
A&A, 685, A84 (2024)
https://doi.org/10.1051/0004-6361/202347821
c© The Authors 2024

Astronomy
&Astrophysics

artpol: Analytical ray-tracing method for spectro-polarimetric
properties of accretion disks around Kerr black holes

Vladislav Loktev1 , Alexandra Veledina1,2 , Juri Poutanen1 , Joonas Nättilä3,4 , and Valery F. Suleimanov5

1 Tuorla Observatory, Department of Physics and Astronomy, University of Turku, 20014 Turku, Finland
e-mail: vladislav.loktev@utu.fi

2 Nordita, KTH Royal Institute of Technology and Stockholm University, Hannes Alfvéns väg 12, 10691 Stockholm, Sweden
3 Physics Department and Columbia Astrophysics Laboratory, Columbia University, 538 West 120th Street, New York, NY 10027,

USA
4 Center for Computational Astrophysics, Flatiron Institute, 162 Fifth Avenue, New York, NY 10010, USA
5 Institut für Astronomie und Astrophysik, Universität Tübingen, Sand 1, 72076 Tübingen, Germany

Received 28 August 2023 / Accepted 21 February 2024

ABSTRACT

Spectro-polarimetric signatures of accretion disks in X-ray binaries and active galactic nuclei contain information on the masses and
spins of their central black holes, as well as the geometry of matter in proximity to the compact objects. This information can be
extracted by means of X-ray polarimetry. In this work, we present a fast analytical ray-tracing technique for polarized light (artpol)
that helps us to obtain the spinning black hole parameters from the observed properties. This technique can replace the otherwise
time-consuming numerical ray-tracing calculations for any optically thick or geometrically thin accretion flow. For the purposes of
illustration, we considered a standard optically thick, geometrically thin accretion disk in the equatorial plane of the Kerr black hole.
We show that artpol proves accurate for dimensionless spin parameter a ≤ 0.94 with a speed that is over four orders of magnitude
faster than direct ray-tracing calculations. This approach opens up broader prospects for direct fittings of the spectro-polarimetric data
from the Imaging X-ray Polarimetry Explorer.

Key words. accretion, accretion disks – gravitational lensing: strong – polarization – methods: analytical – stars: black holes –
X-rays: binaries

1. Introduction

The spin of a black hole (BH) is a fundamental parameter
that controls the behavior of the inflowing matter in the accre-
tion disk, along with the properties of the outflowing material,
namely, the relativistic jets. The magnitude of spin determines
the curvature of space-time close to the BH and the energy
dissipation profile, while also affecting the spectral energy dis-
tribution of the observed emission. The spin values for both
Galactic BHs in X-ray binaries and their supermassive coun-
terparts have been probed using the distinct imprints in spec-
tral and timing properties via the continuum-fitting method and
the iron line reflection-reverberation method (Miller et al. 2009;
McClintock et al. 2014; Uttley et al. 2014; Reynolds 2021). The
methods are based on obtaining the radius of the innermost sta-
ble circular orbit (ISCO), which, in turn, is related to the BH
spin. For X-ray binaries, an additional constraint on the parame-
ters comes from the relativistic precession model (Motta et al.
2014, 2022), which links the mass, spin, and radius with the
characteristic frequencies found in the X-ray light curves. The
statistical distribution of spins probed by these methods, as well
as spin values obtained by different methods for the same source,
do not match (Draghis et al. 2023). This calls for an alternative
method to verify spin determination measurements.

The polarization of radiation escaping from the BH vicin-
ity can be used as a fine tool to determine the curvature of
space-time. In this context, it has been anticipated for some time
that X-ray polarimetric signatures of accretion disks can carry

important information about the BH spin. The launch of Imag-
ing X-ray Polarimetry Explorer (IXPE; Weisskopf et al. 2022)
has opened up these exciting research possibilities. At the same
time, the observed polarimetric signatures of BH X-ray binaries
have proved many previously proposed models to fail in describ-
ing the data (Krawczynski et al. 2022; Rodriguez Cavero et al.
2023; Ratheesh et al. 2024). Thus, our basic assumptions on
the geometry and radiative mechanisms producing local spectra
have required updates, however, it is often impossible to make
such alterations in the data-fitting models. It is therefore nec-
essary to adopt a fast tool that relates the local spectra to the
observed spectro-polarimetric signatures.

The accretion disk polarization is produced by multiple
scatterings in the upper layers of its atmosphere. The first
predictions of the disk polarization (Rees 1975) have been
made using the results of calculations in the case of pure
electron-scattering, semi-infinite plane-parallel atmospheres
(Chandrasekhar & Breen 1947; Sobolev 1949; Chandrasekhar
1960; Sobolev 1963) and were limited to Newtonian approx-
imation. The polarization degree (PD) may be altered due to
the presence of absorption effects in the atmosphere, which
were considered using Monte-Carlo (Lightman & Shapiro 1975)
and analytical (Loskutov & Sobolev 1979, 1981) means. Fur-
ther, the effects of general and special relativity intro-
duce important modifications to both PD and polarization
angle (PA; Connors & Stark 1977; Stark & Connors 1977;
Pineault & Roeder 1977a,b). Aberration and light deflection lead
to a rotation of the PA and alter the viewing angle of different
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parts of the accretion disk, affecting the PD. Additional rota-
tion of PA along the photon trajectory is expected for the case
of spinning BHs, described by the Kerr (1963) metric, thanks
to the frame-dragging effects. Therefore, the observed spectral
dependence of polarimetric signatures can act as an independent
probe of the BH spin (Connors et al. 1980; Dovčiak et al. 2008).

