 1/2. It is thus clear that the approximation may
introduce a significant error in the flux observed, for example,
from a spot at the NS far side or from the accretion disc viewed
at a large inclination. The realisation of this problem motivates
us to look for a different, more accurate approximation.

Approximation (1) was derived by Beloborodov (2002) from
the exact expression of the bending angle (6) by expanding the
integral in the Taylor series over the small parameter x and
obtaining a new Taylor series for y(x). Poutanen & Beloborodov
(2006) got an expression for the reverse relation:

x = (1 − u)y
(
1 +

u2

112
y2

)
, (15)

which, however, still has the same problems as the original
approximation (1) because deviations appear at large values of
the argument y.

Recently, a purely phenomenological formula was proposed
by La Placa et al. (2019):

x = (1 − u)y
{
1 + k1u[1 − cos(ψ − k2)]k3

}
, (16)

where k1 = 0.1416, k2 = 1.196 and k3 = 2.726. This approxima-
tion is shown in Fig. 3 by the green curves. We see that it is bet-
ter than 1% accurate for most of the angles of interest. However,
it does not reproduce the exact behaviour well at small angles
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Fig. 5. Contours of the constant relative error on (a) the bending angle δα/α and (b) the lensing factor for our approximations given by Eqs. (2)
and (17). Neighbouring contours differ by a factor of 10 in the value of the error. Solid and dotted curves represent positive and negative deviations,
respectively.

ψ ≈ α/
√

1 − u experiencing unphysical jumps, which are also
reflected in the jumps in the derivative (lensing factor) at small
ψ (see green curves in Fig. 4). The lensing factor has a typical
accuracy of 3−5% and deviates by more than 5% from the exact
values at cosψ . −0.8.

We instead suggest designing a fitting formula that keeps the
correct asymptotic behaviour at ψ→ 0, as given by Eq. (15), but
at the same time provides a sufficient curvature when cosψ is
close to −1 (i.e. y = 2). For that, we added a logarithmic term of
the type ∝ ln(1−y/2) that satisfies the second condition, but sub-
tracted the terms of the corresponding Taylor expansion around
y = 0 in order to satisfy the first condition. We found that a good
fit to the exact bending relation is provided by Eq. (2). It gives an
error below 0.06% for cosψ > −0.5 (i.e. for the angle ψ < 120◦
from the radial direction) and any radius exceeding 1.5 RS. At
these radii, the error exceeds 0.2% for cosψ < −0.95, that is
ψ > 162◦ (see black curves in Fig. 3), which corresponds to
the emission points behind the compact object. The contours of
constant errors on the plane (u, cosψ) are shown in Fig. 5a. We
see that approximation works rather well, even for radii between
the event horizon and the photon orbit, RS < R < 1.5 RS (i.e.
2/3 < u < 1); of course, this is only the case for emission
angles that are very close to the radial direction, so that the pho-
ton trajectory makes less than half of a full turn around a compact
object.

The lensing factor implied by Eq. (2),

D = 1 +
3u2y2

112
−

e
100

uy
[
2 ln

(
1 −

y

2

)
+ y

1 − 3y/4
1 − y/2

]
, (17)

also has a high accuracy. Figure 5b shows the contours of the
constant error on the plane (u, cosψ). We see that the error only
exceeds 10% for cosψ < −0.9 and u > 0.8. For an object with
a radius exceeding the photon orbit (i.e. u < 2/3), the error is
below 0.3% for cosψ > −0.5 (see also the black curves in Fig. 4).

Another way to approximate the lensing factor (14) is to start
from its following form

D =
1

1 − u
sinα
sinψ

1
cosα

d sinα
dψ

· (18)

The derivative dψ/d sinα can be written in an explicit form that
follows from Eq. (6) as

dψ
d sinα

=
R

√
1 − u

∫ ∞

R

dr
r2

[
1 −

b2

r2

(
1 −

RS

r

)]−3/2

. (19)

By expanding it as well as sinα and cosα in Eq. (18) in a small
parameter x = 1 − cosα up to x2, but keeping the factor sinψ in
the denominator, we get1

D ≈

√
2y

sinψ

[
1 −

y

4
+ y2

(
−

1
32

+
5

224
u2

)]
· (20)

Here in the final expression, we used Eq. (1) and substituted
x = y(1 − u) to get D as a function of ψ, not α. The factor sinψ
in the denominator gives rise to a diverging behaviour at ψ → π
(see Fig. 4), which allows us to describe the actual dependence of
the lensing factor slightly better than just a constantD = 1 from
Belobodorov’s approximation, but worse than the other approx-
imations considered above.

