RADIATIVE PROCESSES
in
ASTROPHYSICS

Juri Poutanen






Chapter 1

Introduction

Most of the information we obtain about the Universe reackes form of the
electromagnetic (EM) radiation. The only important excapd are the measure-
ments in situ at the surfaces of a few planets and their gate(e.g. Earth and
Moon, Mars, Venus, Saturn’s rings and moons Enceladus dad, Tupiter), mea-
surements of the particles in the solar system, cosmic magishautrinos at the
Earth surface. In some near future gravitational waves nsylee detected and
used to probe processes happening in vicinities of retiivobjects.

The vast majority of what we know about the Universe, we lelayrcollecting
and studying of various forms of EM radiation. In the anci&mis, people could
only use light in the optical part of the spectrum, while i 20th century the
astrophysical instruments have been developed to studstiadin the radio,
infrared, ultraviolet (UV), X-ray and gamma-ray part of th®& spectrum. The
radio astronomy appeared only after the World War 1l wherrdgars were build
to detect emission in radio band. To observe UV, X-ray andrgarmay photons
one needs to make either balloon flights to the height of 1&r200r even better
to send an observatory to space. Therefore, very activdajgwents in that field
were only possible starting from the 1960s when the first eétxland satellites
were built. We have learnt that some of the objects emit sl&action of their
radiation in the energy bands invisible from the ground (Earth surface). An
example of such an object is shown in Fig. 1.1.

To understand the physics of such objects, we need to olftaiddta simul-
taneously in various energy band of the EM spectrum. Topnétthe EM radi-
ation we receive, we need to know the microphysics, i.e. d@ldétive processes
that give rise to this radiation as well as the processesctimtge this radiation
on the way to our detectors. Much of the information aboutsstanterstellar
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Figure 1.1: Some sources emit radiation from radig4@ys. In order to under-
stand the physics of such objects, one requires to perfoordstated multifre-
guency observations. Here examples of the spectral enétyipdtions of a few
active galactic nuclei are shown. The spectra extend fremnatio to the TeV en-
ergies (teraelectron volt, i.e. ¥eV). The energy of the most energetic photons
exceeds the energy of photons in the visual band by a factér 10



medium, and galaxies comes from studying their line spedttawever, many
objects do not produce strong spectral lines, and we havady their continuum
(i.,e. weakly dependent on wavelength) spectra. The mosbritapt radiative
processes that produce these continua will be studiedglatincourse.

> observer

radiation process

We first start with the basic description and general corscepthe radiation
field. We then introduce the radiative transfer equatiorn tlescribes how the
radiation changes when it passes through the medium in threesas well as on
the way to us. Next we consider microscopic description efrddiation field as
its relation to the Maxwell equations that describe elenagnetic fields. Further
we consider radiation of the moving charges. We then dis@adiative processes
giving rise to continuum spectra. All of them involve motioicharged particles:
bremsstrahlung (or free-free emission) involves intéoadbetween electrons and
other charged species (e.g. protons), cyclotron or syti@readiation which is
produced by electrons in the magnetic field, and Comptoriesaag which is a
result of scattering of photons by the electrons. In thewoflappearance we will
study:

1. BremsstrahlungRadiation of an electron in the electric field of a proton or
another charged particle. Important work on that procepga@d in the begin-
ning of the 20th century. It is important in HIl regions, péary nebulae, stars,
accreting white dwarfs, and clusters of galaxies (see ER). 1

e Dp

2. Synchrotron radiatiariTheory was developed mostly in the 2nd half of the
20th century (Ginzburg, Syrovatsky), while some imporfaaypers have already
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Figure 1.2: Clusters of galaxies, the largest bound strastin the Universe, are
filled with hot (T ~ 10” — 10° K) X-ray emitting gas. Upper panel shows the
image of Coma cluster taken in the optical band, where youwsearhundreds of
galaxies. Lower panel, is the XMM image of the Coma clusténenX-ray, where
the glowing gas filling the whole intergalactic space is seen
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Figure 1.3: A detailed view of the Crab Nebula produced by pesuovae
seen on Earth in the year 1054. Here are pictures of the Crxbray (Chan-
dra), optical (Palomar), infrared (Keck), and radio (VLApwvelengths (from
NASA/CXC/SAQ). Most of the difuse emission is produced by synchrotron ra-
diation of electrons spiraling in the magnetic field as wast faroposed by losif
Shklovsky in 1953.

appeared in the 1910s (Shott 1912). It found important appins with the start
of radioastronomy. The process is important in pulsar reeb(dee Fig. 1.3) and
jets from active galaxies (see Fig. 1.1, where the lowerggnbump is believed
to be produced by synchrotron radiation).
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3. Coherent Compton scattering (Thomson scatterifgg theory of radia-
tion transport where Thomson scattering played a domir@atwas developed
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in the 1930s to 1950s by Chandrasekhar, Ambartsumyan, analeso It is im-
portant as a source of additional opacity in planetary aekbstatmospheres, e.g.

white dwarfs.
AANA r[j(

oe
4. Non-coherent Compton Scatterii@evelopment in the 1940s-50s because

of its importance for the nuclear bomb research (Kompaheédtsportant ap-
plications in the physics of early Universe (Sunyaev, Zeiduo, Illarionov) and
astrophysics of relativistic objects (Sunyaev, Titarchuightman). The theory
was further developed in the 1970s—1990s when appearededteta interpret
the data from X-ray satellites. It is a dominating radiagprecess shaping the
spectra from accreting black holes (both stellar-mass apdrsmassive), neutron
stars, and jet from active galactic nuclei (e.g. high-epégmp in Fig. 1.1).

(\[\er-ray

A Oe
radio

5. e pair production At the extreme environments of compact objects such as
pulsars and accreting black holes, high-energy photoesaat with low-energy
photons producing electron-positron pairs. This processstudied in 1980s (by
Svensson, Lightman, Zdziarski) in connection with intetption of the data from
active galaxies. With the developmentafay astronomy (including TeV astron-
omy) it is becoming even more clear how important it is for terect interpre-
tation of the data from pulsars, jets from active galacticlerl and gamma-ray

bursts.
y-ray
%71 / e
H’&Y \ +

X-ray e




Chapter 2

Basics of radiative transfer

2.1 Definitions

e In vacuum the photon wavelength and frequency are relatet’ as c.
Photon energy is related to the frequency through PlancktaohE = hy.

e Specific intensityl, [units: erg cm? st Hz™! strl]. The energy passing
through the areaAlnormal to the direction of photon propagation within
the solid angle & during the time intervaldn the frequency intervahdis:

dE =1, dQ dA dt dv. (2.1)

e Energy fluxF, [units: erg cm? st Hz1]. The energy passing through the
area @\ during the time intervaldin the frequency intervahdis:

dE = F, dA dt dv. (2.2)

The flux can be obtained by integrating the intensity oveidsahgles and
taking into account the projectiortect:

F, = flv cos6 dQ, (2.3)
whereg is the angle between the normal to the area and the directithie o
ray.

The energy passing per unit time through the sphere of radit@m the
isotropic source in steady-state in the absence of sinkseway is

L = 4ar?F(r) = 4nr2F(ry). (2.4)

9
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This is just the energy conservation law. The consequent®abfs the so
called inverse square law:

L 2
R =35 o2, (2.5)

(Specific) momentum flux (pressure) [units: dyn@érlz ! ]:

p, = %flvcoszedg (2.6)

because the photon momentunhigc. Another co® comes from the pro-
jection of the transferred momentum to the normal to the.area

(Specific) energy density [units: erg cirHz ™ ]:
u, = }flv do = 4—”Jv, (2.7)
c c

where
5=+ f , do (2.8)
4

is the mean intensity. Total energy density [units: ergéh

u:fu,,dv:‘%ﬂf\lvdv. (2.9)

Radiation pressure for isotropic radiation field.

Consider a reflecting enclosure containing isotropic ttamhafield. Each
photon transfers twice its normal component of the momerdameflec-
tion:

p, = %flvcoszedﬂ. (2.10)

which agrees with previous formula (2.6) as here we integraty over half
a sphere, 2 steradians. Assuming isotropy, i.&.= |,, we get:

p= %nydvfco§9dQ: %u. (2.11)
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2.2 The Equation of Radiative Transfer

e The intensity is conserved along a ray

dl
— =0 2.12
s (2.12)
unless there is absorption or emission
I :
% =-a,l, + j,, (2.13)

wherea, [cm™] is the absorption cdicient andj, [erg cnm3 Hz ™! str]
is the emission cdicient. This is the equation of radiative transfer. The
absorption cogicient can be represented as the product of number density
n of absorbing particles [cnd] and the &ective cross-sectioar, [cm?] of
an individual particle:

a, = No,. (2.14)

Alternatively
@, = PK,, (2.15)

wherep is the density [g c¥] and «, [cm? g~!] is the opacity (or mass
absorption coficient).

e Defining the optical depth [units: none]

dr, = a, ds (2.16)
and the source function ,
s, = (2.17)
ay

we can rewrite the radiative transfer equation

dl,

= —|
dr, Y

+S,. (2.18)

e This has thdormal solution

l(1,) = log™ + f e ™IS (v)dr). (2.19)
0
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Evaluating this expression is not trivial and can often drdydone numer-
ically. The biggest problem is that the source functionlitsen depends
on the intensity of radiation. Thus the equation we have atlhsintegro-
differential, not differential.

If S, is known and is independent of location, we get
L(t,)=loe™+S,(1-€7)=S,+e™(lp - S)). (2.20)

Thus whenr, < 1, we obtainl, ~ Iy + 7,S,, while whent, > 1 one gets
I, ~S,.

Radiation force.
If medium absorbs radiation, then the radiation exertsdaheefon the medium,
because the radiation carries momentum. The vector oftraditux is

wherefi is the unit vector along the direction of the ray. As the phdtas
momentumhy/c, the momentum transferred per unit area per unit length
per unit time is

F = % f o, F,d. (2.22)
One can understand this relation from the following: the anmtoof en-
ergy passing through are#\dn frequency interval din solid angle @ is
I, dA cosadvdQ (whered is the angle the photon momentum makes with the
normal of dA). To get the corresponding momentum along the normal to
multiply this by co9) and divide this by. The probability that photons are
absorbed within the lengthsdls «,ds/ cosf . Now integrate over solid angle
(and remember that the volume ¥ & dAds), we get equation (2.22) gives
the force per unit volume. The force per unit mass is

gl f &, F,dv. (2.23)

c
Note that there is no additional cé$actor here (which we had when com-
puting radiation pressure), because we assume/thaine can absorb pho-
tons. If we consider a problem of e.g. radiation force sardace, i.e. solar
sail, this factor appears.
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2.3 Thermal Emission
Thermal emission is radiation emitted by material in thdreguilibrium
(TE); blackbody radiation (BB) is thermal emission thansTE itself.

BB is independent of material, shape, color, direction,ditaetc. It only
depends on temperature and wavelength (or frequency)

I, = f(»,T) = B,(T). (2.24)

Kirchhoff’s Law: material emitting thermal radiation has
S, = B,(T) (2.25)

and therefore
jv = ava(T)- (226)

Thermal radiation haS, = B,(T) and blackbody radiation hdas = B,(T).
Thermal radiation becomes blackbody radiationi#fos 1.

From thermodynamic arguments follows Stefan-Boltzmanw:Lanergy
density
u(T) = aT* (2.27)

wherea = 7.56x10° erg cnt® K~* is the radiation constant. Sinoe= B
and the flux- = 7B, we get

F=o0gT? (2.28)

whereosg = ac/4 = 5.67x 107° erg cnt?2 K= s71 is the Stefan-Boltzmann
constant.

The Planck spectrum

2?1
> h 1
and

B.(T) dA = B,(T) dv. (2.31)



14 CHAPTER 2. BASICS OF RADIATIVE TRANSFER

10°

10°

BT)

107°

10—10

10—15

10—20

o
[N
S

10° 10%° 10° 1

Figure 2.1: The Planck function for various temperatures.

Limiting behavior: Rayleigh-Jeans linti < KT:

2
IR(T) = %kT. (2.32)

Limiting behavior: Wien limithy > KT

3
IW(T) = Zch—zv exp(hy/KT). (2.33)

Planck function is monotonic i, if T, > T,, thenB,(T;) > B,(T,) for all
v. This can be easily checked by showing thBi(T)/oT > 0.

Wien displacement law. Planck function reaches the maximum

Vmax * 5.88x 10'°T, (2.34)
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wherev is in Hz andT in K, or
Amax = 0.290/T (2.35)
with 2 in cm and and in K. Note thatd,,ax/max # C.

¢ Relation to fundamental constants. Let us integrate thecRlaunction

°° 2h (KT\ = 3

The integral ovex is 74/15. Therefore, we have

2%k
15¢c?h?

