
A&A 647, A45 (2021)
https://doi.org/10.1051/0004-6361/202039485
c© ESO 2021

Astronomy
&Astrophysics

Mechanical model of a boundary layer for the parallel tracks of
kilohertz quasi-periodic oscillations in accreting neutron stars

Pavel Abolmasov1,2 and Juri Poutanen1,3,4

1 Department of Physics and Astronomy, University of Turku, 20014 Turku, Finland
e-mail: pavel.abolmasov@gmail.com

2 Sternberg Astronomical Institute, Moscow State University, Universitetsky pr. 13, 119234 Moscow, Russia
3 Space Research Institute, Russian Academy of Sciences, Profsoyuznaya 84/32, 117997 Moscow, Russia
4 Nordita, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, 10691 Stockholm, Sweden

Received 21 September 2020 / Accepted 31 December 2020

ABSTRACT

Kilohertz-scale quasi-periodic oscillations (kHz QPOs) are a distinct feature of the variability of neutron star low-mass X-ray binaries.
Among all the variability modes, they are especially interesting as a probe for the innermost parts of the accretion flow, including the
accretion boundary layer (BL) on the surface of the neutron star. All the existing models of kHz QPOs explain only part of their rich
phenomenology. Here, we show that some of their properties can be explained by a very simple model of the BL that is spun up by
accreting rapidly rotating matter from the disk and spun down by the interaction with the neutron star. In particular, if the characteristic
time scales for the mass and the angular momentum transfer from the BL to the star are of the same order of magnitude, our model
naturally reproduces the so-called parallel tracks effect, where the QPO frequency is correlated with luminosity at time scales of hours
but becomes uncorrelated at time scales of days. The closeness of the two time scales responsible for mass and angular momentum
exchange between the BL and the star is an expected outcome of the radial structure of the BL.
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1. Introduction

Stitching an accretion disk rotating at about the Keplerian rate
with the central object rotating much more slowly leads to
the concept of the accretion boundary layer (BL). The rea-
son for talking about the BL as an entity separate from the
accretion disk is the inevitable breakdown of the basic assump-
tions of the standard disk theory in a very narrow region just
above the surface of the accretor (Lynden-Bell & Pringle 1974;
Papaloizou & Stanley 1986).

In neutron star (NS) low-mass X-ray binaries (LMXBs),
the BL is thought to be an important source of radiation
when the magnetic field of an accreting NS is too weak to
support a magnetosphere. Shining at a luminosity compara-
ble to that of the accretion disk (Lynden-Bell & Pringle 1974;
Sibgatullin & Sunyaev 2000), but being much more compact,
the BL is expected to have a harder spectrum and shorter
variability time scales. Such a component has indeed been
identified in LMXBs, spectrally (Suleimanov & Poutanen 2006;
Revnivtsev et al. 2013) and via its timing properties, in particular
as a source of kilohertz quasi-periodic oscillations (kHz QPOs;
Gilfanov et al. 2003). The position of the BL at the surface of
the NS makes it a valuable probe for the fundamental proper-
ties of the star: its size, radius, and the physical conditions on its
surface.

The kHz QPOs have been observed in many NS LMXBs
(van der Klis 2000). Their frequencies span the range between
about 200 Hz and the Keplerian frequency near the surface
(about 1.3 kHz; see Méndez et al. 1999; Belloni et al. 2005).
Either one or two peaks, with a frequency difference of about
300 Hz (Méndez & Belloni 2007), are observed. In individual

sources, kHz QPO frequencies may vary by a factor of 1.5–2.
The frequencies are correlated with flux on time scales of hours
(Méndez et al. 1999, 2001), while the correlation disappears on
time scales of days. This phenomenon, known as QPO paral-
lel tracks, was explained in a purely phenomenological way by
van der Klis (2001). He suggested that the instantaneous X-ray
luminosity of the source is a linear combination of the mass
accretion rate Ṁ and its running average 〈Ṁ〉, while the oscil-
lation frequency is a function of Ṁ/〈Ṁ〉 only. In this paper, we
propose a mathematically similar but more physically motivated
solution to the parallel tracks problem.