Precise computations of the effects of general and spe-
cial relativity on the polarization properties can be done using
the parallel transport of the polarization vector along null
geodesics, which often involves computations of the constant
of motion from Walker & Penrose (1970; Connors et al. 1980;
Dovčiak et al. 2008; Ingram et al. 2015). The geodesics, in turn,
are computed using the ray-tracing techniques (e.g., Dexter
2016; Zhang et al. 2019; Chan et al. 2013; Pihajoki et al. 2018).
It is also essential to keep track of the convergence of the com-
puted flux, PD and PA down to the characteristic scale of the
observed errors on these quantities – this often means that sev-
eral simulations with increased resolution must be performed for
each parameter set. An additional source of computational errors
comes from the assumptions of a small outer radius of the disk,
which is enforced by the high computational costs. Typically, the
value .100 RS (where RS is the Schwarzschild radius) is consid-
ered, which allows for the (highly polarized) secondary images
of the disk to be visible in the region surrounding the outer radius
of the simulated disk; in reality, a much higher extend of the disk,
&105RS, completely covers those from the line of sight.

The ray-tracing technique is too computationally expen-
sive for a direct data fitting. Instead, pre-computed geodesics
have been used to accelerate calculations (e.g., Li et al. 2005;
Krawczynski 2012; Krawczynski & Beheshtipour 2022). Alter-
natively, analytical and semi-analytical approaches can be
applied to solve geodesic equations (Dexter & Agol 2009;
Yang & Wang 2014; Cárdenas-Avendaño et al. 2023). Their
applicability is, however, limited; for instance, the semi-
analytical expressions for geodesics can only be used for the
equatorial plane of the BH. Finally, the calculation of geodesics
may be omitted in the Schwarzschild metric and the photon
trajectory can be treated using an approximation to the light-
bending relation (Beloborodov 2002; Poutanen 2020a). The lat-
ter approach gave reliable results for the low-energy synchrotron
emission observed from the supermassive BH M87*, with an
almost face-on disk (Narayan et al. 2021).

The physical understanding of the modifications to polar-
ization signatures caused by the curvature of space-time and
fast motions of matter is difficult to achieve if we use the
implicit Walker-Penrose constant. For this purpose, we can use
the explicit analytical expression for the rotation of the polar-
ization plane along the photon path, which we call the ana-
lytical ray-tracing technique for polarized light (artpol here-
after). This approach has been used to extract polarimetric
properties of spinning spherical (Poutanen 2020b) and oblate
(Loktev et al. 2020) neutron stars, as well as accretion disks
around Schwarzschild BHs (Loktev et al. 2022). This method
was first proposed in Pineault (1977) and applied, in the context
of accretion disks, to the PA rotation caused by general and spe-
cial relativity individually, while the expression for their com-
bined effects was first derived in Loktev et al. (2022).

In this work, we apply artpol to the accretion disks around
spinning BH. In Sect. 2, we describe the formalism that can be
used in spectro-polarimetric modeling and imaging of accretion
disks around Kerr BHs. In Sect. 3, we compare the results of the
artpol technique to those obtained using explicit ray-tracing
calculations. We show that the PD and PA computed using this
method remain accurate to the level of current observational

(IXPE) uncertainties for BH spin parameters up to a = 0.94.
We summarize our findings and discuss a broad range of appli-
cations of the technique in Sect. 4.

2. Methods

In this section, we describe the procedure for computing polar-
ization spectra from a standard optically thick, geometrically
thin accretion disk in the equatorial plane of a Kerr BH. This
example is selected for our analysis as it represents one of
the most commonly assumed scenarios for Kerr BH accretion
and has been chosen for its simplicity. The method for acquir-
ing polarization parameters described here is generalizable and
adaptable to different flow geometries using the vector formal-
ism described in Loktev et al. (2022).