B= f B,(T)dv = T4 = oggT*/n. (2.37)
0

e Characteristic temperatures: brightness temperdigirea measure of the
source intensity (or brightness). Defined so that at a givdn = B,(Ty).
Often used in radioastronomy, where the Plack functionptaed with its
Rayleigh-Jean limiB, o Tg..

e Characteristic temperatures: color temperaiiyre a measure of the spec-
tral shape. Defined as the temperature for a which a black bpégtrum
has a maximum at the same frequency or wavelength as the radamak
in the observed spectrum (which may not look like a blackbodywe at
all).

e Characteristic temperaturestfective temperatur@.; — a measure of the
magnitude of the flux. Defined as the temperature for whichaaktiody
would have the same flux as the measured flux osgT®. The actual
measured spectrum does not need to look like a blackbody.
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2.4 Einstein Codficients

Linking Kirchhoft’s Law (macroscopic) with microscopic properties.

e For atwo-level system with levels, > E;, E,—E; = hvg, and degeneracies
0; andg,, define

1. probability for spontaneous emissiont{s= A;;.

2. probability for absorptior: B,J, whereJ = [ J,¢(v)dv andg(v) is
the profile function. It describes the finite width around fileguency
vo, Where absorption can take place. For a slowly varying aeera
intensity J, (like the Planck function)¢(v) can be approximated as a
s-function, andd = J,,,.

3. probability for stimulated emission B, J.

¢ In thermodynamic equilibrium (TE), the number of transiger unit time
per unit volume from state 1 to state 2 should be exactly loaldriy the
opposite transitions:

nlBlzj = NoAy + n2821j. (238)
Find J:
A21/Ba1
(N1/N2)/(B12/B21) — 17
In TE from the Boltzmann formula we get:

N GuexpCE/KT) g
N Gexp(E +hvo)/kT] ~ g2 explvo/kT) (2.40)

J=

(2.39)

Thus
A21/By1

(91B12/92B21) explvo/KT) — 17
We also know that in TH, = B,, so we get the relation between the Einstein

J=

(2.41)

codficients:
2hy3
Az1/Bo1 = (2.42)
0Bz = 0:Ba. (2.43)

These properties do not depend on the temperature of theugasedthe
properties of the atoms only. Thus they are valid not onlytlier TE, but
always.
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e The macroscopic emission and absorptionficoents can be written in
terms of the microscopic Einstein dtieients as

. h
)y = 4—Vn2A21¢(V) (2.44)
s
and
hy
@, = E(nlBlZ — N2B21)é(v) (2.45)

Here, absorption also includes stimulated emission (aativegabsorption).

e The source function is

3 -1
s, = 2 (@ - 1) . (2.46)
@ \nogr

e Thermal emission.
When the matter is thermal equilibrium with itself (but netcessarily with
radiation), we have

M % eptw/KT), (2.47)
N Oz
and Mg
—=L = exp(hv/KT) < 1. (2.48)
N0
The matter is said in local thermodynamic equilibrium (LTE)this case
h
@ = 2Bl - exp(-hy/KT)6(). (2.49)

e Non-thermal emission. Inverted populations, masers.
In real astrophysical circumstances, the matter does reat teebe in LTE,

ie. nog
= % = exphv/KT). (2.51)
N o2
The extreme case of such a non-thermal population is ant@/population
when n n
2L <2 (2.52)
01 O

In such a case, the absorption fitc®@ent is negativeq, < 0. The inten-
sity of radiation thus increases exponentially along the fehis is maser
- microwaveamplification bystimulatedemission ofradiation, it is similar
to laser - light amplification...
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2.5 Scattering

In addition to emission and absorption, the photons can ladsscattered in the
medium. A volume elements emits photons due to the scagtavith the rate
completely dependent on the amount of radiation falling lom ¢lement. Let
us consider a simple case of coherent (or elastic, monodtrom.e. with no
frequency shift) isotropic (i.e. scattering probabilisythe same in all directions)
scattering. We denote the 'absorption’ ogent for scattering ass. (it might be
also frequency dependent).

Pure scattering. The radiation energy 'absorbed’ by themel element
dV = dAds(ds = cdt) intime d is:

f dQ 1,dA dt asds, (2.53)

wherel,dQ dA dt is the amount of energy passing through area element
dA in time d within solid angle @ andasds is the probability of scatter-
ing with the volume. For isotropic scattering this energeisitted in all
direction 4rj, dV dt. Thus

. 1
Jy = asc_flde = asc\]y, (254)
A
s, = -3, (2.55)
Usc
and
%—— (1, -3) (2.56)
ds = —Qsc\ly v)- .

This is integro-diferential equation.

Mean free path (for scattering only).

The average distance a photon can travel without beingesedttLet ¢ =
asds is the optical depth for both processes. The probability ahahoton
propagates optical depthis expE7). The mean optical depth is then

() = fooTeXp(—T) dr=1. (2.57)
0

The mean free path is then

L@ L 25

Usc  Usc
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e Random walk.
Scattering can be viewed as a random walk of photons witl@mtadium.
Let the displacement of the photon at stépr;. The net displacement after
N steps is
R=r+1+.. +I}. (2.59)
Let us find the mean square displacement:
2= =D+ @)+ + D+ 21y + A1), (2.60)

The terms involving scalar products give zero, becauses@dropic scatter-
ing the average of cosine of the scattering angle is zerda team involving

square of a displacement gives approximately the squareahrfree path
12 (to be more exact, the mean square of the free ggth= 2I?). Therefore

12 ~ NI? (2.61)
I, ~ VYNI. (2.62)
e Mean number of scatterings.
A photon injected in the medium of siZ should on average travel that
distance in order to escape the medium, Re~ VN |. Thus, the mean
number of scatterings is
N~ (R/1)? = (Ras)®* =%, 7> 1, (2.63)

wherer is the optical thickness of the medium. Whers small, photons
mostly escape without interactions. The probability thaytinteract within
the mediumis + exp(-7) * 7 < 1, and

N~t, 7<1l (2.64)
A more general formula working for anyis then
N~7+7% or N=maxf,7?. (2.65)

e Escape time.
This is the time it takes for a photon tofise from the medium:

R
-1, > 1,
C
= (2.66)

- 1Tl
C

NI NR/7

tesc= —
esC C

Note that it grows as, not as the number of scatteringsr?, because for
larget the distance travelled between scatterings decreasgs.as 1
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2.6 Scattering and absorption

Combined scattering and absorption (in a thermal medium)

dl
d_S = _(av + asc)(lv - Sv) (267)
with B J
g, = Hovt Esely (2.68)
a, + Usc

Mean free path (for absorption and scattering).

The average distance a photon can travel without being bbdarr scat-
tered. The extinction cdicient a, + as. and the optical depth for both
processes isd = (a, + asg)ds. The mean free path is then

oS 1 (2.69)

@, +ase @y + asc

A chance that after the free path the photon will be absorbed ¢, =
a,/(a, + as); chance that it will be scatteredl — €, = asc/(@, + asc). The
guantity 1- ¢, is called the single-scattering albedo. Source functidhnes

S, =(1-¢)J,+¢B,. (2.70)

Thermalization length.

A photon is created by thermal emission of an atom. It scattemy times,
but at some point it can get absorbed by some other atom. Talepiath
between creation and absorption is called thermalizagogth. Because
the probability of getting absorbed in each interaction(aet in the end
of each free path) is, a photon on average has= 1/¢ scatterings before
absorption. Thus we have

(2.71)

and
l, = —— (2.72)
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e Effective optical thickness of the medium.

T, = \Ta(Ta + Tg), (2.73)

wheret, = a,R andrs = asR are the optical thickness of the medium of
sizeR for absorption and scattering separatelyz,lf> 1, the medium is
effectively optically thick. The radiation field is then clogethermalization
with the matter and, ~ B,, S, ~ B,.

2.7 Radiative dffusion

Solving the equation of radiative transfer in near-homaogsmedia. We will use
plane-parallel geometries, with= cosé.

e Rosseland approximation.
Consider a star. Assume that the medium is near-homogeaedubat the

opacity is large so that the intensity is close to the Plancktion. We can
rewrite the radiative transfer equation in the followingrfo

di,
:uE - _(av + asc)(lv - Sv)’ (274)

wherezis the vertical coordinate and= cosé, andé is the polar (zenith)

angle. Rewrite RTE:
1 d,

@, + asc dz°

I, =S, —u (2.75)

Inside the star, intensity is close to the Planck functiod e source func-
tion too. Thus we can approximate in the ths B andS = B:

1 dB
I, =8B, - Y 2.76
4 14 /’tay + (ISC dZ ( )
Find the flux:
1 B 1
F.(2 = f |, cosgdQ = 2r f 1(Z p)pdu = — r &, f pPdu

1 a, +asc dz J_;

_ A dB,(T) 4 dBV(T)d_T 2.77)

" 3(, tas) dz 3@ tas) dT dz’
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Then the total flux at heightis

F(2 = [)w F(v)dv = _4_::?1_12- ﬁw(av + asc)_ldlzv_l(_-r) dv. (2.78)

Define the Rosseland mean opacity as

1 fooo(av + as) 1y

= _ . 2.79
[ By &79)
Since
0B, , 8 (7 _0B(T) _ 3
T dv—a_l_f(; B,dv = 3T = ospdT7 /1 (2.80)
we get

16055 T30T _ 47 9B

F(29 =- R i (2.81)

where dr = —ardz This means that the energy flux deep inside a star, for

example, only depends on the temperature gradient and ke simgjighted
mean of all opacities.

Eddington approximation.

Now assume that in a near-homogenous medium the intens#miest
isotropic, but no longer assume that total opacity is lafgepanding the
intensity into first-order terms of:

(7. 1) = a,(1) + b,(T)u. (2.82)

We can evaluate the three moments of the intensity (equivakéh the
mean intensity, the flux, and the pressure) as (suppredsengsubscripts
for clarity)

1 1

J = —fld,u:a, (2.83)
2J4
1 1

H = Ef lu du =Db/3, (2.84)
-1

1
K = %f |2 du = a/3 (2.85)

1
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The latter equation foK = J/3 is the Eddington approximation (equivalent
with expansion to first order in). The RTE:

d
'udT_

where d = —(a + asc)dz (note minus sign). Integrating ovemwe get:

| - S, (2.86)

drl =J-S. (2.87)

dr
Multiplying (2.86) byu before integrating, we get using Eddington approx-
imation: dK 1d3

The last two equations can be combined to give second-oretien for
J (radiative diffusion equation) which we can hope to solve:

1%

where we use® = (1 - €)J + €B from equation (2.70). If we have the
temperature structure of the medium, IB{T), we can solve this equation
for J taking proper boundary conditions. We thus gethen using (2.70)
we obtainS, and thenl, by applying the formal solution of the RTE.

¢ Introducing optical depth

7. = V3e 1 = /31a(ta + 79), (2.90)

we get a diferent form of the dfusion equation

62
53 =J-B. (2.91)

e Two-stream approximation.
In the Eddington approximation, let’s approximat@:, z) with 1, along two
directions onlyu = +1/ V3.

It = 1(r,u = 1/ V3), (2.92)
1= = I(r,u = =1/ V3). (2.93)
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The expression fod, H, andK now become

1.

3= S0+, (2.94)
1,

H = 2—\@0 1), (2.95)

K = %(I++I‘):J/3, (2.96)

Our choice ofu = +1/ V3 is explained by the fact that the Eddington ap-
proximation still holdsK = J/3. In other words, if the intensity is near-
isotropic, the intensity can be approximated by taking atoount only the
the intensity along angles= +1/ V3.

With some more algebra we solve equation (2.94), (2.95)u&r88):

1

|* :J+ng_:[]" (297)
10J

I_:J_%E' (298)

This gives us our two boundary conditions férand 4J/dr, if we know
whatl* andl~ are at a given locationg andr; in the source. For example,
if no radiation is entering from outside we have:

I (r=71)=0, I"(r=1)=0. (2.99)

The Eddington approximation is often used for stellar apheses. In that
case, the inner boundary conditions (inside the star), eamrliten as

3 _A4roB(T)  4rdJ(7)
F=a = e T3 ar (2.100)

at very larger where the temperature structure is known.




Chapter 3

Radiation fields

3.1 Definitions of electric and magnetic fields

The electric fielcE and the magnetic fiel8 can be defined through theiffect on
a chargay at location” moving with velocityv. This is the operational definition
(by doing experiments). Consider behaviour of a chargetigeaof chargeq:

V V+ AV
—

%

=
If acceleration is parallel to the velocity then the forcpasallel the velocity. Let
us define the electriteld as force per unit charge:

F =qE. (3.1)

If, on the other hand, the acceleration is perpendiculdn¢oselocity, then the
force is also perpendicular to the velocity.

=

Vv
—

25
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We define then the magnefield as follows:

v
F=qexB.
q c X
The total force is calletlorentz force:

ﬁ:q(§+gx§).

3.2 Work performed by the field

The work performed movingne particle per unit time is:
dr v
5 = F"-v_q(E-wv-Exﬁ)_qE.v,

where d’is the displacement arfd- d is the work.
Let us write Newton’s law for a non-relativistic particle:

dg dnwv
S L

dt dt
The work per unit time is then

& dm? _ d

qv.gzﬁ.v:nﬁ.a_ETZEEmech

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

Thus the work per unit time done by the field on the particlejisad to the change

of the kinetic (mechanic) energy per unit time.