We have developed a simple mechanical model of the BL,
which is treated as a thin massive belt supplied by the mass and
angular momentum from the accretion disk and which is los-
ing mass and angular momentum to the NS. We consider the
rotation frequency of the BL to be the characteristic frequency
responsible for kHz QPOs, though the real situation is proba-
bly much more complicated (e.g., Abolmasov et al. 2020). In
Sect. 2, we introduce the main equations based on conservation
laws. In Sect. 3, we consider the properties of the model by solv-
ing the equations numerically. We discuss the results in Sect. 4.

2. Model setup

We consider the BL as an infinitely thin equatorial belt on the
surface of a NS of radius R and mass MNS rotating at an angular
frequency ΩNS. The rotation of the layer is aligned with both the
rotation of the star and the disk. The dynamics of the layer can
be reduced to two equations, one for the mass and the other for
the angular momentum conservation. The conservation law for
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the BL mass M can be written as

dM
dt

= Ṁ −
M

tdepl
, (1)

where Ṁ is the mass supply rate from the disk. The second term
describes mass precipitation from the BL onto the NS surface
with the depletion time scale tdepl that exceeds the characteristic
dynamical (Keplerian) time scale tdyn = 1/ΩK =

√
R3/GMNS,

where ΩK is the Keplerian frequency.
Conservation of the angular momentum also involves

sources and sinks related to the interaction with the surface of the
star. Hydrodynamic numerical simulations (e.g., Belyaev et al.
2013) suggest that the interaction between the BL and the surface
of the star mediated by Reynolds stress is relatively weak. The
relevant tangential stress Wrϕ ∼ 10−6P, where P is the pressure
at the bottom of the layer. The impact of magnetic fields on the
internal dynamics of the layer is probably important (Armitage
2002), but it is unclear if they can provide an efficient angular
momentum transfer between the BL and the star. We will assume
that the stress at the bottom of the BL is proportional to the pres-
sure with a small proportionality coefficient α � 1,

Wrϕ = αP = αgeffΣ, (2)

where Σ is the BL surface density and

geff =
GMNS

R2 −Ω2R (3)

is the effective surface gravity, where Ω is the rotation frequency
of the layer. This allows us to express the braking torque acting
on the layer as

T− = ARWrϕ = αgeff MR, (4)

where A is the surface area of the BL (projected onto the surface
of the star) and the BL mass is M = AΣ.

The angular momentum conservation law that includes mass
depletion and friction takes the form

dJ
dt

= Ṁ jd −
J

tdepl
− αgeff MR, (5)

where J = ΩMR2 is the total angular momentum of the layer
and jd =

√
GMNSR is the specific angular momentum of the

matter entering from the disk. We ignore viscous interaction
between the disk and the BL. This corresponds to the “accre-
tion gap” scenario (Kluzniak & Wagoner 1985), where the last
stable orbit is located above the surface of the NS and thus the
disk is causally disconnected from the BL. Recent constraints for
the NS radius (Nättilä et al. 2017; Miller et al. 2019; Riley et al.
2019; Capano et al. 2020) suggest that this should be the case, at
least below the Eddington limit.

Two equations, Eqs. (1) and (5), are sufficient to describe
the evolution of the physical parameters of the BL with time,
given Ṁ(t) and initial conditions. In our framework, the energy
released during accretion and dissipation does not affect the
dynamics of the layer. However, luminosity is an important
observable. Some of the kinetic energy of the flow contributes
to the spin-up of the star; the rest is converted to heat and
contributes to the luminosity. The dissipated luminosity can be
found as the change in the kinetic energy (see, e.g., Appendix B
of Popham & Narayan 1995). Our model splits this spin-down
of the gas being accreted into two episodes: Some dissipation
occurs when the matter from the disk enters the BL at the rate

Ṁ, and some dissipation occurs during the matter depletion from
the BL (at the rate of M/tdepl). In addition to these two compo-
nents, there is viscous dissipation unrelated to mass exchange,
equal to one-half of the stress Wrϕ times the strain RdΩ/dR (see
Landau & Lifshitz 1987, section 16). Together, the luminosity
associated with the BL can be written as the sum of three terms:

L =
1
2

ṀR2
(
Ω2

d −Ω2
)

+
1
2
αgeff MR (Ω −ΩNS)

+
1
2

M
tdepl

R2
(
Ω2 −Ω2

NS

)
. (6)

The first term on the right-hand side is the kinetic energy lost
by the matter that enters the BL from the disk with the angular
frequency Ωd = jd/R2. The second term is the viscous dissipa-
tion associated with the Reynolds stress (Eq. (2)). The last term
corresponds to the kinetic energy of the BL material that precip-
itates onto the NS and acquires its rotation velocity.