4. Applications

4.1. Hotspots at a neutron star surface

We now consider a test case which demonstrates the power
of approximate formulae for light bending. We consider two
antipodal spots of the area dS at a slowly rotating spherical
NS of radius R and mass M where the observer unit vec-
tor is ô = (sin i, 0, cos i) and the co-latitude of the primary
spot is θ. The unit-vector corresponding to the radius vector
of the primary hotspot varies with the rotational phase ϕ as

1 A similar approach for the lensing factor was used by De Falco et al.
(2016). That paper, however, has a number of flaws, for example, calcu-
lations of the bending angle for α > π/2 assumed ψmax = ψ(R, α = π/2)
instead of the correct ψmax = ψ(p, α = π/2), see Eq. (11); the expres-
sion for the solid angle, which is proportional to our lensing factor, con-
tains an excessive factor sinα/ sinψ; there is an error in Eq. (30), where
1 − C . . . should be −1/2 − C . . . instead; and the pulse profiles from a
hotspot on a rapidly rotating NS in their Fig. 9 have unphysical jumps
before eclipses, instead of going to zero.
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Fig. 6. Upper panels: scaled flux as a function of the pulsar phase produced by two antipodal hotspots at the NS surface for two different
compactnesses: (a) M = 1.8 M�, R = 10 km; (b) M = 1.4 M�, R = 13 km. Both the observer inclination and the magnetic obliquity are fixed at 90◦.
The red solid curves give the results for the exact calculations of bending. Our approximation (given by Eqs. (2) and (17)) is shown with black
dotted curves. The blue dashed and green dot-dashed curves correspond to the approximations by Beloborodov (2002) and La Placa et al. (2019),
respectively. Lower panels: relative error in the flux for the same three approximations of light bending compared to the exact result.

R̂ = (sin θ cosϕ, sin θ sinϕ, cos θ). This gives us the following
expression for the angle between ô and R̂:

cosψ = ô · R̂ = cos i cos θ + sin i sin θ cosϕ. (21)

For the secondary spot, we substituted ϕ→ ϕ+π and θ → π− θ.
The observed bolometric flux is F = I dΩ, where the solid angle
is given by Eq. (13). Thus the flux is (Beloborodov 2002)

F = I
dS
D2 D cosα. (22)

If the intensity at the NS surface is angle-independent, the pulse
profile is fully determined by a variation of D cosα. Thus in
Fig. 6 we plotted the sum of the scaled fluxes D cosα from
two spots situated at the equator for the equatorial observer
(θ = i = 90◦). This geometry maximises the range of angles
ψ. Our approximation gives an accuracy of 0.37% for a compact
NS (M = 1.8 M� and R = 10 km giving u = 0.53), while for a
smaller compactness (M = 1.4 M� and R = 13 km, u = 0.32)
the accuracy is 0.15%. The La Placa et al. (2019) approximation
is 2.2% and 1.3% accurate and the Beloborodov (2002) approx-
imation gives an error of 8.4% and 1.1% for the two considered
cases.

4.2. Line profile from an accretion disc

We now consider a problem of line emission from a Keple-
rian accretion disc around a Schwarzschild BH as discussed, for
example, by Chen et al. (1989) and Fabian et al. (1989). We com-
puted the line profile seen by observers at different inclinations
i along the direction ô = (sin i, 0, cos i). We define a coordinate
system with the z-axis being normal to the disc n̂ = (0, 0, 1), so
that the disc lies in the equatorial plane θ = π/2. The radius-
vector of the disc surface element at an azimuthal angle ϕ,
R̂ = (cosϕ, sinϕ, 0), makes the angle ψ to the line of sight (see
Fig. 7 for geometry):

cosψ = R̂ · ô = sin i cosϕ. (23)

!