Now let us consider a collection of particles. We can defieectiarge density

as:

pell 1) = D a6 (F = (),
i
and similarly the current density:

Je(r ) = > 6vs (P~ (D).

(3.7)

(3.8)
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O (x— X;)
S X)

'S

Notice that
fé(?— Fi(t)) d’r = 1. (3.9)

The proper total charge is given by the integral over the mau

a= [pdr= [as@-rwdr (310)

and similarly the proper total current is
qv = ffd3r = Z fqﬂi 8 (P - Fi(t)) oPr. (3.11)

The work per unit time done by the fields at positidper unit volume is then:

Ds(E-F) qv - E= o E. (3.12)

3.3 Maxwell's equations in diferential form

Coulomb’s law

VD = 4np. (3.13)

Guilbert’s "law”. No magnetic charges-(honopoles).

V-B=0. (3.14)

Faraday'’s law of induction

168
E = - (3.15)

V x
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Maxwell’'s generalization of Ampere’s law

4r . 18D
VxH=—=]+>—, 3.16
% C I+ c ot ( )
Where(—l:aa—[t3 is called the displacement current.
The fields are related as
B=uH, D =e¢E, (3.17)

wheree andu are the dielectric constant and magnetic permeabilityefiedium.
In vacuume = u = 1.

Notes

1) Note the invariance fof —» BandB — —E if p = 0, ] = 0 ande = u = 1.

2) if V- AandV x A are known, therA is uniquely specified (to arbitrary
constant). Helmholtz theorem (ch 1.15 in Arfken 2nd ed.)

Thus if p,  (the sources of the field) are known, thEnB uniquely determined
through Maxwell’'s equations.

Definitions:
0 0 0
V=(—,— —
(6x’6y’ 62)’
. > 0Ay OA, OA
dvA=V-A= —
v ox ay oz

o OA OA
cur|A:VxA:(%__y,%_%,_y_% _
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3.4 Conservation law for electric charge (Benjamin
Franklin)

The conservation law for electric charge follows directlgrh Maxwell’s equa-
tions. TakeV- on Ampere’s law:

V-(Vxl—T):V-ﬂT+1'6—(V-5) (3.18)
———— C Cot ——
=0 4§Tp
> ap
= Voj+=-=0 (3.19)

Let us prove the conservation law in a simple way. Let us aidens current
(flow) of charges through a volume of sizedly dz, with the flow in thex direction
only.

. j dz
09| =~ 4= j(x+dx)

-] 1
X dx x+dxy

The net flux out of volume is equal to the rate of change of tleggein volume:

[j(X+dXx) — j(X)] dydz = —%dxdydz. (3.20)

9]
&dx
Thus we get

0] dp
9 L%y
ax ot

3.5 Energy density, flux of electromagnetic field, en-
ergy conservation

Consider the work done per unit volume and unit time. Usingp&na’s law we
get

oD

c(V x H) - E] (3.21)

1
J_47r
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and .
> 1 oD
J-E_Elcé-(wﬁ)— ’El' (3.22)
The first term in the brackets (see problem set 2):

E-(VxH)=H-(VxE)-V-(ExH). (3.23)

SubstituteV x E = —%%—? from Faraday’s law:

o 1[ 1082 eoE?
We obtain thus Poynting’s theoreftonservation of energy)
i §+8ﬂat(eE +MB)_ \Y 47TI§><I-T. (3.25)
We can define the energy density of the electromagnetic feeld a
2
Ufield = 1 (eE2 + 5). (3.26)
8r u
The Poynting flux
s= Z(ExH) (3.27)
47

determines the energy flux of the electromagnetic field.

Equation (3.25) allows a simple interpretation: the chamigmechanical en-
ergy and field energy is equal to the minus of the divergendlenof

We can integrate over the volume

fdv T-E+ﬁfdv Uﬁe.d:—fdvvé. (3.28)
\Y at \Y \Y

Using Gauss’s theorem one gets

d,, v >
at (e + eped™) = - j;dA' S. (3.29)

Thus the change of the total energy in the volume is equaldantivard (sign-)
energy flux through surface.
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If surface are& — oo then the electrostatic and magnetostatic fields (check
your old textbooks) depend on distanceEas 1/r2 andH o« 1/r2. Therefore, the
Poynting flux

§xﬁxqmﬁ. (3.30)
The total energy escaping to infinity is then
f§nﬁx%ﬂﬁa (3.31)

We shall later find that the time-dependé&alds depend on distance‘a#, there-
fore the energy escaping to infinity

fgdﬁm%ﬁﬁﬁme (3.32)

This way the radiatioescapes to infinity.

3.6 Maxwell's equations in vacuum
Vacuum mean that there is no charges, no currentsu = 1.
p=0, [=0.

There exists a trivial solutiorE = const andB = const. Why would non-trivial
solutions exist?
Faraday’s induction law

VxE_):—}a—é.
c ot
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Thus time varyingB-field gives rise toE-field that in turn gives rise td&-field
through Ampere’s law

ngzlﬂ?.
c ot

Thus continuously varyinE and B fields can generate each other for ever even
thoughp = 0, = 0, i.e. no sources for the fields. It was hard to accept in 1860s
Waves in vacuum required introduction of aether. It is nogglsurprising if the
radiation is considered as particles (photons).

3.6.1 Wave equation in vacuum

Looking at non-trivial solutions, waves carrying energy &mentum. Take curl
of Faraday’s law:

1 1 82
VX(VXE)=-==VxB=-=_—F.
M cot % c? ot?

(3.33)
=V(V-E)-VE
N——"
=0
(see exercise 2.3). Thus we get the homogeneous wave atgiatio

2
PE _evie-o (3.34)

and by symmetry
0B

T V2B = 0. (3.35)

HereV? = A is Laplacian operator.

3.6.2 Solution of the wave equation

The general solution of the wave equations
E = 8,E@®™), B = g,Byd®reh, (3.36)

whered; anda, are the unit vectors, andBy are complex constantk = ki and
w are the wave-vector and frequency. Such a solution represems traveling in
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thenr direction. The most general solution of Maxwell equatioas then be con-
structed by superposition of wave of various frequenciesteaveling in diterent
directions.

Substituting (3.36) into Maxwell’'s equation, we get:

ik-d,Eo =0, ik-dB =0,
.o |(,L) .o |a)
ik x glEO = ?3280, ik x azBo = —?alEo. (337)

The top two equations tell us that anda, are both perpendicular {o With that
knowledge, the bottom two equations tell us tHataindd, are perpendicular to
each other. Thug,, &, andk for the right-hand triad of mutually perpendicular
vectors.

We thus can get the relation betweenand By:

Eo = EBO’ Bo = IC Eo, (3.38)
so that
w? = kP (3.39)
and
Eq = Bo. (3.40)

Takingk andw positive we get
w = ck. (3.41)

The phase velocity of the waves is

Voh = w/k=C¢C (3.42)
and the group velocity is also
ow

We can now compute the energy flux of these waves. Sinand B vary si-
nusoidally with time, the Poynting vector fluctuate. We calketthe time average,
which is normally measured. It is shown in problem set 2 tbatwo quantities

A(t) = A, B(t) = Be“!, (3.44)
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the time average of their product of their real parts is
1 1
(ReA(t) ReB(t)) = ERe(ﬂB*) = ERe(ﬂ*B), (3.45)
wherex denotes complex conjugate. Thus we get
_ i *\ i 2 _ i 2
(S) = snRe(EOBO) = 87T|E0| = 87r|BO| ; (3.46)

where we usett, = By.

3.7 Radiation spectrum

From the time variation of the electrical field (and, analaglg, the magnetic
field) follows the spectrum of the radiation. The spectruthésamount of energy
per unit area per unit time per unit frequency interval, anchost easily derived
through a Fourier transformation. Let us consider a pulsadtion that passes
by an observer. For a pulse of radiatid{(f) — 0 andB(t) —» 0 ast — +co. We
only consider thée-field along one axisiE(t) = a - I?(t). The Fourier transform
and its inverse are now defined as

E(w) = % f ) E(t) €“ldt, (3.47)

E(t) = f E(w) e “'dw. (3.48)
The quantityE(w) contains the full frequency information &ft). The amount
of energy &V passing through a surface eleme#t ger time d is given by the
Poynting vectoS:
dw c
dAdt ~ S = 4

The total energy per unit area is

dw ¢ (™,
A Erf E“(t)dt. (3.50)

E2(t). (3.49)

—00
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From Parseval’s theorelnwe get

dw

W T B2
A Cfo |E(w)|“dw, (3.51)

becauseE(w)|? = |E(-w)2. Thus we can define the energy per unit area per unit
frequency (for the entire pulse):

dw A\
If pulses repeat on the time-scdlewe can introduce power per unit time:
dw C2, \n2
dAdtdo - TR (559

In this expression we need to measure the emission pulselengths of time
T that is sdficiently long to sample all relevant frequencies(wT > 1), but

short compared to the duration of the whole signal (the ptagseof E(t) remain

approximately constant, i.e. process is stationary). @hethat the time variation
of the electrical field and its spectrum are related throudfoarier transform
makes it very convenient to derive a spectral shape from hlagacteristics of
E(t).

As an example, let us consider a pulse described by an expainen

E(t) =e, t>0, (3.54)

wherer is the decay constant. Compute the Fourier transform

A 1 riw 1 1
E(w) = Zfo R (3.55)
and therefore the spectrum is
. 1 1 1 1 1 const= 5, w< 1/t
E(w)]? = == = -— = 4n® " (3.56
Ew) dn?i—iwitin 4%+ w? {oc w2, w> 1/1. (3.56)

Other examples are shown in Fig. 3.1.

The Parseval’s theorem for Fourier pairs is stated as:

I ) E2(t)dt = 2 I : |E(w)Pdw.

o
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Et) ¢/ Bfw)?

t W
E(i) c:|1_clf[{.u)|‘2
Ay o L
é‘“’ff T
sin wpt
T |
N | \or
t A
1E(t) o E(w)[?
= AUJN%
T
]
e /
,J”—--P t wp w

Figure 3.1: EM pulses (left) and associated radiation sp€aght) for three pulse
shapes. Top: a pulse of duratidrhas a spectrum stretching over a bandwidth of
~ 1/T. Middle: A periodic signal with frequency, for a total duration of time

T will have a spectrum of width- 1/T centered on a frequeney,. Bottom: A
similar periodic signal with a decay time @f(damped oscillator) will produce a
spectrum of bandwidtk 1/T centered on a frequenay, , but without the higher
and lower frequency ‘wiggles’ found in the previous example
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Figure 3.2: Any (single-frequency wave can be decomposed into two orthogo-
nal waves with amplitudels; andE, and the same frequency (but arbitrary phase
difference). The resulting composEfetraces out an ellipse.

3.8 Stokes parameters

Consider a plane wave in tlzedirection. The Fourier decomposition:
E.(z—ct) = f &, (k)<= dk. (3.57)

Herek - wavenumberyw = kc - angular frequencyy = 2nv, v is frequency.

So far we only considered oscillation in one plane (linegdjarized). Most
general wave is superposition of oscillations in 2 perpeuldr planes. It is con-
venient to consideg, complex.&, should be transverse o *

&, (K) = RE(K)EHM + 95, (K)éH ™M, (3.58)

where&,y are real amplitudessyy, are phasesef = COSX + i sinX).
The Fourier components are the real partg,¢k)ekZ:

Eyx = %Ex(K) cosk(z - ct) + ¢«(K)] + YEy(K) cosk(z — ct) + ¢y(K)]. (3.59)

Thus an arbitrary polarized monochromatic wave (i.e. amgijeis described
by 4 real parameters (instead of just one intenki}y It is inconvenient to use
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Figure 3.3: Geometry for elliptically polarized wave prgpéing inz-direction.

Eyx, Ey, dx, ¢y since they have dierent units. Stokes (1852) found a convenient set
of 4 parameters describing polarized light.
Let us consider fixed position, say= O:

Ex(t) = REx(t) + JE,(t) = %ExCOSEt — ¢5) + §E, Cost — ¢).  (3.60)
(The four parameters aég, &y, ¢y, ¢y.) Here real amplitudes

Ex(t)
Ey(1)

Ex(coswt cosgy + Sinwt Singy),
Ey(coswt cosgy + sinwt singy). (3.61)

The E, vector traces an ellipse: elliptically polarized wadée principal axis of
the ellipse has a til (polarization angle) with respect to theaxis.

In the new coordinate systery Yy’ which is rotated by anglg relative to the
old x, y system, the ellipse equation is given by the following lielad:

E1(t) = & cosB coswit, Ex(t) = &y singsinwt,

where we introduced the ellipticity paramegerRotation is counter clockwise for
0 < B < n/2 (left handed polarization)3 = +r/4 means circular polarization,
while for 8 = 0 orB8 = n/2 the polarization is linear.