Below, we assume that the BL is fed by a variable source
of mass. We assume stochastic variability of the mass accre-
tion rate, modeled as a white noise source convolved with a
kernel corresponding to a power-law power-density spectrum
(PDS) with a random Fourier image phase (which corresponds
to a random moment in time and unsynchronized variability at
different frequencies). Integrating white noise leads to a nor-
mally distributed quantity as it involves the summation of a large
number of independent random numbers. To reproduce the log-
normal flux distribution reported in many observational works
(Uttley et al. 2005), we then exponentiated the result of the con-
volution and renormalized it to match the mean value of Ṁ.

3. Results

3.1. Approach to the equilibrium solution

For a fixed BL mass and mass accretion rate, the rotation of the
BL can be described as evolution toward an equilibrium state.
Using Eqs. (1) and (5), we can derive an evolutionary equation
for Ω:

dΩ

dt
=

d
dt

( J
MR2

)
=

J
MR2

(
Ṁ jd

J
−

Ṁ
M
−
αgeff MR

J

)
=

Ṁ
M

(Ωd −Ω) − α
(
Ω2

K −Ω2
)
. (7)

The right-hand side of this equation is quadratic in Ω, which
allows us to rewrite it in the form

dΩ

dt
= α (Ω− −Ω) (Ω+ −Ω) , (8)

where

Ω± =
Ṁ

2αM
±

√(
Ṁ

2αM
−ΩK

)2

+
Ṁ
αM

(ΩK −Ωd). (9)

For Ωd = ΩK, one of the frequencies becomes Ω+ = ΩK and the
other Ω− = Ṁ/(αM) − ΩK. The lower of the two roots, which
is always Ω− for the parameter values we consider (see Sect. 3.3
for more details), is stable.

Our approximation is valid only if Ω < ΩK; otherwise, effec-
tive gravity becomes negative and the flow is unbound. Unless
Ω− becomes smaller than ΩNS, the BL will evolve toward this
equilibrium state. Otherwise, the layer stalls at Ω = ΩNS, and
Wrϕ works as static friction.
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At a fixed mass accretion rate, the system reaches both equi-
librium mass and equilibrium rotation frequency. Mass equilib-
rium is given by

M = Meq = Ṁtdepl. (10)

The equilibrium rotation frequency depends on the ratio Ωd/ΩK,
which we fix to 1, and on only one additional parameter
αMeq/Ṁ. It is easy to check that this quantity, multiplied by the
Keplerian frequency, is equal to the ratio of the characteristic
depletion and friction time scales,

q =
tdepl

tfric
= αΩKtdepl. (11)

For Ωd = ΩK, the equilibrium rotation frequency is

Ωeq =

(
1
q
− 1

)
ΩK. (12)

When the friction becomes more efficient than depletion, the
layer brakes down to Ω = ΩNS, which leads to trivial rota-
tional evolution. Hence, in the simulations with the variable mass
accretion rate, we keep α . 1/(ΩKtdepl).

3.2. Variable mass accretion rate

If the mass accretion inflow to the layer is variable, the BL works
as a filter for the variability of Ṁ. The system of equations we
consider is practically linear, though there is nonlinearity intro-
duced by geff in the friction term in Eq. (5). The characteristic
depletion and friction time scales are presumably much longer
than the dynamical time, and they probably also exceed the vis-
cous time scales in the inner disk. The outer disk, however,
evolves even more slowly. In the relevant frequency range, the
shapes of the PDSs of LMXBs are generally close to a power-
law PDS ∝ f −p with a slope of p ' 1.3 (Gilfanov & Arefiev
2005). We used this spectral slope in our simulations as repre-
sentative of the variability of the disk.