2.1. Local model of the disk emission

We considered a BH with mass M and dimensionless spin a =
Jc/GM2, where J is the angular momentum. For the sake of
simplicity, we considered a standard equatorial geometrically
thin accretion disk (Novikov & Thorne 1973). The BH is situ-
ated at the origin with the spin directed along the z-axis and is
orthogonal to the disk plane. We assume that the state of the fluid
only depends on the Boyer-Lindquist dimensionless radial coor-
dinate, r = R/RS, which expresses the distance from the central
object, R, in units of the BH Schwarzschild radius RS = 2GM/c2.
At a given radius, r, the matter moves, relative to the locally non-
rotating observer, with Keplerian velocity, which we express in
the units of the speed of light c as (Kato et al. 2008):

β =
F

B
√
D

√
1
2r
, (1)

where

B = 1 +
a
√

8r3
, (2)

D = 1 −
1
r

+
a2

4r2 , (3)

F = 1 −
a
√

2r3
+

a2

4r3 . (4)

The disk is considered to be optically thick. The energy flux
from a surface element is described by the effective temperature,
which has a radial profile that takes the form:

T 4
eff(r) =

3GMṀ
8πσSBR3 f (r, a) = T 4

∗

f (r, a)
r3 , (5)

where

T 4
∗ =

3GMṀ
8πσSBR3

S

, (6)

combines the BH mass and the accretion rate, Ṁ, while f (r, a)
is the factor accounting for the relativistic and boundary condi-
tion corrections (Page & Thorne 1974; Eq. (3.191) in Kato et al.
2008). In the Newtonian case, assuming the inner disk edge at
r = 3, the correction factor is:

f (r) = 1 −

√
3
r
. (7)
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The disk extends from the ISCO up to an outer edge at rout =
3000, which was chosen to reproduce the correct spectra down to
the photon energy E ∼ 0.01kT∗. The radius of the ISCO depends
on the spin as:

rISCO =
1
2

(
3 + Z2 ±

√
(3 − Z1)(3 + Z1 + 2Z2)

)
, (8)

where the minus sign corresponds to a corotation of the disk and
the BH and the plus sign is for the case of the retrograde rotation
and:

Z1 = 1 +
3√

1 − a2
(

3√
1 + a +

3√
1 − a

)
, (9)

Z2 =

√
3a2 + Z2

1 . (10)

The local spectrum of the disk is assumed to be a
diluted blackbody with the color correction fcol = 1.7
(Shimura & Takahara 1995) with the flux being:

FE′ =
π

f 4
col

BE′ ( fcolTeff), (11)

where E′ is photon energy measured in the frame comov-
ing with the matter of the disk (where all quantities are
denoted with primes) and BE′ is the Planck function. The angu-
lar distribution of the specific intensity and the polarization
is assumed to correspond to the case of electron-scattering-
dominated semi-infinite atmosphere (Chandrasekhar & Breen
1947; Chandrasekhar 1960; Sobolev 1949, 1963). The three-
component Stokes vector fully describes a linearly polarized
radiation field as a function of photon energy E′ and zenith angle
ζ′ (measured in the comoving frame):

I′E′ (ζ′) =

 I′E′
Q′E′
U′E′

 =
1
π

FE′aes(ζ′)

 1
pes(ζ′) cos 2χ0
pes(ζ′) sin 2χ0

 , (12)

where the angular distribution can be approximated as
(Pihajoki et al. 2018)

aes(ζ′) =
60
143

(1 + 2.3 cos ζ′ − 0.3 cos2 ζ′) (13)

and the PD (Viironen & Poutanen 2004)

pes(ζ′) = 0.1171
1 − cos ζ′

1 + 3.582 cos ζ′
. (14)

The Stokes parameter U is zero in the comoving frame because
of the azimuthal symmetry. Furthermore, in our case, the escap-
ing radiation is polarized perpendicular to the meridional plane
formed by the normal to the local surface and the photon
momentum, resulting in the local PA of χ0 = π/2 (Stokes Q < 0).
We omitted the fourth component of the Stokes vector, describ-
ing the circular polarization, from our treatment here. However,
it can be easily added, because the circular polarization degree
is conserved along a light trajectory in a vacuum.

Once the model for the disk structure (i.e., radial dependence
of the velocity profile) and the energy and angular dependence of
the local Stokes vector are established, we need to consider how
the polarized radiation is modified toward the observer in the
curved space-time. One way to account for that is to compute a
set of geodesics from the vicinity of the BH to the observer (we
focus on this in more detail in Sect. 2.3). The other possibility is
to use a faster approach that exploits analytical approximations,
which we describe in Sect. 2.2.

Fig. 1. Geometry of a flat accretion disk ring. An element of the flat
equatorial disk, defined by the unit radius-vector, r̂, at azimuthal angle,
ϕ, moves along the direction, û. The coordinate system is based on the
normal of the disk, n̂, and the observer vector, ô. A photon is emitted
from the disk element along k̂0. The important angles used in this work
are also shown.

2.2. Analytical ray-tracing in the Schwarzschild metric

We previously tested the analytical method of calculating the
rotation of the PA for the case of the planar light trajecto-
ries (Loktev et al. 2022). This assumption is fulfilled in the
Schwarzschild metric but does not hold for the Kerr metric. Nev-
ertheless, we can use this approach as the first-order approxima-
tion for the case of a spinning BH.