Since the coordinates in two systems are related as

Ex = Eicosy — E;siny, E, = E;siny + E; cosy,
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we get

Ex(t)
Ey(t)

Identifying codficients in front of cosut and sirnwt in equations (3.61) and
(3.62), we get:

&Eo(cosB cosy coswt — sing siny sinwt),
&Eo(cosB siny coswt + sinB cosy sinwt). (3.62)

ExCoSpy = &pCOSBCOoSy,
ExSingy = —&gsingsiny,
&Eycospy, = &pcosBsiny, (3.63)
&Eysingy = &psingcosy,

where we have three new paramet&gsg and y describing completely 100%
polarized monochromatigzave instead of the previous fouy, &y, ¢y, ¢y. Among
the phases, it is only theffierencepy, — ¢, that matters. Stokes (1852) defined 4
practical quantities to characterise a wave (Stokes pdexs)e

| = &+&/=8],
Q = & -&)=¢&jcosBcosy,
U = 25,8,C0s@y — ¢x) = E5cos Bsin2y, (3.64)

Vv

26,Ey Sin(py — ¢x) = E5SIN 2.

Here we again have 4 parameters, but they are not indepesidertfor a com-
pletely polarized wave:
12= Q%+ U?+ V2

Sometimes alternatively one uses 3 parameters:

& = VI,
sinB = VI, (3.65)
tany = U/Q,

whereg is the ellipticity parameter angthe polarization angle.

One of the possible ways of presenting polarization is orPthie@care sphere
(see Fig. 3.8).

Light is normally not monochromatic and not 100% polarizBifferent part
of the object have diierent polarizations andftierent phases. Therefore, in reality
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left hand circular
B=m/4

Poincare sphere

linear , linear
x=135° >é=é5°
=0 =
g linear (V=0)
X=0 =0

right hand circulaB=-1/4
(U=Q=0)

Figure 3.4: Representation of Stokes parameters usingiinede sphere.

12 > Q%+ U?+V? and four parameters are needed to characterize the poiamniza
An important property of Stokes parameters that they araiaedor a superposi-
tion of independent waves (i.e. those that do not have perntahase relations).

| = Z 10, Q= Z QW U = Z u®, v = Zv@ (3.66)

Therefore any Stokes vector can be represented as a sum ohpakarized (first
term) and one completely polarized (second term) parts:

| — VQ?+ U2+ V2 V@ +U2+V2

|
8 - 8 + 8 . (3.67)
Vv 0 v

Polarization degree is then defined as

IMT= Q%+ U2+ V?/I. (3.68)

One can also define lined@l;,, = +/Q? + U2/l and circular polarizationEl, =
V/I.



Chapter 4

Radiation from moving charges

4.1 Electromagnetic potentials

Instead of using vector fiel(ﬁ(z t), §(>?, t), Maxwell’'s equations can be reformu-
lated using electromagnetic potentigls, t), A(X, t), whereg is a scalar and is
a vector. There are several advantages with this approagkcélar+ vector are
simpler than two vectors; (2) the resulting equations argkar; (3) it is simpler
to do relativistic formulation.

FromV - B, we see that we can introduce vector poterﬁahch that

§:Vx&

sinceV-B=V-(VxA)=0.
From Faraday’s induction law we get:

108 1 A
£ 0B 0

S = ZVx— 4.1
c ot c xat’ (4.1)

w(&%%f):o. (4.2)

V x

or

Then the expression in brackets can be written as the gtadienscalar field
-V¢:

V-2 (4.3)
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Potentials are not unique since the following changesddagtuge transfor-
mation)

S o 1oy
K =RK+v oy =¥ 4.4
+ Vi, ¢ =¢ c ot (4.4)
do not change the physical quantit®sindB:
§’:VXK’:VXK+vaw:VxK:§, (4.5)
.o, loA 19 10A 1d_
E' = -V¢ cat v+ catwl c ot catwl -E (4.6)

Herey is an arbitrary function.
One can choosg to make equations fok, ¢ simpler. The Lorentz gauge for
radiation problems means that we chogsso that

V- A+ %(Z—f =0, Lorentz condition (4.7)

It makes this formalism Lorentz invariantﬁ,[i¢] - four-vector; [V, ic%] - four-
dimensional gradient.

4.2 Maxwell's equations with electromagnetic poten-
tials

Our aim is to solve Maxwell's equations with the given souteens. Let us
rewrite the two Maxwell’s equations containing source t&rm
Coulomb law:V - E = 4rpe

14V -A
V-Vo+=— = —4np,. 4.
¢+C 5 TTPe (4.8)

Using Lorentz gaug¥ - A= -1% we get

1%
2 _
~ G- —4rpe. (4.9)

dnje | 10E

Ampere’s law:V x B = e 4 14

Vx(VxA) = (4.10)

v -
ot c2 Ot2

dnje 1_(d¢) 16°A
C C
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The Ihs isV(V - A) - V2A. In the 2nd term in the rhs changé to -V - A (Lorentz
gauge). We get then

1 6°A

-, > 47Tj_)e
V(V-A) -V?A= —24+V(V-A) - =—. 4.11
(V- A) V(A - 5o (4.11)
Finally,
S, 16K 4nj.
VIA-S— =- 4.12
c? ot? c ( )
Inhomogeneous wave equations foandA:
of & _ _)P
(%)l ) (@3
19

wherex? is the d’Alembertian operater V2 — Z 52 1-€. 4-dimensional Laplasian
= wave operator. In vacuung, andA also have wave solutions propagating with
velocity c.

Our strategy is to determire, B from givenp, J:
1) solve the inhomogeneous wave equatior:btdi;
2) then comput& = V x AandE = —V¢ — 124

Ways of solving these equations:
I) Rybicki & Lightman: see Jackson 2nd ed. (1975);
i) Shu: (1) see Jackson 1st ed. (1962), ch 6.6; (2) 'physiesivation’ from
Landau & Lifshitz (19511 verification of solution;
lii) most stringent: Jackson 1sted., ch 6.6 - Fourier meshotbmplex integration
using residue calculus;
iv) Jackson 2nd ed. ch 6.6: Fourier transformghysical derivation in Fourier
space.

4.3 Green’s function method
Equations (4.13) have the general form
0%y(X t) = —4rS(X 1), (4.14)

whereS is the charge or current densitfe/c andy is eitherg or A
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Determine the fect of a source (e.g. a charge)Xatt’ given bys(X— X, t—t’).
Instead ofy(X, t), determine Green'’s functioB(X, t; X, t’) satisfying

0°G(X, t; X, t') = —4n6(X — X)d(t — t). (4.15)

Once you have the particular solution for a sourcexat’), you can get the solu-
tion for the source distributio8(X, t’) by integrating oves:

WX 1) = f G(X t; X, 1)S(X, )Rt (4.16)

Check:

02y(X, 1) f 2GR, t; X, t')S(X, V)R dt’ = (4.17)

—4r f 5(X—X)s(t — t)S(X, )X dt’ = —-4nS(X t). QED

Below we describe the heuristic solution of equation (4.18} us consider a
charge sourc€(t) located atX' = 0. The equation we wish to solve is

0%¢ = —4nQ(t)s(F). (4.18)

The problem is then spherically symmetric. Théeets are the same in all di-
rections. We rewrite d’Alembertian operator in sphericainates and get the
equation outside the origim ¢ 0)

10 ,00 18¢ _16%r¢) 115(¢) _

2 - T _ -7 _ = = =0. 4.1
o9(r.Y 2or or CoE r or rcz ot? 0 (4.19)
This equation has a spherical wave solution:
ro(r,t) = f.(t—r/c)+ f_(t+r/c). (4.20)

We first solution represent outgoing wave, the second - mggaiave. We skip the
second solution due to causality. The solution is thus

o(r,t) = %L(t -r/c), r=#0. (4.21)

What is thenf,? We find it by normalizing the solution at the origin.
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Near the origin, the functiog varies rapidly~ 1/r and the radial derivatives
are much larger than the time derivatives, which we then egtect. We arrive at
the Poisson equation for electrostatic (Coulomb) field

V2p = —4nQ(t)s(F). (4.22)

VXE=0 — E =-V¢combined withV-E = 4rp givesV2¢ = —4rp. Solve
instead

V3G = —4n6(F). (4.23)
The solution isG(r) = 1/r. Atr # 0, boths(r) andV?(1/r) are zeros. The cor-
rectness of normalization can be checked by integrating sides of the equation
over the volume. Instead of/ i substituteG(r) = 1/ Vr2 + a2

~ 2 1 2
fo \% ( m) Ayr <dr Ar (4.24)
for anya. Considering a limia — 0, we prove equation (4.23). The solution of
(4.22) is then
¢(r. 1) = Q(t)/r (4.25)
close to the origin, i.er/c < t. Identifying f,(t) with Q(t) we get the general
solution of the wave equation

o(r,t) = %Q(t —r/c). (4.26)

For the source &, t’ the retarded Green function is
(t—t'—r/c) _ ot —(t—IX-Xl/c)
X—X| X=X ’
where we used(x) = §(—Xx) in the last equality.
The general solution is given by expression (4.16).

Gret()?, ta x‘/, t/) = 5

(4.27)

4.4 Retarded potentials

The solutions for the scalar and vector potentials are tiwendoy so called re-
tarded potentials:

oY\ [ — (- IX=R) [ PR \
(/K(Zt)) = f X=X (j”e(xtt')/c)o'“'t

P(X, trer) dx’
j\./ol ( j_)e()?,’tret)/c ) IX- x| (4.28)
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where retarded timg, = t — |[X— X|/c. Potentials at positiok and timet contain
contributions from the past light cone.

4.5 Lienard—Wiechert potentials

Consider the potential from a single charge moving alongtite X = r{(t). The
corresponding charge and current densities are

p(%,1) = g8(% - F(t))
J(%.1) = qu(t)s(x - F (1))

space
observer

(x.t)
R({t")

n(t') .
U= )

space

Move back one step (to before the integration a¥jer

L[S —t+IR=RUO) e
¢(>?,t)_f T o(X, V)Xt

Insert nowp(X, t):

H(R1) =q f o - T;_";' X1 s — meydPxt

and integrate over the volume instead of time:

o2 =q [ “t'_;t,?(t')/ Do,

where we define®(t") = |X - (t)|.
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Using the rule fow-function (see Arfken):

_ a(to) _ ~
[aoatrore= ZL g =0
we get
o= : N qdR(t’) ’
Rlte) [qp ' —t+ R0 Rlted |1+ 57|

wheret,e; = t — R(ter)/C.

Let's do some mathematical exercises to comgié. SinceR(t') = x—r(t),
we getR = —F(t’) = —d(t"). Notice thatR = R-R. ThereforeRR = R-R= -R-0.
Thus one get&(t) = ~80 . g(t') = () - d(t).

Finally, we get the Lienard - Wiechert potentials

q qa
X 1) = = — 4.29
P = At - U(ted/O) Ritw) <Rk (4.29)
and similarly forA:
N qu(tret) qU/ c
A(X 1) = = , 4.30
%0 = At - d6ed/O Rt~ R |, (439

where we defined the Doppler factoe 1 — i(tye) - G(trer)/C.
Comments

QD ifd=0,¢=09/R, A =0, i.e. the static Coulomb potentials.

observel
/
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(2) U # 0. The Lienard-Wiechert potentials show tHeeet of charge motion
on the Coulomb potentials. E.g. if the charge is oscillatihg observer sees
oscillating potentials reflecting what the charge did = R/c time ago. The
observer sees an oscillatirigyfield superimposed on the static field. One also
sees an oscillatin@-field, since from the induction law x B = —%% The
moving charge is current. One gets an electromagnetic wave.

observel

y/ oscillating charge

(3) The theory is relativistically correct. No assumpti@out smallness of
the velocitiesy < c.

(4) 1 - - u/c factor accounts for the fact that the time intervals between
two signals are not equal for the emitting observer and teiveng observer
(the Doppler &ect). Whenf||d and|ld] ~ c the Doppler factor is very small
and potentials become large. This gives rise to the so calggpler beaming:
radiation is beamed toward the direction of the charge motio

(5) A, d, Rare all evaluated at retarded timpg.

(6) B = VxAandE = -V¢-128: Lienard-Wiechert potentials seem to behave
asA « 1/Rand¢ « 1/Rare largeR. This would mean thaB o« 1/R?, E « 1/R?
and the energy crossing the spherB &t 47R?S « R?BE « 1/R? — 0 as for static
fields. However, one should also include Beependence of the retardation time
tret = t — R(tiey)/C. This will give terms behaving a8 « 1/R, E « 1/Rand then

the energy reaching a sphereRis o« RZEB o« R?/R? = const. This is radiation.
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4.6 Different zones

cosmic source A

out of phase

coherent emission,
In phase

S~~~ T
observer
X A wave 2201¥e b
>> = =
near zone X o ¢
X>> L

L - radius of circulation orbit
. qr -
amplltuae of oscillation

Space and time variations of fields at the observer are cdiysed
1) variations inx due to particle motion
2) time retardation féects

In the wave zongone can use the small angle approximation

Distanceto the particle in the wave-zone approximation

IX - X| =(X2+x’2—2>?->?’)1/2zX(l—%i—f...):X—E-%zx.