The mean mass accretion rate was set to Eddington Ṁ =
LEdd/c2. The exact value does not affect the qualitative picture
of accretion but sets the accretion time scale and equilibrium
mass of the layer. As mentioned in Sect. 2, the variations of
the mass accretion rate logarithm were considered as an inte-
gral of a white noise process. This allowed us to introduce one
extra parameter, the dispersion of ln Ṁ. In our simulations, we
set the root-mean-square deviation of the mass accretion rate

logarithm D =

√〈(
∆ ln Ṁ

)2
〉

to 0.5. This value allows us to

reproduce the relative variations of the characteristic frequencies
without strong inconsistency with the flux variation amplitudes
in LMXBs (Hasinger & van der Klis 1989; Méndez et al. 1999).

In our model, the BL does not have any variability of its own,
and hence the variations of its luminosity are essentially smaller
than that of the mass accretion rate, especially at high frequen-
cies. In reality, of course, there is an additional variability com-
ponent originating in the layer. The BL light curve is smoother
and lags the mass accretion rate, as one would expect from the
properties of the model where the BL emission depends on the
history of the mass accretion rate.

We computed the cross-spectra of BL luminosity, L (see
Eq. (6)), and its rotation frequency, Ω, which are the proxies for
the flux and QPO frequency, respectively. The argument of the
cross-spectrum gives the phase lags, which we show in Fig. 1
as a function of Fourier frequency. We also computed the coher-
ence (Vaughan & Nowak 1997; Nowak et al. 1999) shown in the
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Fig. 1. Phase lags (upper panel) and coherence (lower panel) between
the instantaneous luminosity of the BL, L, and its rotation frequency, Ω.
A positive phase lag means that Ω lags L. The vertical green lines show
the frequencies corresponding to the depletion tdepl (dot-dashed) and
the friction 1/αΩK (dashed) time scales. Additional error bars (vertical
dotted black lines) show the variability of the quantities within the bin.
The parameters are α = 10−7, tdepl ' 740 s (corresponding to q ' 0.68),
and a NS spin period of 3 ms.

lower panel of the figure. Both are averaged over a series of 104

light curves.
Quite expectedly, the quantities are correlated at lower fre-

quencies but uncorrelated at f � 1/tdepl, fric. Maximal coher-
ence, however, occurs at intermediate frequencies, f ∼ (0.1 −
1)/tdepl, fric. At higher frequencies, luminosity becomes sensitive
to rapid variations in Ṁ that are uncorrelated with Ω. Phase lags
at low frequencies are negative as the variations of L lag the vari-
ations of Ṁ, while Ω follows the variations of Ω−(Ṁ,M) (see
Sect. 3.3). The phase lags increase with frequency and become
positive at time scales that are somewhat longer than the time
scales of the BL (∼tdepl and tfric). At high frequencies, they
approach ∆ϕ = π/2. Such a flat phase lag spectrum is a nat-
ural outcome of the mathematical properties of the initial sys-
tem of equations. The luminosity given by Eq. (6) contains one
term proportional to Ṁ (the first term, related to the variable
mass inflow to the BL). The other two terms depend only on
M =

∫
Ṁdt + const and on Ω. The spectral slope of Ṁ is always

shallower than that of M. At a given frequency f , the friction and
depletion terms have contributions of ∼1/( f tfric, depl) with respect
to the first term. Thus, at high frequencies, the variability of L is
dominated by variations in the mass accretion rate. Rotation fre-
quency at high f (when M ' const) is a result of the integration
of Ω− (see Eq. (9)), which is a function of Ṁ and M. Taking the
Fourier transform of Eq. (8) in the high-frequency limit yields

2πi f Ω̃ ' (ΩK −Ω)
˜̇M

M
, (13)

where all the higher-order terms in f are neglected, Ω+ is
replaced with ΩK, and the Fourier transform of Ω− is replaced
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Fig. 2. Rotation frequency dependence on q and luminosity. Upper panel: mean BL rotation frequency (black dots; error bars show the root-mean-
square variations of Ω) as a function of q compared to the equilibrium value, Ω− (solid red line). The dashed red line shows the rotation frequency
of the NS (3 ms). Lower panels: BL rotation frequency dependence on instantaneous luminosity for sample light curves with three different values
of depletion time corresponding to q = 0.4, 0.6, and 0.8. In all the simulations, α = 10−7. Time in the lower panels is color-coded (see the colorbar
on the right). The crosses are the average values calculated for 64 s time bins, and the error bars show the standard deviation.