The considered geometry is shown in Fig. 1. The disk is
assumed to be flat and located in the equatorial plane of the spin-
ning BH. An element of the accretion disk surface, located at the
tip of the radius vector, r, is described in Boyer-Lindquist coor-
dinates by an azimuth angle, ϕ, and the length, r. We utilized
a three-dimensional Cartesian coordinate system to describe
the polarization frame’s rotation. The normal to the disk, n̂, is
aligned with the z axis and the direction to the observer, ô, is in
the x-z plane making an inclination, i, to the normal:

n̂ = (0, 0, 1), (15)
ô = (sin i, 0, cos i). (16)

In these coordinates, the unit vector of the disk element,

r̂ = (cosϕ, sinϕ, 0), (17)

makes an angle ψ with the observer direction:

cosψ = r̂ · ô = sin i cos φ. (18)

Close to the disk surface, photon escapes along a unit vector,

k̂0 = [sinα ô + sin(ψ − α) r̂]/ sinψ, (19)

where α is the angle between the radius vector and the observer
direction,

cosα = r̂ · k̂0, (20)

and is related to ψ through the light bending formula (see below).
The photon momentum makes an angle ζ with the normal

cos ζ = n̂ · k̂0 =
sinα
sinψ

cos i. (21)

Here we assume that the fluid velocity is aligned with the
azimuthal unit vector

ϕ̂ = (− sinϕ, cosϕ, 0) = û. (22)
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The matter moves with Keplerian speed given by Eq. (1).
The unit vector of photon momentum in the laboratory frame

k̂0 and the one in the comoving frame k̂
′

0 are related by the
Lorentz transformation:

k̂
′

0 = δ
[
k̂0 − γβû + (γ − 1)û(û · k̂0)

]
, (23)

where γ = 1/
√

1 − β2 is the Lorentz factor and

δ =
1

γ(1 − β cos ξ)
= γ(1 + β cos ξ′) (24)

is the Doppler factor and

cos ξ = û · k̂0 = −
sinα
sinψ

sin i sin φ, (25)

cos ξ′ = û · k̂
′

0 =
cos ξ − β

1 − β cos ξ
. (26)

We then also get

cos ζ′ = n̂ · k̂
′

0 = δ cos ζ. (27)

The geodesics are not computed explicitly; that is, we only
need the relation between the angles α and ψ, for which we
can use the following analytical approximate formula (Poutanen
2020a):

cosα = 1− (1−u)y
{

1 +
u2y2

112
−

e
100

uy
[
ln

(
1 −

y
2

)
+

y
2

]}
, (28)

where y = 1 − cosψ and u = 1/r. The formula is not applicable
for r < 1 (within the Schwarzschild radius); hence, for cases
with rISCO < 1, namely, a & 0.943, artpol cannot be used.

Under the Schwarzschild metric assumption, the geodesics
are flat; therefore, the parallel transport of the Lorentz frame
along the geodesics is unnecessary. The rotation of the polar-
ization basis is a sum of several simple rotations due to the grav-
itational light bending (the general relativity effect) and Lorentz
aberration (the special relativity effect):

χtot = χGR + χSR. (29)

Analytical expressions for those have been derived in
Loktev et al. (2022):

tan χGR =
cos i sinϕ

cosϕ + ã sin i
, (30)

where ã = (1 − cosα cosψ)/(cosα − cosψ) and

tan χSR = −β
cosα cos ζ

sin2 ζ − β cos ξ
. (31)

Expressions for χGR and χSR in vector form can be found in
Loktev et al. (2022).

The PA is measured in the main polarization basis, formed
by the disk normal and the observer vector:

ê1 =
n̂− cos i ô

sin i
, ê2 =

ô× n̂
sin i

. (32)

The total PA in this basis is given by the sum of the relativistic
rotations and the intrinsic PA χ0,

χ = χ0 + χtot = χ0 + χSR + χGR. (33)

The PA χ0 in the comoving frame is described in the polarization
basis that is formed by the local normal vector, n̂, and the photon
momentum vector in that frame, k̂

′

0:

ê′1 =
n̂− cos ζ′ k̂

′

0

sin ζ′
, ê′2 =

k̂
′

0 × n̂
sin ζ′

. (34)

In our case of an electron-scattering atmosphere, the intrinsic PA
is χ0 = π/2.

The area of an element of the disk surface is expressed as

dS =
R2

Sr dr dϕ
√
D

. (35)

It occupies the solid angle dΩ on the sky and can be computed
in Schwarzschild approximation as

dΩ =
dS cos ζ

D2 L =
R2

S

D2

r dr dϕ
√
D
L cos ζ, (36)

where D is the distance to the source and the lensing factor L is
defined for Schwarzschild space-time as (Beloborodov 2002)

L =
1

1 − u
d cosα
d cosψ

. (37)

It can be computed analytically (Poutanen 2020a) following
Eq. (28):

L = 1 +
3u2y2

112
−

e
100

uy
[
2 ln

(
1 −

y
2

)
+ y

1 − 3y/4
1 − y/2

]
. (38)

Next, the intensity in the comoving frame I′E′ is related to
the observed one as follows:

IE = g3I′E′ , (39)

where g is the redshift factor, which can be expressed in the case
of a disk in the equatorial plane of the BH as (see Eq. (C.13) in
Li et al. 2005):

g = E/E′ = γ
[
X +Yβ + (Xβ +Y) cos ξ′

]
, (40)

where

X =
√
D/A , (41)

Y = a/
√

4r4A , (42)

A = 1 + (r + 1)
a2

4r3 . (43)

In the case of a = 0, the redshift factor is reduced to g =
δ
√

1 − 1/r.
The total disk flux is obtained by integration over the surface:

FE ≡

 FI(E)
FQ(E)
FU(E)

 =

∫
dΩ

 IE
QE
UE


=

R2
S

D2

rout∫
rISCO

r dr
√
D

∫ 2π

0
dϕ g3L cos ζ M(r, ϕ)I′E′ (ζ′), (44)

where M is the rotation matrix defined at every surface element
dr dϕ of the disk:

M(r, ϕ) =

1 0 0
0 cos 2χtot − sin 2χtot

0 sin 2χtot cos 2χtot

 . (45)
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The PD and PA are then defined from the Stokes parameters
of the total flux. The PD is obtained as

p(E) =

√
F2

Q(E) + F2
U(E)

FI(E)
, (46)

while the observed PA can be computed from either

tan 2χ(E) =
FU(E)
FQ(E)

(47)

or

tan χ(E) =
p(E)FI(E) − FQ(E)

FU(E)
. (48)

Following Loktev et al. (2022), we can use dimensionless
energy, x = E/kT∗ (and x′ = x/g), and scale the luminosity
to σSBT 4

∗R
2
S to get the dimensionless luminosity, lx, in the fol-

lowing form:

xlx =
60
π4

rout∫
rISCO

r dr
√
D

∫ 2π

0
dϕ L cos ζ

g4

f 4
c

×
x′4aes(ζ′)

ex′t(r, a)/ fc − 1

 1
pes(ζ′) cos(2χ)
pes(ζ′) sin(2χ)

 , (49)

where t(r, a) = r3/4 f −1/4(r, a) is related to the disk temperature
(Eq. (5)). In this notation, the spectral shape and normalization
of xlx are independent of the BH mass and accretion rate.

Image of the disk can be reproduced using Cartesian coor-
dinates X and Y (expressed in units of RS) on the plane of the
sky:[
X
Y

]
= b

[
− sin Φ
cos Φ

]
=

r
√
D

sinα
sinψ

[
sinϕ

− cos i cosϕ

]
, (50)

where Φ is the position angle of the point where the photon hits
the plane of the sky measured counterclockwise from the projec-
tion of the disk axis on the sky and

b =
r
√
D

sinα (51)

is the approximation for the impact parameter, which is exact
in the Schwarzschild case (Pechenick et al. 1983; Beloborodov
2002).

2.3. Numerical ray-tracing in Kerr metric

We went on to compare our results to numerical ray-tracing cal-
culations to determine the accuracy of artpol. We constructed
the image of the BH accretion disk in the Kerr metric using the
arcmancer code (Pihajoki et al. 2018), designed to integrate
the exact geodesic equation numerically. The resulting trajecto-
ries were parametrized by the point at which they intersect the
(observer) image plane.

To obtain an image of the accretion disk, we first defined
the region of interest on the image plane to include the relevant
region of the disk. The image plane was positioned at a distance
rimg = 2500, where the effects of general relativity on the photon
trajectory are negligible. We then introduced a grid of nodes and
calculate the observed radiation intensity from the accretion disk
at each node. The rectangular grid on the image plane is orthog-
onal to the vector pointing toward the observer. At each point

on the grid, we define a local Lorentz frame with the basis vec-
tors along Boyer-Lindquist coordinate grid. The Lorentz frames
constitute the initial conditions for the geodesic curves with the
tangent vectors normal to the image plane. Essentially, a set of
parallel rays are propagated from the points of the grid towards
the BH, backward in time, until they either intersect the disk sur-
face or reach a distance of >rimg (as measured from the BH).
When all the geodesics were calculated, we computed the local
intensity and polarization for each point that intersects the disk
surface, which we assume lies in the equatorial plane of the
Kerr BH. We considered the velocity and energy dissipation pro-
file following Novikov & Thorne (1973).

The Stokes parameters are parallel-transported in the “polar-
ization frame” along the geodesic in Kerr space-time. The polar-
ization frame P = {va, ha} is a pair of orthogonal space-like
vectors that are orthogonal to the geodesic itself and the four-
velocity of the observer. Initially, at the image plane, the polar-
ization frame consists of the corresponding two vectors of the
local Lorentz frame. Then, the polarization frame is parallel-
transferred along the geodesic to the disk surface to obtain the
polarization parameters. Then, the frame is projected to the rest
frame of the fluid in the disk (comoving frame). The propaga-
tion of the geodesics, transporting of the Lorentz frames, and the
projection of the screen to the comoving frame are automatically
performed by arcmancer.