Here we used the fact that® ~ L2 <« x2. The last approximation is valid if just
the distance is important.
Retarted timen the wave-zone approximation:

’ |)?_XY|
tet=t =t -

1 54 1—) =
St-S(x-Ke ) =t- Z(K- XK ).
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We keepl? X', which represent time retardatioffects within the source, when
considering rapidly varying fields,§, < x/c) which is the case for observed
photons. For examplé,, ~ 1/v ~ 1071° — 10-2° s for radioy-rays, whilex/c ~

1 - 10° years for astronomical sources. Wave oscillates fastethidight travel
time to the source.

4.7 Electromagnetic potentials in the wave zone

p(X1)\ P(X, trey) Bx 1 g()?’,tret) g
(K(X,t)) - \/{[ Jo(X, tred) X=x| )—(V{ Je(i’c,tret) d°x. (4.31)

Now consider space variations of, e.g., scalar potentiddeabbserver (there s
dependence in/k andt;ey).

1 1 0,
Vo = V) [+ [ Tt
ret
ot 9
= f d3 f Viretm— vt ;t)(x tret)d3 (4-32)
where we used the chain rule for partial derivatives.
Let us note thaFx = K = X/x (sinceVf(r) = —% see Arfken). One can
show (see exercises) that
i
Viret = —m, (4.33)
wherefi = R/R (remember thalR = X — X'). Also
ot lj(tret)
tet+ R/C)=1-1- 4.34
Otret atret( et R/Q) = C ( )
Thus we see that,e;— ot —ﬁ ~ —l—(. One gets
Otret c
_k El 3 4 k ko
Ve = x? G 6td)(_ ¢ cat’

_p[¢, 109\ _ 108
Bl k( cat) kcat (4.35)
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since in the wave zone> 1 = ¢/vand¢/X < ¢/ = Lp ~ %‘Z—‘f (if one considers
Fourier components in wave packgt~ €2'). This is equivalent td,, < X/c
or oscillation timex light travel time.
In the wave zone, thus we can substitute Wheperator by
Ko
Vo ——.
Y

ThusV? — 12 and thereforeE, B, ¢, A all satisfy wave equation in vacuum,

whose solutions is radiation.

4.8 Electromagnetic fields in the wave zone

Now let us compute the electric and magnetic fields in the vzane:

B = VxA*:—Exaa—f, (4.36)
E = _V¢—%aa—§:(wavezone) 52—?—%%’5
Lo 1A
= (Lorentz gauge)ﬁ— k(j -A) - Eﬁ
Sk 0A) 10A 5 o
= (wave zone) k[E . E)_ EE(k- K)
_ (%%’fxﬁ)xlzzw. (4.37)

We used identity(a - b) — B(d- ©) = (b x ) x & getting to the last line. So we get
E=BxK

just like for radiation in vacuum.
Furthermore,
A 1'j.ld?’x/ o 1'
xJ ¢ X

L and|l§| = |I_5§| o )—1( which is diferent from static fields

X!

Magnetic fieldB o« 2 o
IE] o 1/%2.
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Poynting flux
§- 4—Cn(|§>< B) = 4£BZk
The energy radiated in solid angl€gber unit time is then
dap = W _ 5. kd) = Bk K92,
dt 4 °
which is independent ok sinceB « 1/x. Energy thus can be transported to
infinity. This is radiation.

4.9 Dipole Radiation

Consider several charged patrticles in a sourcdteint particles have fierent
retarded times. Normally, one may need to keep track of pthid&zences. But if
A > D, then one can forget about phaséetiences.

\ A \
! !

D - source size

L is the distance over which the particle changes its motiohenTthe typical
frequency isy ~ 1/(time to change motiony u/L, whereu is particle velocity.
Thus,

L L
/l>>D:>E>>D:>C—>>D:>E<<—<1:>
v u c D

the motion is non-relativistic

Forgetting the phaseftierence implies thdt = t——(x K- X)~t-z,ie. the
'same’ distance to all particles. One neglects that thecmalsrextended in space
and time. This is 'dipole approximation’.

The retarded potentials become

3y
fj()?ctret)wd = ~ (wave zone) _fJ()? tret)dS ,

A(R 1)

vol

(dipole approx.) %(ff()?’,t—x/c)d3x’. (4.38)

2
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Non-relativistic charges are described by

J(X,te) = ) Qalla(tied S(X — M{tied), (4.39)

= A(X 1) = é{ > Gallat - X/). (4.40)

Define the dipole momermf a charge distribution as

0= > 0Xa=0d= > aXa= ) Gl (4.42)
a a a
then _
AR 1) = d (4.42)
" ex '

We want to determin& and B fields and the radiated power. The magnetic
field is

- 1 BA) - 1 5 o
§_V><A_E(Exk)_chdxk. (4.43)
The electric field vector is then
= 1 = = =
I§:§xk:@kx(kxﬁ), (4.44)
and its strength is
E(t) = d(t)SI—ne (4.45)

whered is the angle betweediandK. The Poynting flux in the directiokis

s= g2

e (4.46)

The radiated powegper unit solid angle can be obtained by multiplyi@dy the
areax2dQ through which radiation passes at distar@d dividing by d:

dP

o Z (Bx)? = 'd’ k‘ ’Oﬂ 5 sife. (4.47)
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The total radiated power (Larmor formjla

o
P= g—ng 'i[unze—: f(l— 2) —%Q (4.48)

4r

whereu = cosf.
Radiation patterms a dipole pattern

d(t)

k wave zont

In the wave zon€ lies in plane defined by andd.
Bis L to that planeE = Bx K « K x (k>< ).

Note: for a single charge, we hade= ex and
1) P « € andP « 12, i.e. (acceleratior)
2) if acceleratlon is along the straight line, then the radiis 100% linearly
polarized in thek — Uplane
3) no radiation in thel-direction.

Spectrum of radiatiorLet us consider a Fourier transform of the dipole mo-
ment:

d(t) = f e “'d(w)dw. (4.49)

Its second time derivative is
d(t) = - f w?e ' d(w)dw. (4.50)
Using equation (4.45), we get

E(w) = —Céxwza(w) siné. (4.51)
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The energy per unit solid angle per unit frequency is thea ég[3.52] and note
that dA = x2dQ)

dW o, 2 w s~ 2

The total energy per frequency is

dw _ 8 w?

~ 2
o =3 A (4.53)

We see that the spectrum of the emitted radiation is relat@te spectrum of
oscillations of the dipole moment.

4.10 Dipole Radiation: Examples

4.10.1 Electron-electron collision

Consider a collision between electrons or in general gagiwith the sameg/m

ratio:
d= Z Oala = —ez U = —% Z Mele = —n—iﬁ, (4.54)

whereP is the total momentum of all electrons. The total momentucoisserved

dB _
T = O, thus

d=-<P=0 (4.55)

Thus, no bremsstrahlung @+ e (non-relativistic) collisions in the dipole approx-
imation. (In the next order, quadrupole, there is radiajion

Bremsstrahlung between charged particles in the dipoleoappation re-
quires particles with dierentq/m, e.g. ions and electrons. In the case of rel-
ativistic particles, they “forget” about their masses, aadiation exists even in
dipole approximation.
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4.10.2 Thomson classical model of an atom

Consider harmonically bound charges that perform “fregiltagions around their
equilibrium positions.

Potential S S

~N— "% %¢?

Central forceF = —kX = —mwgi. Herek - spring constantw, - oscillation
frequencyx - displacement. Newton’s 2nd law states:

mX = F = —mw?x, = X(t) = % cosfuot). (4.56)

IX(@)F* o

x(t) in Fourier
space
% 1 @
t Wq

Dipole radiationfrom oscillating charge:

dipole momentl = —ex,
radiated poweP = 5
mean poweP = 22wl (cof wet) = L,

since ¥(2n) foz’r cog ¢ dp = 1/2.

As the particle radiates, it should lose energy and thelasoms should damp.

This is radiation reactian
Equation of motion

MeX = —Mew?X — MeyX = F + Frad React- (4.57)
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What isy? We know that radiation losses are given by Larmor formula

dw 2¢€ -
- —_P=-ZZ %2 4.
dt 3(?")?] (4.58)
The time averaged radiation loss is then proportional to
1 (7. . HT L
- X Xdt = —= X - Xdt, (4.59)
Tt Tt

where the integration in parts was used. The average emibtedr is equal to the
average work done by reaction force per unit time:

<‘Litv> = (FRad Rt * X)- (4.60)
and we can introduce the radiation reaction force
FRad React = ggi (4.61)
For simplicity, for the oscillating solution we can rewrige= —w?X, so that
Frr = —MeyX, (4.62)
Wi(tjh y = giﬁ = 242, wherer, = % = 2.8- 103 cm is the classical electron
radius.

Limits of Validity
Damping term should be smak ¢ €«):

. .- r C
YR X2 ywXo < 0’X 2y < w = Eewz Cwsw< == 10%%rad'sec

(4.63)
i.e. photon energyiw < mec?/as = 70 MeV (here the fine structure constant
as = €/(hc) = 1/137).
w < ri © e < £ ~ 4, i.e. theory is valid only for wavelengths larger than
the electron radius.
Solutionof equation (4.57). Make a guesft) = x,e. Substitute this into
equation and get
a?+ya+wh =0, (4.64)

which has two solutions = —y/2 £ [-w3 + (y/2)%. Fory < wo they can be
approximated as

a=-y/2+Iiwg. (4.65)
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Thus the general solution is the linear combination of the passible solutions,
with arbitrary codficients. Taking initial conditiong(0) = Xo, X(0) = 0, we get
the solution %

X(t) = Xoe 2! coswot = > (g2t 4 gtient) (4.66)

X

-~4 damping timeY™*

Making Fourier transform we get

~ _ 1 * ot ¢ X0 1 1
X(‘“)—Zfo x(t)e dt—4ﬂ[__|(w wo)+‘_'(w+w°)

The first term in the brackets dominates, because foose towy the denominator
there becomes small. Thus we can approximate

(4.67)

_ X 1
X(w) = In [_ T wo)] (4.68)
and , L
or N2 _ (X0
M)l = (47r) (w — wo)? + (y/2)% (4.69)
Using eq. (4.53), we can get the radiation spectrum
dW_87r1u)4e2 Xo \2 1 1., v/2n
do 3 &3 (E) @—w02+ (/28 2% —wo)Z+ (727 (4.70)

wherek = mew? is the spring constant. The factax3/2 is the potential energy of
the oscillator. Integrating over frequencies, we get thal eemitted energy

W= f—dw—— X2, (4.71)
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as it should by conservation of energy (here we can exterduakto—co because
the function is strongly peaked at~ wg). The function

y/2r

: 4.72
(@— w02+ (127 @72
is called Lorentz profile.
Ix(2 )F
3 1/2
¥ 112
; W
W
IX(A )
classical line width
-~ AOr~102% cm=16 " A
| A
I
A 0
The line width in units oft is a physical constant:
A 2rowd 4
Al = A(C)v) = 2rcA(Ljw) = 2nc~2 = 2t = opc2le 0 _ 2T (4.73)
w? w? 3cw? 3

0 0 0

4.10.3 Externally driven oscillations of the bound atomic scil-
lators (charges)= the classicaltheory of absorption and
scattering

Consider incoming fields
E = Ee@®* ), B = Byd®* e, (4.74)
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where the electron field is the real partI%fAt chargeX =0,
E = Epe .
Consider particle to be nonrelativistic
Foxera= ~€E — €5 x B~ e (4.75)

The equation of motion can be written as

m)? Ifcentral"‘ IfRR + Ifexternab
MX = —Mmw2%— myx— eEge !, (4.76)

Ansatz(guessX = Xe“!. Thus

Ro(iw)?e ™t = (—wg)?o +iwyX — e—ﬁ%) et 4.77)
_ &5 =
(W - Wi +iwy)% = ™ = Xo= D)+ 1wy (4.78)

Response&is out of phase with th&-field (note imaginarywy in the dominator).
Radiated energy per unit timrepower (averaged over period)

_2qd? _ 2e2 22 L, i
P = S50 = SR = @““’ R e )
2e2 w* (e?/mB)E3

- 3z3? 2)?O % = 3(:3 [(w? - wd) + iwy][(w? — W3) — iwy]

ewt  (2/mE2
TS (w2_wg)2+2)2y2' (4.79)

The time averaging of th&(R%e'“!)?) can be done in the following way. Express
‘P\)?oe_iwt — ()?oe_iwt + %e‘wt)/z, then (R)?Oe—iwt)Z — ()?ge—iZwt + (%)Zeﬂwt + 2)?0%)/4
Averaging the first two terms over time gives zero, while thiedtterm does not depend
on time.