by ˜̇M/αM. Hence, in this limit, the Fourier image of the rotation
frequency is

Ω̃ '
1

2πi f

˜̇M
M

(ΩK −Ω) . (14)

As L is mainly affected by the first term, the cross-spectrum
becomes

C(L,Ω) '
1
2

R2
(
Ω2

K −Ω2
) ˜̇MΩ̃∗

'
i

4π f
R2

(
Ω2

K −Ω2
)

(ΩK −Ω)
∣∣∣∣ ˜̇M∗

∣∣∣∣2 . (15)

The argument of this expression is π/2.

3.3. Rotation frequency variations

The behavior of the BL, including its rotation frequency, depends
strongly on the balance between mass and angular momentum
loss, which can be described by the dimensionless quantity q
(see Eq. (11)). In Fig. 2, we show the mean rotation frequency
and its variations for different values of q. Apparently, the mean
value is well predicted by the Ω− given by Eq. (9). When the

depletion time scale is much shorter (q . 0.5), the BL corotates
with the disk. In the opposite limit, friction spins the BL down to
ΩNS. Strong variations in Ω are present only when the two time
scales (friction and depletion) are comparable (q ' 0.5−0.9).

In general, the relation between the observed luminosity and
rotation frequency of the layer is nonunique, and the parallel
tracks picture is qualitatively reproduced (see the lower pan-
els of Fig. 2). On the shortest time scales, much smaller than
tdepl, fric, the variability of the luminosity is dominated by the first
term in Eq. (6), which is uncorrelated with Ω. However, if the
luminosity is averaged in time bins that are several times smaller
than the time scales of the BL, it becomes correlated with Ω. On
these time scales, the variations of Ω− in Eq. (8) dominate over
the variations of Ω (see Fig. 3), hence the rotation frequency
derivative
dΩ

dt
' (ΩK −Ω)

Ṁ
M
. (16)

Neglecting mass depletion, this yields

M ∝
1

ΩK −Ω
, (17)

where the proportionality coefficient is a slowly variable func-
tion of time. This scaling is well reproduced in the evolution

A45, page 4 of 7

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/202039485&pdf_id=2


P. Abolmasov and J. Poutanen: QPOs from a neutron star boundary layer

0 1000 2000 3000 4000 5000 6000 7000
t, s

0.0

0.5

1.0

1.5

2.0

Ω
/Ω

K

0 1000 2000 3000 4000 5000 6000 7000
t, s

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

L/
L E

dd

Fig. 3. Luminosity and frequency variations with time. Upper panel:
portion of the light curve of the simulation with α = 10−7 and q = 0.6.
The solid black curve shows the total 64-second-averaged luminosity
(Eq. 6). We also show three contributions to the luminosity separately:
The first, second, and third terms from Eq. (6) are plotted with dashed
green, dotted blue, and dot-dashed red lines, respectively. The black
dots are instantaneous luminosity values (every 2 s). Lower panel: rota-
tion frequency Ω (solid black line) and Ω± (dotted blue lines) for the
same model. The horizontal dashed green line corresponds to the spin
of the NS.

of the BL on time scales that are several times smaller than the
friction and depletion scales (Fig. 4). Luminosity variations also
follow a similar trend, L ∝ (ΩK −Ω)−1.

3.4. The influence of the other model parameters

Despite its simplicity, the model has several parameters, the val-
ues of which are not derived from the basic principles. The influ-
ence of the rotation frequency of the star ΩNS does not change
the overall behavior. For the solutions with q . 1, it only limits
the possible values of Ω and slightly modulates the spin-down
term. The mean mass accretion rate in the framework of our
model also plays a secondary role, affecting only the luminos-
ity of the BL.