All the necessary values, namely, the redshift g, the rotation
of the polarization basis, χtot, and the emission angle, ζ′, can be
defined in the comoving frame, where the geodesic hits the disk
surface. The gravitational redshift factor g is computed using the
curve tangents of the initial and the endpoints of the light trajec-
tory. For more details on this numerical procedure, we refer to
Sect. 4 of Pihajoki et al. (2018). We also corrected the redshift
by a factor of g0 =

√
1 − 1/rimg to mitigate the redshift between

the observer at rimg and the one at infinity. The total redshift
agrees with the one given by the analytical expression given by
Eq. (40).

To compute the overall flux from the disk in the case of
numerical ray-tracing, we summed the intensities over the whole
image grid as

FE =
R2

S

D2

"
r<rout

dx dyM(x, y)I′E′ (r, ζ′), (52)

where dx dy is the size of the pixel at rimg, measured in
Schwarzschild radii, and M(x, y) is the rotation (Mueller)
matrix along the trajectory from the point (x, y) on the image
plane to the point on the disk surface with a coordinate
r < rout.

The secondary and higher order images of the disk and its
bottom side are visible through the gap between the rISCO and
the BH event horizon. From there, a segment of the disk sur-
face can be seen multiple times, depending on how many revolu-
tions its photons make around the BH before escaping toward the
observer. We do not account for these trajectories in calculations
with artpol because we find the contribution of the secondary
images to the observed flux are below 0.5% (see Sect. 3.3 below)
for any inclination and spin values (see also Zhou et al. 2020).
Lastly, we note that it is also possible to compute polarization
rotation using Walker–Penrose theorem (e.g., see the appendix
in Li et al. 2009); however, it does not significantly decrease
the computing time as long as the geodesics are still computed
numerically.
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Fig. 2. Influence of relativistic effects on the PA and the emission angle. The rotation of the PA (a sum of the GR and SR effects) χtot (upper panels)
and the emission angle ζ′ (lower panels) computed at r = rISCO (given in the upper left corner of each panel) for spins a = 0.2 (left panels), 0.5
(middle panels), and 0.8 (right panels) at three inclinations i = 30◦ (red), 60◦ (green), and 80◦ (blue lines). The results using artpol code are
shown with the solid lines, while the results from the ray-tracing in Kerr metric are presented with the dashed lines. The difference between the
two values is shown under each panel.

3. Applications

In this section, we show the applications of the artpol tech-
nique to spectra and polarization signatures of matter near a
Kerr BH. We first verify the accuracy of the artpol for the
PA rotation χ and the emission zenith angle ζ′ (measured in the
comoving frame) for the case of the narrow disk ring located at
different distances from the BH. We proceed to the comparison
of polarized images of the accretion disk. Finally, we show the
spectro-polarimetric energy distributions of the accretion disk
obtained with analytical and numerical approaches. In all cases,
we assume that the matter (ring or disk) rotates counterclock-
wise. Positive spin values correspond to the prograde rotation
(BH spin vector aligned with the orbital momentum of the accre-
tion disk).

3.1. Narrow ring

The difference between Stokes parameters computed via
artpol and numerical ray tracing is expected to be high at the
rISCO, as the frame-dragging effects – omitted in artpol – are
most important here. In Fig. 2, we show the total rotation angle

χtot and the emission zenith angle ζ′ at the ISCO computed by
two methods for different spin values and observer inclinations.
For artpol, both PA rotation and ζ′ are systematically shifted,
over the azimuth, with respect to the numerical values. The dif-
ference is highest at ϕ ∼ 180◦ and it is generally larger for higher
inclinations. The effect is caused by the close BH approach of
the photon trajectories starting from regions of the disk located
behind the BH. Naturally, the difference is larger for higher spin
values. For example, in the case of a = 0.8 (rISCO ≈ 1.45) and
i = 30◦ the maximum |∆χtot| is just 10◦ and |∆ζ′| is only 9◦.
We also note here that the largest error on χtot corresponds to
a small emission angle cos ζ′ ∼ 1 at which the PD is mini-
mal (see Eq. (14)); therefore, the polarized flux is affected very
slightly.

While the accuracy of artpol can be low for certain parts
of the narrow ring of matter at the ISCO, for the case of the zero
torque boundary condition (Novikov & Thorne 1973), the total
flux emerging from this ring is zero. The error is then weighted
with the dissipation profile, which achieves maximum at dis-
tances further than ISCO. In Fig. 3, we show χtot and ζ′ for
a = 0.8 at different radii r = 2, 3, and 5, computed with artpol
and numerical ray-tracing. The shapes of the lines are similar,

A84, page 6 of 10



Loktev, V., et al.: A&A, 685, A84 (2024)

−90◦

−45◦

0◦

45◦

90◦
χto

t

r = 5 (a) r = 3 (b) r = 2 (c)