Incoming Poynting fluxS) (ergscn?) is:

_Cc siwty2y _ C -2
(S) = {(REe ™)) = o EL. (4.80)
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We can define the cross-sectias the ratio of the scattered energy per unit time
P (ergs) to the incoming Poynting flux (efgicm?):

Cenl) = Py _ 8re? w? 3
sca ERGE 3Mec? (w? — wg)z + w?y? -
8nr2 w? w?
= = , (481
3 (w? - wd)? + wy? T (w? — W3)? + w?y? (4.81)

where we introduced the Thomson cross-sectign= %r2 ~ 0.665x 10724 cnr?.
The frequency dependence of the cross-sectias) is shown below.

Gpea.k (mo ): 61T goz)

o(w)
Lorentz profile
classical radiation
. not valid
‘ W
radio-IR-optical @, X-ray 10° Hz

C

w =— =10 Hz
T

! e

Rayleigh scattering Resonance scattering
' of line radiation

| (absorption and
emission)

Thomson scattering

blue sky |
red sunset ‘
yellow Sun !

' Typical ‘ /
W<< W 1 tens of eV (UV) for ‘ T o”
0 ! line transitions ; e

M’F'\ | !

R almost static E—field!

incoming radiation oscillates
very fast. One can neglect the slow
electron motion around the

.. 2 . .
mx= —m(%x+e]% cos(W t) nucleous (if the e is bound)
the last term is slowly varying => scattering on "free" electrons
x=eE cos(w t)/mw} mx=F_

"static" displacement
medium is polarized
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4.11 Multipole Radiation

Higher orders beyond electric diposge important, when electric dipole radia-
tion is zero. Here we only consider next two terms in the rpolg expansion:
magnetic dipolend electric quadrupale

The retarded potentials once again

(%, te) d3X

AR t) = (4.82)

v C IX=X|

In the wave zone

IX—X|~ x—K-X ~ X,

x. Kk-%
%(t—E)ﬁ‘T:to-FAt.

X=X
c

tet =1—

The first termty = t — x/c for t; was kept in the dipole approximation, while the
second (the diierence in retardation time due tdférent distances to filerente
in the source) was neglected.

We can Taylor expand the current density for small

(X, trer)

J(R ., te)) = (X, t0) + At
atret

+ O((A1)?). (4.83)

tret=to

The first term in the rhs gives dipole approximation, the rtexins give next
higher orders:

Ao(R 1) + AL(R 1) + ... (4.84)

1 (- s, 1 (X, trer)
fovj(%,t x/c)d>x +CXfVAt o

AR, t)

d®x.

tret=to
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Consider the termdy;
aj(x' tred) . K af 5 5
AX’t_ K- d°X = — - — | XJ(X,to)d°X, (4.85
(0.0 = o [ Rex e X =g | xTc 0. s
where we usegE 2 aitet =2,

For non-relativistic charges
J(R,t=x/0) = ) Qalla(t — X/Q)5(X = Xalt = X/C)),

we obtain .
N k d
A = G5 g 2 Ol e (4.86)

Note that there iso scalar product within the brackets [], but there iskn %) ..
Representing,l, = %%(Xaia) + Xa0a/2 — UaXa/2 We get:

° K 1d
ARY = 5o an[sma K1)+ — Zcma ) xK
1 - . 1: -

HereQ = Y, 0.[3%:X, — |X/?1] is electric quadrupole moment (which is symmet-

ric traceless tensor), - unit tensor, M = Da zqa (X2 x myl,) - magnetic dipole

moment, andX, x Myl - orbital angular momentum offacharge. We added a
vector proportional t& - | = Kin the first term. This is possible since such addition does
not change the value of physical magnetic (and electrio)l {igl= i%’? x K). Thus, we
have in the wave zone

- - - d 1 = 1 : =
A—AO'FA]_—&'F@k'Q'F&MXk. (488)
electric electric magnetic
dipole quadrupole dipole

The magnetic and electric fields are given by

= 1 5 = 1 oo = =z =, =
- <K== dxk+6—c(k-Q)xk+(Mxk)><k,

\
E = Bxk (4.89)
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The total radiated power integrated over all solid anglegven by
P= f§-Ex2dQ = cf(Bx)Zj—Q[erg/s].
T

Now we square the expression fBrand average it over angles. One should
note that all the cross terms give zero and only squares ofichil terms are
left. Noting thatf sir? Hj—f = % and doing some messy calculations for the middle
term (see Landau & Lifshitz, vol 2) one gets

2P 1 [OR, 2MP
3¢ 180c¢® 3 ¢

P (4.90)
Futher comments:
1) The multipole expansion is valid fdr < A, u/c < 1 and cannot be used for
relativistic particles.
2)
quadrupole power Q)?/c® |5 %X12/ ¢ N |2 N (E)Z
dipole power \g2/3  |&x2/c2 ¢ \c/

3) In the near zoné <« X < A, one must keep further terms. For example:
pulsars (rotating magnetic dipoles).



Chapter 5

Relativistic covariance and
kinematics

5.1 Lorentz transformations

The special theory of relativity is based on two postulates:

1. The laws of nature are the same in two reference framesfioromrelative
motion with no rotation.

2. The speed of light is constantn all such frames.

Consider two coordinate syster{sandK’ that moves with relative velocity
V along thex-axis. From the postulates one can show that the coordiirates
two systems are related through Lorentz transformaftibh)s

X y(X - Bct),

y =Y,
Z =z
ct = y(ct-pBXx), (5.1)

wherey = ﬁ’ B = V/c. This also can be written using the Lorentz transfor-
mation tensor

(5.2)



66 CHAPTER 5. RELATIVISTIC COVARIANCE AND KINEMATICS

as
ct’ ct
X X
=A . 5.3
y y (5.3)
z z
The inverse transform can be obtained changirg —3:
X = y(X +pct),
y =Y,
z = Z,
ct = y(ct +BX). (5.4)

The Lorentz transformation with arbitrary velocfiyof a 4-vectora = {ag, 8} is
given by:

d = d-anB+(y-1)3E@-8)/p~ (5.5)

5.1.1 Proper time

Some quantities are Lorentz invariants, i.e. they haveaheessalue in all Lorentz-
frames. Proper time;between events with time- and spatial distand¢edddy, dz,
is defined as

Cdr? = dt? — (dx + dy? + d2). (5.6)

One can prove thatrds the Lorentz invariant by using the Lorentz transfornmatio
dr = dr’. Prove this at home!

Proper timer is the time shown by the clocks that observers carry alorg, i.
7 is the time in the rest frame of the observer, whexe=ddy = dz = 0. In this
system we haverd= dt.

5.1.2 Lorentz-Fitzgerald length contraction

TheK’-observer carries a rod of length = X, — ;. In K-system the rod’s length
is measured by determining the coordinates of the ends obthat the same time
t. Therefore

L' =X, — X; = y(X = Vt—x; + V1) = y(X — X1) = yL, (5.7)



5.1. LORENTZ TRANSFORMATIONS 67

where we used LT. Herk is the length inK-system. Thus,
L=(1-p)"L =Ly (5.8)

The rod is shorter for thK-observer.

If the K-observer carries the rod, then tHé-observer finds it to be shorter.
The dfect is symmetric. The reason forfidirences is that the measurements are
not simultaneous between the two frames.

5.1.3 Time dilation

Consider a clock at rest I’ (a comoving clockx = 0) that measures a time
interval T’ = t},—t]. In theK-system (using clocks in th€-system), one measures

T=t-ti=y(-1) =T" (5.9

Here we used LT withd' = 0. ForK, the clock inK’ seems to be slower. On the
contrary, forK’ the clocks inK seem slower.

5.1.4 Velocity transformation

LT can be written in dferential form:

dx = y(dxX + B cdt),

dy = ay,
dz = dz,
cdt = y(cdt’ +Bdx), (5.10)

We get then for the velocities

dx y(dx +pgcdt’) U +V

= w T y(dt' + gdx’/c) 1+ pu/c’
_dy_ Y
YT & T @+ puo) (5.11)
dz u,
UZ =

dt ~ y(1+pu/c)’
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or rewriting this for velocities parallel and perpendicuiaV:

U M, (512)
1+pBu/c
ul
, = —= 5.13
IV (TS (.13

5.1.5 Transformation of velocity directions= aberration

The angled the velocity makes to some direction can be defined via the ot
the projections of the velocity to the direction and perpeuldr to it:

u, u, u sing’
tanf = — = = . 5.14
u y(u +V)  y(ucost +V) (.14)
Note that the azimuth angle does not change.
To determine aberration of lighive need to substitutg = c:
sing’
tan = ——. 5.15
v(coso’ + ) ( )
. _ 1
At home: use c0¥ = - to show that
39/
cosy = OV *B (5.16)
1+ B cosy
. sing’
sing = ———. 5.17
v(1+ Bcosd’) ( )
Example: How doe8’ = 7/2 transforms?
0 =n/2=tand = 1/(yB) = cosd =B = sind = 1/y. (5.18)

fy>1=0=1/y.
Isotropic emission irK’ becomes "beamed emission” ikixframe, where the
particle moves with Lorentz factor.

5.1.6 Doppler dfect

There are three fiferent intervals to keep track of:
1) the time intervalAt’ in the moving particle fram&’ (e.g. related to the fre-
guency of emitted radiationt’ = 2/ w’);
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2) the time intervalAt in the observer’s systel: At = yAt’ (time dilation);
3) the time interval\taniva, during which a pulse is received by the observer.

A particle of velocityV emits photons at 1 and 2 with time intervdl towards
the observer. When the 2nd photon is emitted, the 1st onedasled a distance
cAt. From the figure we get

CAtp = CAt — VAtcosh = Aty = At(1 — B cosh). (5.19)

If At is the time interval for receiving one wavelength, the osdrfrequency
becomes:

w2 _ 2r - 2 - l (5.20)
~ Ata At(1-pBcosf)  yAtr(1-pBcost) (1l -Bcosh)’ '
Relativistic Doppler formula
w' = wy(l-pcosh), w = w'y(l+pcosh). (5.21)
Show thaty(1 — 8 cosf) = chosg/) using the cos-cos¢’ formula.
For smallg and largey (i.e. 8 = /1 —1/y2 ~ 1—1/2y?),
’ /2

@ wey (5.22)

I -A-1U2)(A-72)] 1+
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5.1.7 4-vectors

Examples:

position €t, X); 4-velocity y(c, t); 4-momentum for a photok = ’%‘”(1, )
wherefi is the unit vector in the direction of the photon propagatidrturrent
density pc, |); 4-potential ¢, A); 4-momentum for particle = (E/c, p)

All Lorentz transformed in the same way as the "position"teece.g. for the
Oth component:

time
ct’ = y(ct - BXx), (5.23)
particle energy
E'/c=y(E/c-Bpy), (5.24)
photon energy
ho' hw
= y—(l pny) = y—(l [ cosd) = (5.25)

w = wy(l - Bcos), i.e. we obtained the relativistic Doppleffect formula
directly from the LT.

5.1.8 Lorentz invariants

Scalar products of 4-vectors are Lorentz invariants. Fangle:
a)

(ct, X)( ) c2t? + x? = const (5.26)
Minus sign appears by rule in space-time metric. One caeaastse standard

definition of the scalar product, but introduce imaginaiyfront of the Oth ele-
ment of the 4-vector, i.e.

(ict, X)( ct ) = (ict)® + X2 = —C%t? + X2 (5.27)
b)
(E/c, ﬁ)( Eéc ) p? — E?/c? = const (5.28)

What constant? Consider its value in the rest frame wpefée, then 0- (mé)z
—(mad?2. This means thaE? — (pc)? = (m)2. If one introduces energy = ym(?

and momentunp = ymd, one gety? — %2 = 1,i.e.y = 1/ /1 - 2.
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The dependence betwe&nand pc (hyperbolaE? = (pc)? + (m)?) is the
same as we had when discussing proper time. Here the corstaetsquare of
rest mass energync)>.

5.1.9 Electro-magnetic field transformation

The electric or magnetic fields cannot be represented asté+rge Instead one
can introduce the electro-magnetic field tensor:

0 E. E E
-Ex 0 B, -B,
-E, -B, 0 B,
-E, B, -B, O

F_ (5.29)

The LT to the system K’ moving with velocity = ¢8 along the x-axis can be
written using the LT tensor as

F' = ATFA. (5.30)
This can be rewritten in the form

Ej = E. B = B, (5.31)
E, =y(E.+8xB), B, =yB.-BxE). (5.32)

The immediate consequence is that the concept of pureielectmagnetic field
is not Lorentz invariant. If in one frame the field is purelg@ric (I§ = 0), in
some other frame it will be, in general, a mixed electric aragnetic field. Thus
the general termlectro-magnetic field

Note thatB? — E2 andE - B are Lorentz invariants.
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5.2 Radiation from relativistic charges

Multipole expansion is an expansionurc, which cannot be used far~ c. For
u/c < 1, start from the exact potentials for oparticle, the Lienard-Wiechert
potentials:

( ¢(X.1) )

_ q 1
ARt )~ [R— B. g ( d/c )]t ’ (5.33)

wheret,e; = t — R(trer)/C, R‘(tret) = X — M(trer), andr(t,e) is the position of particle at

tret-

ct

space
P observer

) observer (x,t)
observes at time t

Ctret

space

All is valid in both nearand wavezone. Just to rem!nd the notations:

K = R/R - direction to the observefi = dj/c velocity; # = G/c accelerationR
distance to the observer;= 1/(1 — %2 Lorentz factor
Lienard-Wiechert Potentials

1) if velocity d/c = 0 (ord/c < 1), theng(X,t) = q/R~ A(X 1) ~ 0.
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2) if velocity 0 # 0 and a reasonable fraction gfthenR — R-d/c = R(1 -
B cosd) causes "beaming” in tha direction. HereA is parallel tod everywhere
and is largest in forward direction due to Doppler factor.