The variability spectrum of the mass accretion rate is
encoded by two parameters, the root-mean-square variation of
the mass accretion rate logarithm D and the slope of the power-
law spectrum p. Their influence on the parallel tracks effect is
shown in Figs. 5 and 6. A redder variability spectrum allows the
system to accrete longer at a steady rate that is different from the
mean value and thus increases the variations of mass and angular
momentum. Thus, the parallel tracks effect is much more promi-
nent for the case of red noise (right-hand panel of Fig. 5). A
harder variability spectrum (p . 1) makes the parallel tracks
closer. However, the L ∝ (ΩK −Ω)−1 scaling still holds well.

Different values of D (see Fig. 6) also affect the prominence
of the parallel tracks effect. As the amplitude of the mass accre-
tion rate variations increases by a factor of several, the spac-

ing between the short-term tracks increases from about 30% to
nearly two orders of magnitude.

4. Discussion

4.1. Friction and depletion times

As mentioned in the introduction, the observed kHz QPO fre-
quencies vary by a factor of 1.5–2 in individual sources. While
our model reproduces the parallel tracks effect in a broad range
of parameters, strong variations in the rotation frequency of the
BL appear only when the characteristic friction and mass deple-
tion time scales are comparable. If friction is more efficient
(q & 0.8), the BL corotates with the star. If depletion is faster
(q . 0.5), the BL corotates with the disk and loses angular
momentum only with mass. Effectively, the second independent
parameter necessary to reproduce the parallel tracks behavior
exists only in a narrow range of q, meaning that there should
be a physical reason for the depletion and friction time scales to
be close to each other.

Such a similarity in the time scales may be explained if the
BL is resolved in the radial direction. The radial flux of angu-
lar momentum consists of two parts, viscous wrϕR and advective
ωR2ρv, where v is vertical velocity, h � R is the height above the
NS surface, wrϕ = wrϕ(h) is the viscous stress component, and
ω = ω(h) is the rotation frequency, decreasing from Ω some-
where inside the BL to ΩNS at the NS surface. Because the vis-
cous angular momentum transfer is directed outward in the disk
and inward at the bottom of the BL, at some altitude it should
be zero. Let us assume that wrϕ = 0 at the same altitude where
ω = Ω, and describe the angular momentum transfer along the
radial coordinate by the following equation

∂

∂t

(
ωR2

)
+ v

∂

∂h

(
ωR2

)
= −

1
Rρ

∂

∂h

(
wrϕR2

)
. (18)

In a steady-state case, ρv = const and the time derivative in
Eq. (18) is zero. Integration yields

ρvωR2 + wrϕR = ρvΩR2. (19)

At the surface of the NS, ω(h) = ΩNS and wrϕ = Wrϕ, which
implies

ρv (Ω −ΩNS) R2 = RWrϕ. (20)

Multiplying this equation by A and taking Eq. (4) into account
yields

M
tdepl

(Ω −ΩNS) R2 = αgeff MR. (21)

We note that the mass flux ρv is related to the mass motion from
the BL onto the surface of the star, and hence we replaced ρvA
with M/tdepl. Substituting geff from Eq. (3), we can express the q
parameter using Eq. (11) as

q =
ΩK (Ω −ΩNS)

Ω2
K −Ω2

. (22)

These estimates suggest that, instead of being an independent
parameter, q should depend on the rotation frequency of the BL.
It is unclear if q should change with the variations of Ω. If q
depends on the mean or instantaneous value of Ω, Eq. (12) pre-
dicts an attractor for Ω/ΩK and q. Combining Eqs. (12) and (22),
we get
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Fig. 4. Parallel tracks on the M − Ω and L − Ω planes for a simulation with α = 10−7, q = 0.56, D = 0.5, and p = 1.3. Solid black lines are the
lines of (ΩK −Ω) M = const and (ΩK −Ω) L =const. Time is color-coded (see the colorbar on the right). To demonstrate the parallel tracks effect
during multiple observation runs, we show only the data points in 104 s intervals separated by 104 s gaps.
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Fig. 5. Same as the right-hand panel of Fig. 4 but for p = 1 (left panel) and p = 2 (right panel).
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Fig. 6. Same as the right-hand panel of Fig. 4 but for D = 0.25 (left panel) and D = 1 (right panel).

q =
2

3 + ΩNS/ΩK
, (23)

and for the equilibrium rotation frequency we obtain

Ωeq =
ΩK + ΩNS

2
. (24)

In Fig. 7, we show how our dynamical model behaves if
the depletion time depends on rotation frequency as tdepl =

(Ω −ΩNS) /α
(
Ω2

K −Ω2
)

for a fixed value of α, which implies q
following Eq. (22). The parallel tracks effect is still reproduced
in this version of the model.