−45◦
0◦

45◦

∆χ
to

t

0◦

30◦

60◦

90◦

ζ′

0◦ 90◦ 180◦ 270◦
ϕ

−45◦

0◦

45◦

∆ζ
′

0◦ 90◦ 180◦ 270◦
ϕ

0◦ 90◦ 180◦ 270◦
ϕ

Fig. 3. Same as Fig. 2 for the spin of a = 0.8 and three ring radii of r = 5 (left panels), 3 (middle panels), and 2 (right panels).

but the deviations between the two methods are much smaller.
For example, the maximum |∆χtot| and |∆ζ′| for r = 2 and i = 30◦
are 5◦ and 4◦, respectively, and those are the peak values only at
ϕ ≈ 180◦. We note that for r > 5, artpol gives χtot and ζ′ that
are nearly indistinguishable from the numerical results, even for
BHs with extreme spins.

3.2. Disk imaging

artpol can be used to construct images of the disk (see more
details in Loktev et al. 2022). In Fig. 4, we show the observed
intensity and polarization of an accretion disk for BH spin
parameters a = 0.2, 0.5, and 0.8, and observer inclinations of
i = 30◦, 60◦, and 80◦. The observed intensity for the inner-
most parts of the standard disk with the electron scattering
dominating atmosphere is color-mapped. The sticks depict the
polarization vector computed with the ray-tracing and analyt-
ical techniques in the Schwarzschild metric. The difference in
polarization parameters can barely be seen only in the innermost
regions for high spin cases. Otherwise, the effect of BH rotation
is so tiny that the sticks visually coincide. The sticks are dis-
placed predominantly in the azimuthal direction, mainly caused
by the frame-dragging effect, while the radial displacement due
to the approximate impact parameter estimation is negligible.
The most distorted region of the disk appears to be directly
behind the black hole, where the surface of the disk appears to
be dragged with the BH spin. This effect is, again, especially
pronounced for higher observer inclinations.

3.3. Disk spectra and polarization

Using the artpol technique, we perform fast computations
of the spectral properties, which are essential to extract the
spin information in both reflection spectroscopy and continuum-
fitting methods and spectral dependence of the polarization
signatures. Comparisons of the computed spectral energy distri-
bution, PD, and PA for the case of the optically thick, razor-thin
accretion disk to the exact ray-tracing calculations are shown in
Fig. 5. The local model for the disk is described in Sect. 2.1.

In the upper panels of Fig. 5, we show the multicolor black-
body accretion disk spectra viewed at inclinations i = 30◦ (left
column), 60◦ (middle column), and 80◦ (right column). We con-
sider different BH spins from a retrograde one a = −1 to the
prograde a = 0.94. The solid lines correspond to the calculations
using artpol, and the dashed lines correspond to numerical
ray-tracing calculations. The differences between the methods
are shown below each panel. The deviations increase with the
spin value, energy, and inclination, mainly due to the increased
importance of the frame-dragging effects. These are more impor-
tant for the innermost radii, contributing to higher energies and
the photon trajectories passing close to the BH, which appear
mostly at higher inclinations. For higher spin values, the ISCO
radii are smaller, and the frame-dragging effect is more pro-
nounced. At the same time, in the case of the retrograde BH
rotation (BH rotates clockwise in our case), a = −1, smaller
deviations are caused by the more distant location of the ISCO
(rISCO = 4.5). We find that for all the considered spin values,
the deviations in the flux values are smaller than 20% at energies
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spin parameters a = 0.2 (left column), 0.5 (middle column), and 0.8 (right column). The black lines outline an even polar grid on the disk with
rays spaced by 30◦ in azimuth and contours spaced by 5RS in radius (the corresponding values are denoted in each ring). The sticks represent
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that differences between the exact numerical solution and the approximate artpol method are visible only at the inner radii for systems with the
highest spin values.

where the flux is relatively high (i.e., where it drops by less than
a factor of 10 from the peak value).

At this point, we may consider the question of whether the
difference between the fluxes computed with the two meth-
ods has its origin in the presence of secondary images. Using
arcmancer, we computed the accretion disk spectra for two
extreme BH spins and two inclinations. The results shown in
Fig. 6 demonstrate that the secondary images contribute at most
0.5% of the flux for the high spin BH and large inclination. At
lower inclinations or smaller spin values, their contributions are
even smaller.

The middle and lower panels of Fig. 5 show the observed
PD and PA. The trend of increasing deviations towards higher
spins, energies, and inclinations is also evident in these quan-
tities. For all considered cases, however, the deviations remain
small as compared to the typical observational errors achieved
in IXPE observations. The maximum deviations in the predicted
PD are about 0.4% for a = 0.94 and are much smaller than the
expected accuracy of measurements with IXPE for smaller spins.
The error in PA is below 1◦ for a ≤ 0.5, and even for a = 0.94,
it is at most 5◦ at energies where the flux is relatively high.
This indicates that fitting the Stokes spectra performed with our
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Fig. 5. Spectra of the luminosity xlx (upper panels), PD (middle panels) and PA (bottom panels) for different inclinations i = 30◦ (left), 60◦
(middle), and 80◦ (right column) and BH spin a = −1 (pink lines), 0 (red), 0.5 (orange), 0.8 (green), and 0.94 (blue). The solid lines correspond to
the results obtained with the approximate analytical formulae (artpol), while the dashed lines correspond to the exact numerical integration of
the geodesics (arcmancer). The accretion disk extends from rISCO to rout = 3000 for each case. Narrow panels show the difference between the
results given by the two methods. The black dotted lines denote the results for a Newtonian disk from Loktev et al. (2022).

analytical technique will work fairly well for all inclinations and
all considered spins.