——

A
%
E andB fields
As usual E andB are obtained through
BE = Vx K,
E :—N¢—EE. (5.34)

In home exercise 3.2 we have shown that

~ q . R A3
E(R D) = RR B {(1 -B)(R-RB) + — x [(R-Rp) xﬁ]}tﬂ,
B(xt) = g X E. (5.35)

The first term in curved brackets goesca®/R® o« R2 which is as in Coulomb
field. The second term R?/R® «« R"! makes transverse, radiation fieBlLE and
BLK in both near and wave zone.

ExpressionR - R- 4) = R(1 — k- f) = R(1 — Bcoss) contains the Doppler
factork = 1 — Bcos6. It appears irE andB partly due to

ot
=1-cosb, (5.36)
atl’(—:‘t
which is identical to
Atp
rt = 1—ﬁC039 (537)

discussed in the section 5.1.6 withfdrent notationéty <« At andAt & Atyet.
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5.2.1 Electromagnetic field from charge with contant velody

1) If velocity 5 = 0, then one recovers the usual static Coulomb field

E-d5_- 98 B_KxE=o0, Coulombfield (5.38)

a
R3 R?

Uniform motion 5 = 0 = only the Coulomb term left.

(1-F)(R- Rﬁ)] (5.39)

E(x. :l
MR I ¢

tret

One can ask a question where d&esector points?

space E
> |
observer (x.t)

= =

R t :R(t ret)_ (t_tret ?U.

space

The vectomR, = R(tre) — (t - tre)U = R(tre)) — 2420 points towards the observer

from the presenposition of the charge. Thug, « (R-R3) = R, points away from
the charge’s presepbsition!, although the field is caused by what the charge did
at timet,¢{!

The denominator (i.e. Doppler factor) can be written in teohpresenangle
6, and distancé:

R-R-8=R(1-#sirt6)"2 (5.40)



5.2. RADIATION FROM RELATIVISTIC CHARGES 75

C

—=

(t—te Ju=Ru/c=Rp

Proof: Note that the length AD iB3cosf. Then DC isR — RBcos#, which is just the
factor we want to express in terms@fandR;. Now by Pythagoras’ theorem for triangle
BCD we get

(R-R-§)? =R - R2sir’ ¢. (5.41)

Considering triangle ABC, and using the fact that the sireafo angle divided by the
length of the opposite side is a constant, givessgRB = sing;/R, or

sing = Bsiné;. (5.42)

Substituting sir taking a square root of both sides one gets the needed gu@iD.
Now we have

_q R
E(Xt) = S RA_ ST (5.43)
Bty - RxE-@+ yxE-pxE (5.44)
a)lf =0,
E = q%, B=0, i.e.Coulomb field (5.45)

b) If B # 0, R— RB gives rise to a beamingfect.

¢) Sudden deceleration (Bremsstrahlung): Consider a ehaitly a constant
velocity that rapidly stops during timet éGt timet = 0. This gives rise to a
spherical transverse pulse that propagates outwards petdsof light.
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NO knowledge that
the charge stopped

r>ct

good knowled ;
that the|charge stopp

(t=0) x'(t)=u/t:+x(t=0)

e

o3
/'transvers
T layer cdt

The thickness of the transverse laygdt. Number of flux lines through a ring is
constant. The area istRdR, the thickness @ = cdt. Field strength= (number
of flux linesyarea= constantR, i.e. radiation! Average static field strength
(number of flux lineshrea= const4rR2.

d) E andB fields fromrelativistic particle in uniform motion;

_ 9@-pIR
R¥(1 — B2 sir? ;)32

B=4xE. (5.46)

Wheng — 1, we haveB| ~ |E|. FurthermoreB.LE always. This is similar
to radiation! Consider a field at a point located at distamfrem the track of the
charge. The charge passes the origin-a0.

y

\ E|

ut u



5.2. RADIATION FROM RELATIVISTIC CHARGES 77

Here we defin€y = b/ sind, = b/ cos¢. The field can be decomposited into a
|| and aL fields:
ql-p)sire _ q(l-p)cos¢
b2(1 - p2sinf 6,)%2  b*(1-p2cos ¢)%¥2”
e - — 82) sirf 6; cos6; _ 9(1-p?)cos ¢ sing
“ b2(1 - B2sirP6)%2  b2(1-p2coR¢)32
Fory > 1, the denominator becomes-B?cog ¢ = 1— (1 - y—lz)(l —sirt ¢) ~
>+ Sirf ¢ = 1”1%“2"’ The denominator is small foP sirf ¢ < 1, i.e. sinp <
1/y <1,i.e.¢ < 1/yor¥ < 1/y,i.e. fortimest < %
The observer sees a pulEg):

(5.47)

EJ_ =

(5.48)

E(t)
maximum EJr:qV V3

E}

width t=b/y u smallforY >>1

E. has same sign and has maximung & O:

_ 91-p)
T p2(1-B2)32 T bR

E, changes sign and has smaller amplituday/b? ~ static field:

~ y x static field (5.49)

q y’sing
E ~ = , 5.50
T B2 y2(1 4 y2sir? )32 (5.50)

and maximunx % occurs ap ~ % The field lines are thus concentrated within an
angle Yy relative to the transverse direction. The observer thus a¢mnsverse
field with |E| ~ |B| andE_LE.

This Coulomb field can be Fourier-decomposed and be corsides a field
consisting of virtual photons. (This is used in semi-cleaiscalculations, e.g.
Jackson ch 15.4, Weizsacher-Williams method). When egrgccelerated, one
can consider the emitted photons to be virtual photons st been shakerfio
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5.2.2 Electromagnetic field from accelerated charge in the awe

zone, i.e. radiation field

In the wave zon& ~ kxandR = x, wherex is mean distance to charge. Acceler-
ation field (radiation field) is given by

- q R L5
e = G (e X <h,

~ 02?(/@ {sz [(K - F) x L‘f]}ret (5.51)
B(Rt) = EXE:EXE,

wherex = 1 - K- 3. We see thaE o« Kx [] = ELk. Also BLKand|E| = |B| « £,
i.e. radiation.

Let us consider a few special cases.

1) Non-relativisticmotiong <« 1,k ~ 1:

_—» _i—» = = : _i—» —)—»"_'—).—)
B = kxﬁ—czx{kx"[kx(kx ]} = o (kx [KK- 0) - (k- K]}
q . - dxk
_Tx(kx ) = 2 (5.52)

i.e. the classical Larmour formula for "accelerating” desgement. Radiation
patternd® = £(Bx)? = ﬁ—'; Sir? .

2) Relativistic motiorg — 1,y > 1:

Note two things.
a) The Doppler factor = 1— cosé can be very small wheg ~ 1 and for certain
angles ~ 0. Then Y«is very large. Foy > 1,8=1- z—iz and

1 6%, 1+ %0
=1-pcosf~1-(1-—)1-—=)~
K B ( 272)( 2) 2,2

(5.53)

and
1 2
- Y (5.54)
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This is large whe® < 1/y < 1. Due to the 12 factor the radiation field is
beamed, i.e. concentrated towardsé&heO0 direction.

b) For observers with, such that — 5) ||d, E = 0, i.e. no radiation. Note
that K — 5) I(R- RB) = R, thusE = 0 if U(t,e;) parallel to the direction from the
observer to the location where the charge would have beémat tf it had been
in uniform motion.

3) The general case:
Angular distribution of radiated poweAs before, the radiated power passing

on areax?dQ in directionl?, becomes
BZ
dP = —|E x BjpldQ = 2= (x2dQ), (5.55)
A A

i.e. the received power per unit solid angle becomes

= - =\ . 2
dP B c(XE)? B o [kx[(k=p8)x0]
d_Qreceived_ 4 B 47TC3{ K3 } ) (5.56)
Denote the expression {hasg:
1 = = =, > > =
g= ;[(k-ﬂ)(k—ﬁ)—k-(k—ﬁ)ﬂl- (5.57)

Then
P = IR KB+ A0~ 26K K~ ) - ]
= R 0P+~ 2K )+ 10 - 2d(K- O~ (K- O(F - D](5.59)
= 0P+ SR OF D - K- 020,

where we used = 1 -k - 3. o
Define a coordinate systerti:= (0, 0, u), G = |T|(sini, O, cosi), K= (sinf cose, sind sing, cosh).
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z

X

Thenk -t = |d|(s_inecos¢ sini + cos# cosi), andl':f'ﬁ = |ﬁ|,8 Cosi.
Special caséi|d, i.e.i =0, thenk - 0 = |0 cosd andcf-[? = |U]8. Then (show
this!)

» oo SIFE
g” =0l = BoosdF (5.59)
Then the received power is
P 2 1602I012 2,2
L I N Ay (5.60)
dQreceived  4rC3 ncd (1 + y262)8

Radiation patterifangular distribution of B/dQ). If 8 ~ 1,y > 1, anddi|d, the
torus becomes very elongated. Maximundat 1/y, no radiation at = 0. It
is simply the non-relavistic torus (applicable in the imééaeous rest frame of
the charge) that has been Lorentz transformed (see Rybitkyliman pp. 140-
143 for details). The relativistic result can be obtained_byentz transforming
dP/dQ, sing, and|d;|.

non-relativistic relativistic
. 1ly
- u

u
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Special cas€Ld, i.e.i= /2, thenk - U= |d| siné cosg andl':i'ﬁ = 0. Then

g 1 (1-p)._
= == - sir?  co< ¢. 5.61
T ’ &6
non-relativistic
relativistic

. u
/\%
W 1y
As previously discussed, the radiation observer’s timeruatl,dt (denoted\t,
previous lecture), is not equal to the particle observeriginterval d.; (denoted

At before). We havel- = 1 - cosh = k.
The emitted power per unit solid angle

P dw (dt\dw (dt)dP _ 9P (5.62)
dQemitted_ dtretdQ B dtret dtdQ B dtret dQ received_ d.Q.received’ .

I.e. emitted power is not equal to the received power as time semount of energy
dW is emitted and received duringftérent time intervals.

Radiated poweP

Integrate ¢/dQ over d2. One must choose if it the received or emitted power
that is of interest. To compute local energy losses in therggsiires a knowledge
of the emitted power.

dP dP PkQ?
—_ = K—— = ,
dQ emitted dQ received 47 ('}3

(5.63)

._q_2 2 _ge'z_'*z_ge'z_z--
Panites = s | kG002 = 25 [P~ = S5 P14 i ). (5.64)

Parallel acceleratioa, = [1”, i =0,

2¢?
Pemitted| = @7’631%- (5.65)
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Perpendicular acceleratien = [L, i =m/2,

2¢? 2¢?
Pemitted. = 3C376(1 ﬁz)a 303 432 (5.66)

In a general cas& = &, + &,:

2¢?
Pemitted = @7’4(a§_ + yzaﬁ)- (5.67)

This is relativistic Larmor formula. For a given acceleoatia relativistic particle
radiates a factoy* or y® more than a non-relativistic.

5.2.3 Lorentz invariance of the radiated powerP

The expression foPemiteg CaN be derived very elegantly using Lorentz invariance
of P. Lienard who derivedenieqin 1898 did not have access to special relativity.
K’ is the instantaneous rest frame. During a short momentrefet at rest
in this system, and in a short time interval before and aftenelocity of electron

IS non-relativistic inK”.

For a non-relativistic charge one can use Larmor formulpgei radiation).
Consider the energyWl’ that is radiated duringttd Corresponding total momen-
tum change is @ = 0 due to the symmetry of the torus.