!

!

ξ

ψ

"

#
!

α

"

$
v

"

ζ

Fig. 7. Geometry of emission from an accretion disc ring.

Because in the Schwarzschild metric, the photon trajectories
are planar, the direction of the photon momentum close to the
disc surface can be described by a unit vector

k̂0 = [sinα ô + sin(ψ − α) R̂]/ sinψ, (24)

where cosα = k̂0 · R̂. The surface element at a (circum-
ferential) radius R is moving with Keplerian velocity u =
v(− sinϕ, cosϕ, 0) with β = v/c =

√
u/2(1 − u) relative to a

static observer at this radius (see e.g. Luminet 1979). The cor-
responding Lorentz factor is

γ =
1√

1 − β2
=

√
1 − u

1 − 3u/2
· (25)

The photon momentum makes angle ξ with the velocity vector

cos ξ = û · k̂0 =
sinα
sinψ

û · ô = −
sinα
sinψ

sin i sinϕ, (26)

and it makes angle ζ with the local disc normal:

cos ζ = n̂ · k̂0 =
sinα
sinψ

n̂ · ô =
sinα
sinψ

cos i. (27)
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The Doppler factor is

δ =
1

γ(1 − β · k̂0)
=

1
γ(1 − β cos ξ)

· (28)

From the Lorentz transformation, one can get the angle that
photon momentum makes with the local normal in the comov-
ing frame (see e.g. Poutanen & Gierliński 2003; Poutanen &
Beloborodov 2006)

cos ζ′ = δ cos ζ. (29)

The specific flux observed from a surface element at photon
energy E is

dFE = IE dΩ, (30)

where IE is the specific intensity of radiation at infinity, which is
related to that in the comoving disc element frame

IE =

( E
E′

)3

I′E′ (ζ
′) (31)

and the energy ratio (Luminet 1979; Chen et al. 1989)

E
E′

= δ
√

1 − u =

√
1 − 3u/2

1 + β sin i sinϕ sinα/ sinψ
(32)

combines the effects of the gravitational redshift and the Doppler
effect. The solid angle occupied by the surface element of area
dS = RdRdϕ/

√
1 − u is given by the equation similar to (13):

dΩ =
dS cos ζ

D2

1
1 − u

d cosα
d cosψ

· (33)

The observed spectral flux (Eq. (30)) now reads

dFE(R, ϕ) = (1 − u)3/2δ3I′E′ (ζ
′)

dS cos ζ
D2 D. (34)

The observed flux from the disc was then obtained by integrating
Eq. (34) over the radius and azimuthal angle

FE =
1

D2

∫
(1 − u) RdR

∫ 2π

0
dϕ δ3I′E′ (ζ

′)D cos ζ. (35)

Inside the integrand, for a given R and ϕ (and given inclina-
tion i), we computed ψ using Eq. (23), which was used to get
α and D using the approach described in Sect. 2. Then ξ and ζ
were computed from Eqs. (26) and (27), respectively. Using the
Keplerian velocity and the Lorentz factor given by Eq. (25), we
then get the Doppler factor δ from Eq. (28). Furthermore, from
Eqs. (29) and (32), we get the photon zenith angle in the comov-
ing frame ζ′ and the comoving energy E′, which are needed to
obtain I′E′ (ζ

′).
As an example, we consider a case with isotropic emission

in a narrow line centred at comoving energy E0 = 1 with a
width of σ = 2 × 10−3 from an accretion disc ring extending
from 3 to 50 RS with the radial dependence of the emissivity
∝R−2, as was assumed in the original publication by Fabian et al.
(1989). The line profiles observed at two inclinations using the
exact treatment of light bending and different approximations are
shown in Fig. 8. We see that our approximation gives an accu-
racy better than 0.4%, while other proposed approximations give
errors from 1 to 5%. Ignoring the light bending, as was done in
the well-known xspec (Arnaud 1996) model diskline (Fabian
et al. 1989), gives an error that grows from 2% at i = 30◦ to 20%
at i = 60◦.
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Fig. 8. Upper panel: profiles of the emission line from an accretion disc
ring extending from 3 to 50 RS around a Schwarzschild BH (or a slowly
rotating NS) with the emissivity radial dependence ∝R−2. The solid and
dashed curves are for the observer inclination of 30◦ and 60◦, respec-
tively. The red curves correspond to the exact treatment of bending.
The results using our new approximation given by Eqs. (2) and (17) are
shown with the black curves. The blue and green curves correspond to
the approximations of Beloborodov (2002) and La Placa et al. (2019),
respectively. All of the curves overlap. The pink curves show the profile
with no bending accounted for, as in the xspec model diskline. The
profiles were re-normalised by a factor giving maximum of unity for
the exact profile. Bottom panels: relative error in the line flux for the
considered approximations.