We note the difference between the values obtained for the
Newtonian disk (Shakura 1973) in the Schwarzschild metric in
Loktev et al. (2022) and the zero-spin case considered here. The
difference comes solely from the relativistic temperature profile
in Eq. (5), which is different from the Newtonian temperature
profile from Eq. (7) assumed in Loktev et al. (2022). Notably,
the Newtonian disk polarization profiles more closely resem-

ble relativistic profiles with the spin parameter of a ∼ 0.2 than
a = 0.

The reduction in calculation time using artpol compared
to arcmancer is consistent with that reported in Loktev et al.
(2022), as we are comparing the same two methods. Specifically,
our calculations of one image using the approximate analyti-
cal formulae are performed in ∼0.01 s at a MacBook Pro lap-
top using single processor, while the calculations of one polar-
ized spectrum take about 0.05 s. This has to be compared to
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calculating an image 400 × 400 pixels using a ray-tracing code
arcmancer, which takes about 1000 s. Our method offers
flexibility, allowing for its application to arbitrary disk geome-
tries, different energy dissipation profiles, and various local spec-
tra and polarization.

4. Summary

We present the analytical technique artpol for computing
the images and spectro-polarimetric characteristics of relativis-
tic accretion disks around Kerr BHs. While the velocity and
energy dissipation profiles used in the calculations correspond
to the space-time around spinning BHs, the photon paths have
been considered in the Schwarzschild metric. We showed that
artpol technique is highly efficient, allowing for reduction of
the computing time by a factor of 104, and remains accurate,
generally within 10% in flux, 0.2% in PD, and 1◦ in PA, for spin
values a ≤ 0.5. This enables artpol technique to be used for
a broad range of BH spin parameters. The deviations from the
exact results obtained by numerical ray-tracing techniques sys-
tematically increase towards the highest spins and inclinations,
reducing the accuracy down to 20% in flux, 0.5% in PD, and 7◦
in PA for a = 0.8–0.94 and i = 80◦. The systematic discrepancy
arises from the frame-dragging effect, which is omitted in our
analytical ray-tracing calculations.

Applications of the analytical technique include fast com-
putations of static spectro-polarimetric signatures of accre-
tion disks of X-ray binaries in the soft, intermediate, and
very high states (Ratheesh et al. 2024; Rodriguez Cavero et al.
2023; Podgorný et al. 2023), while accounting for the relativistic
effects on spectra and polarimetric signatures of Comptonization
observed in the hard state of X-ray binaries and Seyfert galaxies
(Krawczynski et al. 2022; Marinucci et al. 2022; Gianolli et al.
2023; Ingram et al. 2023; Tagliacozzo et al. 2023). The long-
anticipated detection of the quasi-periodic oscillations from BH
X-ray binaries in the polarized light would open new prospects
for artpol in terms of fast calculations of the phase-resolved
characteristics. The method is also well suited for the warped
disks whose spectro-polarimetric signatures have not been stud-
ied in detail so far.
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Ratheesh, A., Dovčiak, M., Krawczynski, H., et al. 2024, ApJ, 964, 77
Rees, M. J. 1975, MNRAS, 171, 457
Reynolds, C. S. 2021, ARA&A, 59, 117
Rodriguez Cavero, N., Marra, L., Krawczynski, H., et al. 2023, ApJ, 958, L8
Shakura, N. I. 1973, Sov. Astron., 16, 756
Shimura, T., & Takahara, F. 1995, ApJ, 445, 780
Sobolev, V. V. 1949, Uch. Zap. Leningrad Univ, 16
Sobolev, V. V. 1963, A treatise on Radiative Transfer (Princeton: Van Nostrand)
Stark, R. F., & Connors, P. A. 1977, Nature, 266, 429
Tagliacozzo, D., Marinucci, A., Ursini, F., et al. 2023, MNRAS, 525, 4735
Uttley, P., Cackett, E. M., Fabian, A. C., Kara, E., & Wilkins, D. R. 2014,

A&ARv, 22, 72
Viironen, K., & Poutanen, J. 2004, A&A, 426, 985
Walker, M., & Penrose, R. 1970, Commun. Math. Phys., 18, 265
Weisskopf, M. C., Soffitta, P., Baldini, L., et al. 2022, JATIS, 8, 026002
Yang, X.-L., & Wang, J.-C. 2014, A&A, 561, A127
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