4.2. Observable frequencies

Here, we consider the rotation frequency of the BL as a char-
acteristic QPO frequency. Though this is probably not the case,
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Fig. 7. Same as the right-hand panel of Fig. 4 but for a model with
α = 10−7 and q given by Eq. (22). The horizontal red line corresponds
to the Ωeq given by Eq. (24)

the real dynamical processes behind kHz QPOs are still likely
sensitive to Ω. If the real oscillation frequencies are functions of
Ω and L or M, the parallel tracks effect is equally well repro-
duced, though the parameters of the correlation with radiation
flux change.

In particular, for the Rossby-wave model considered in
Abolmasov et al. (2020), the characteristic oscillation frequen-
cies are the epicyclic frequency

Ωe ' 2Ω cos θ, (25)

where θ is the colatitude of the region where the oscillations are
excited as well as its aliases with rotation frequency Ωe + nΩ,
where n is a whole number. The oscillations are likely excited in
the region of strongest latitudinal velocity shear, which is unsta-
ble to supersonic shear instability. This naturally explains the
multiplicity of kHz QPO frequencies and the difference between
the frequencies that tends to be close to ΩNS (though not neces-
sarily; see Méndez et al. 2001). Such a model also explains the
characteristic values of the QPO frequencies and their correla-
tion with the flux (cos θ is likely a growing function of L; see
Inogamov & Sunyaev 1999; Suleimanov & Poutanen 2006), as
well as the different quality factors of the two QPO peaks (qual-
ity factors of the axisymmetric mode n = 0 and all others should
differ since visibility effects enhance the periodic component in
a non-axisymmetric case). It is unclear, however, how to explain
the existence of only two QPO peaks (probably n = 0 and −1).
Higher harmonics may be below the sensitivity level, or their
excitation conditions may be different. If, instead of rotation fre-
quency, we plot Ωe(L), the qualitative picture remains the same:
a tight correlation on time scales similar to those of the BL that
worsens on longer scales. The crucial point is the existence of the
second variable, BL mass, which is slowly changing with time.

In beat-frequency models of kHz QPO (Miller et al. 2001),
the higher peak corresponds to a rotation frequency somewhere
in the disk, and the lower peak corresponds to the beat between
the higher frequency and the stellar rotation. Both frequencies in
such models change with a single variable parameter: the radius
in the disk where the oscillations are excited. This radius should
apparently change on the viscous time scale of the inner disk,
and, on longer time scales, the flux from the disk and the char-

acteristic frequency should tightly correlate. A way to reproduce
a parallel track picture in the framework of such a model is to
add a contribution from the BL to the flux. The QPO frequency
depends on the disk flux rather than the total flux, and the depen-
dence Ω(L) retains its slope but not the constant. Apparently, this
is not the case as the slope of the short-time relation between flux
and frequency also changes considerably (Méndez et al. 1999),
suggesting that the frequency itself is sensitive to the parameters
of the BL rather than the disk.

5. Conclusions

We show that a very simple, zero-dimensional model of a BL
accumulating mass and angular momentum from the disk allows
us to explain some of the properties of kHz QPOs. In partic-
ular, the model naturally reproduces the parallel tracks effect:
The rotation frequency of the BL correlates with its luminos-
ity at small time scales but becomes uncorrelated at longer time
scales.

Such an “integrator” BL should have a distinct phase-lag
signature: At high frequencies, its mass and rotation frequency
should lag the variations of the mass accretion rate by ∆ϕ ' π/2.
We expect the variations in kHz QPO frequencies in LMXBs to
lag the variations of bolometric flux, with a phase lag related to
the contribution of the BL. Studying the cross-correlation prop-
erties of the kHz QPOs and the flux variations in LMXBs will
be an important test for the model and for our understanding of
LMXBs in general.
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