We note that our approximation is nearly independent of the
emission radius. For example, if the line is produced in a narrow
ring at 3 RS, our approximation gives an accuracy of 0.13% and
1.5% for i = 30◦ and 60◦, respectively, while the corresponding
errors are 2.7% and 14% for the Beloborodov (2002) approxi-
mations and 1% and 2.8% for the La Placa et al. (2019) approx-
imation. The diskline model, on the other hand, has a typical
error of 5% and 15%, respectively, but it rises sharply towards
the line peaks and reaches 40% and 70% there.

Wilkins & Fabian (2011) show that the line profiles from
accretion discs mostly depend on the inner disc radius, which
is the function of the black hole spin, while the effect of the
spin on photon trajectories is minor. Because our approxima-
tion works equally well for emission radii that are well within
3 RS (see Fig. 5), it can, in principle, be used for calculations of
the line profiles from the discs around rotating black holes too.
Detailed calculations are left for future work.

5. Summary

In this paper, we propose a new approximation for light bend-
ing in the Schwarzschild metric. It can be applied to any emis-
sion point above the horizon of a BH and also for trajectories
that pass through the turning point, but which make less than
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half of a full turn. For emission radii above the photon orbit at
the 1.5 Schwarzschild radius, the approximation has an accu-
racy of better than 0.2% for the bending angle and 3% for the
lensing factor for photon orbits turning by less than 160◦ around
a compact object. This approximation can be useful for prob-
lems involving rotating oblate NSs and an accretion disc around
a compact object when fast accurate calculations of light bending
are required. The proposed formulae can also be used to check
the results of exact calculations.

Acknowledgements. This research has been supported by the grant 14.W03.
31.0021 of the Ministry of Science and Higher Education of the Russian Fed-
eration and the Academy of Finland grants 322779 and 333112. I thank Joonas
Nättilä and Dmitry Yakovlev for comments.

References
Arnaud, K. A. 1996, in Astronomical Data Analysis Software and Systems V,

eds. G. H. Jacoby, & J. Barnes (San Francisco: ASP), ASP Conf. Ser., 101,
17

Beloborodov, A. M. 2002, ApJ, 566, L85
Bogdanov, S., Lamb, F. K., Mahmoodifar, S., et al. 2019, ApJ, 887, L26
Chen, K., Halpern, J. P., & Filippenko, A. V. 1989, ApJ, 339, 742
De Falco, V., Falanga, M., & Stella, L. 2016, A&A, 595, A38
Dexter, J. 2016, MNRAS, 462, 115
Fabian, A. C., Rees, M. J., Stella, L., & White, N. E. 1989, MNRAS, 238, 729
La Placa, R., Bakala, P., Stella, L., & Falanga, M. 2019, Res. Notes Am. Astron.

Soc., 3, 99
Luminet, J. P. 1979, A&A, 75, 228
Miller, M. C., & Lamb, F. K. 2015, ApJ, 808, 31
Miller, M. C., Lamb, F. K., Dittmann, A. J., et al. 2019, ApJ, 887, L24
Misner, C. W., Thorne, K. S., & Wheeler, J. A. 1973, Gravitation (San Francisco:

W. H. Freeman and Co.)
Nättilä, J., & Pihajoki, P. 2018, A&A, 615, A50
Pechenick, K. R., Ftaclas, C., & Cohen, J. M. 1983, ApJ, 274, 846
Poutanen, J., & Beloborodov, A. M. 2006, MNRAS, 373, 836
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