Now Lorentz transform t& (energy transforms as time):

= y(dW’ + Bcdp’) = ydW', (5.68)
since @ = 0 and the time interval
dt = y(dt’ + Bdx’/c) = ydt’, (5.69)
since & = 0in K’. The power
dw  ydwW
P=—= =P 5.70
dt yat’ ’ ( )

I.e. total power is Lorentz invariant for processes with syetry in the rest frame.
We have

PP=Za)?= Cg(a +af) (5.71)
in the instantaneous rest frame.dnwe have
207
P= @y“(ai +y%&). (5.72)

SinceP = P, the acceleration must Lorentz transfornagas= y%a, anda = Y3y



Chapter 6

Bremsstrahlung (free-freeradiation)

6.1 Freefreeemission

Consider bremsstrahlung radiated from a plasma of temyperatand densities
ne cm~3 electrons with chargee andn; cm3 ions with chargeZ;e.
Important ratio

Coulomb potential energy Z€?/(r) _ Zeng®

thermal kinetic energy KT T <1 (6.1)

for typical ne and T ~ 10* — 10® K. Here we used the mean distance between
particles(r) ~ ng*/>. Coulomb interaction is only a perturbation on the thermal
motions of the electrons.

Consider one electron of velocity Approximate the orbit as a straight line:

“----—---—____small deviatior

b impact parameter

Ze
heavy ion

83
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The electron is accelerated in the Coulomb field by the force

Z€e
Fl= o om (6.2)
Newtons 2nd law statesnei = F =, therefore the acceleration is
. 7€
IX = (2 + 120)° (6.3)
The electric field in the wave zone in dipole approximatiogiigen by
= 1 5 =, =
Ezﬁxkza(dxk)xk, (6.4)
wherer is the distance to the observer. Thus
|d| el Ze*sing(t)
IE| = - siné(t) = - sing(t) = G ([ ) (6.5)

Shu considers sito be constant (which leads to somewhat wrong normaliza-
tion). For now, we follow Shu. Fourier transform to get thequency spectrum

of the time-varyingE-field at the observer (see Rybicki & Lightman, ch 2.3).

E
EOl pulse seen by €y change ney v
observer into posV
Fouﬂer f
{ transform v

U/b
Fourier transform:
A 1 (.. Zesing gut _Z€esind [«
E(w) = — Elg“tdt = f ' (_) —lwlb/u
(w) 27rf El 27TMeC2r b2 + u2t2 ~ 2rmec?r \bu © ’
" (6.6)

l.e. the spectrum cutdfibat w > u/b. We used here contour integration in com-
plex plane to find the integral (see Arfken). Total time-greged Poynting flux
(fluence) at the observer from the full pulse is

f S(tydt = 4—‘; f IE[2dt = ¢ f I (w)2dw, 6.7)
-0 0
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where we used Parseval’s theorem transforming integraltowe to the integral
over frequency (see Fourier analysis in Arfken or Rybicki §htman ch 2.3).

Time integrated flux the observer sees at frequenisythus (rememben =
2nv)

c2nE(w) =

Sif0 (Z2€°\ n° o P
>3 (rng&) (bu)ze 4mb/u Terg cm? Hz Y. (6.8)

The electron radiates a total energy (sum over all solidemmgle. a sphere at
radiusr)

_dw 2 oo (L) AP byl 1
P.,(b) = ™ —fCZﬂlE(w)l rdQ_(mgCg (bu)Ze 3 [erg HZ"], (6.9)
where we accounted for the fact thsin? 6 r2dQ/(2xr?) = 4/3.

So far, we considered only one electron interacting withdhe Now consider
a flux of n.U electrons approaching the ion.

Flux neti [electrongcn?/s]. There is a minimum impact paramebgg, that we
consider. The existance of the minimum caused by (1pfoot small, deviations

or orbit are not small anymore, (2) Iif = Ax is small, the uncertainty principle
(AxAp > 1) not fulfilled.

Emitted spectrum from flux of electrons

P, = aw _ fPV(b) nu2rbdo [erg s*Hz ™. (6.10)
dtdv

Bmin

If electrons have a Maxwellian velocity distribution, thee must integrate
over the normalized distribution function:

3/2
fe(u) = (%) e MU/ (6.11)
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P, = f Ne fo(U) 47u®du f P,(b) u 27b db, (6.12)
Umin Bmin

hereunmi, is the smallest velocity needed to emit photon of frequencg. mu?/2 >
hy = umin = V2hvy/me. Let's make the variable transformation

4rvb meU?
&= TR
_(2m\'? (8n°Z2€P
P, = e(n’kT) ( M )I(v), (6.13)
where . o
gt
I(v) = fdxe"‘f?dg (6.14)
Xmin Emin

contains all frequency dependence.
In classical deviatiofi.e. here)l (v) oc e ™/kT,

log I(V)

Flat exponential

cutoff
e—h V/IKT

hv

KT

Exponential "cut & appears becauses there are only exponentially few eftetro
(e™*/%T) at electron energies- kT and that these are the only electrons that can
radiate atw > KT. The spectrum if flat since the encounter is shéfupction).

To get exact(v), one must use quantum mechanical deviation

— i —hv/KT
I(V)—”@gff(v)e : (6.15)

whereg;; is called (free-free) Gaunt facter1 and weakly depends on
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Summing over all ion species gives the emissiorﬁiucientjif [erg//cm?/styse¢Hz]

dw e 2me " 327T22i2 e’ /KT
Gy~ ‘Z”(Z')”e(gnkT) “amee )90

6.8-10% ) Z2n(Z)neT 26 ™ g (v) ergcm/sHz.(6.16)

A more intelligent way is to rewrite this as:

1/2

1/2 02
) gr1(v)ar? cmecz( ) lezn(Z)nee‘“V/kT

(6.17)
wherer, = €¢/m.c? = 2.82 1013 cm is the classical electron radius= €/fic =
1/137 is the fine structure constant, ang is the typical cross-section.

dw _16(2r
dtavd(hv/me? ~ 3 \ 3

Total radiated powgunit volume= cooling function [ergs/cm?] is obtained by
integrating over frequency spectrum:

dw 16 (2r\"?
v ?(?) gsaf cmec( ) Z:zzn(Z)ne

14102742 " Z2n(Z)negs , (6.18)
i

wheregg ~ 1.1 — 1.5 is the new Gaunt factor.

Fore — e bremsstrahlungH0 in dipole approximation) we have

dW| N()ZdW| KT dW|
dtdv eequadrupole  ~ dtdv ion-edipole ~ meCZ dtdv ion—-e,dipole
oo TTY2 oc T2, (6.19)
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log d?\é\\l/ cooling function denoted by (T)

T
relativistic é

oS ©””_e-e quadrupole brems.

line
cooling
atsmall T

1/2

\!
e 312
oo T log T
10° non-relativistic 4

electrons
6.1.1 Free-Free Absorption
This is a 3-body interaction

6 %

®Ze

A useful trick to compute the absorption d¢bheient when you know the emis-
sion codficient is to use the fact that in complete thermodynamic dauim we
have emissionabsorptiorat eachv:

i1t =al"B/(T), (6.20)

where the lhs is the emission dbeient [ergg/segsteyHz], « is the absorption
codficient [cnT!], and B, is the Planck function [eygn¥/seg¢steyHz].
Planck function:

2 h
BV(T):Z(Z—/:) e’WTV—l' (6.21)
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We get
2( 2 \"* (me2\Y? c\3
ff _ 4[4 2 2007, c kT
ol = 3(3n) (kT) areneZz,n(z.)gff(v)h(hy) (1 e

= 37 1d3T‘1/2neZ Zn(Z)yv3gri ()L - e ™ ) cm (6.22)

At hy > KT, the exponential is negligible and " o« v3. Forhy < KT, we get

ol =0018T 22 " Z2n(Z)gr(v). (6.23)
i

The optical depth of a cosmic gas cloud to free-free abs:mp’(ﬁf = o/'R

whereR s the size of the source. Sinq:{af o« v~2 at smallv, the source is always
optically thick at stficiently small frequency. It is optically thin at large frezns
cies. Let us fill a cloud of a fixed temperaturewith more and more material.
The evolution of the resulting spectrum is presented below.

dw Planck for temp T
log dt dv g

star Ty >>1
for allv (a lot of matter)

‘ ﬁ\ HIl regions
(little matter)

T,>>1 \self-absorption v =kT/h log v
frequency

In optically thick objects, e.g. stars, the photons haves&itution close to
the Planck distribution. When computing stellar structwree does not consider
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the absorption at every frequency, but makes an averagdaderivative) of the
Planck function, obtaining a Rosseland (from Norway) me#ne result is that
hv in «, is replaced with the typical photon energV of the Planck distribution:

agoc e Y N(Z)T 2T, (6.24)

Thus we get Kramer’s law:
ar = 1.7 x 10T "2Z%nenigg, (6.25)

wheregr is a weighted average gff and is of the order unity.



Chapter 7

Synchrotron and cyclotron radiation

7.1 Conservation laws and particle orbit

Radiation produced by a charge moving in the magnetic fielchled cyclo-
synchrotron or magneto-bremsstahlung radiation. One oasider two limits:
non-relativistic motion results in cyclotron radiationtivio ~ wg, while the
relativistic particles produce synchrotron radiationregtienciesv > wg. We
neglect here (1) radiation reaction (i.e. one neglectsatamhi losses during one
revolution); (2) the &ect on the motion by the fields generated by the particle.

Consider a chargg moving in a homogeneous-field andE = 0.

Energy conservatioﬁf =0 Florentz

M:U-(q§+gx§):qa-é’:o, 1)
dt C
I.e. y=const andu=const.

Momentum conservation

dP d d
E = IfLorentz = qE+ qE X g = qE X B: (7'2)
dymi 0 dd g

sincey=const.
Let B be|| to thez-axis. Decompose nowin U, + Uy, parallel andL to B. We

get:
du,

dey q
i

91
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We haveu=const,u,=const, thereforai,,=const. The forceyﬂ—nuWB is then
also constant. Rewrite

dd,y

= =UxE qB)—a x (Bws), (7.5)

wherewg = (y“nﬁ‘)c
quency isv = w/(2r) Hz. The electron performs a helical orbit and a circular
orbit in x — y plane (Show this!):

F(t) = &u,t + (é Coswsgt + €, Sinwgt). (7.6)

One can consideym as a relativistic mass with a larger inertia than a non-
relativistic particle. It is harder to turn a relativistiagicle therefore the gyrora-
dius is larger and the frequency is smaller. Gyroradius is

R— Uy UgyyMC  uymcsina

wg OB qgB (7.7)
where is the pitch angle and cas= G- §/(uB).
7.2 Total radiated power
We showed before that
Pemitted = é—gzy“(ai +y%&) ergs, (7.8)

wherea, - accelerationLd anda, - acceleration|d. For an electron in 8-field,
the acceleration is.0:

L= ‘%‘ = |0 X &wg| = Uwg Sina, a = 0. (7.9)
Therefore
Pemited = ziy u a)BSInzcy = gif 2 Szn?z 5 sirfa
- grgcyzﬁszsinza = 2071 C(y?B%)Ug sirf @ (7.10)

3
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wherere = €2/mc? - classical electron radius;r = £r2 = 21072 cm? - Thomson
cross-section andg = B?/(8r) is the magnetic energy density. One can consider
Ug as the energy density of virtual magnetic field photons ofg@néwg with
number densityWg/(fiwg). The emitted powet cross-sectiox velocity x energy
density.

One can view the process quantum-mechanically as if therefecollides
(scatters) with virtuaB-field photons and "knocks” them free, this produces radi-
ation.

If the electron velocity distribution is isotropic then oo&n average over the
pitch angle (' sirf o = 2):

Pemitted = gO'TQBZ)’ZU B- (7.11)

This formula is valid for any velocitg.

7.3 Coolingtimeor radiativelifetime

Consider how the electron loses energy. The energy equagicomes:

d .
mczd—)t/ = —Pemited = —2071C(y282)Ug sirf a. (7.12)
One can solve this ODE. (At home: assuste 1 and solve this equation!)
The typical timescale for the electron to lose about halftefenergy (i.e.

cooling time) is approximately

_ Energy  ym¢®  ym¢®  4mmc® 1 15years
™ ¢ooling rate —m2%  Pemited  0TC yB?sifa yB2sirfa’
(7.13)

thus fory = 1C® this results in the following cooling times:

Location TypicalB  too cooling length  size of object
~ Cleool

Interstellar medium 160G 10°°years 16 cm 1G? cm

Stellar atmosphere 1G 5 days 190m 10t cm

Supermassive black hole 4G 10%sec 310cm 10 cm

White dwarf 186G 10sec 3 mm 1000 km

Neutron star 168G 10%sec 310°cm 10 km

In strongB-fields, the electron loses its energy before it can crossdhece.
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7.4 Spectrum emitted by arelativistic charge

Which frequency spectrum does the observer measure? Tende largerly on
the width of the pulses measured by the observer. The nartbveeulse is, the
broader is the frequency spectrum. Three relatividiieats determine the width.

articles
bserver

radiations
observer

The radiation’s observer sees a pulse during a frac%on zﬂ% of the orbital
periodwﬁs. The pulse returns at interva(%%. Furthermore, the time intervalk for
length of pulse at radiation’s observer is shorter thatithe intervalAt,e; ~ wﬁB%@

measured by the particle’s observer.
We have shown that

At 1+y%(A0)* 1
=1-pBcosd ~ 1+yHA0¢ ~=. (7.14)
Aty 2y? ¥
The pulse length at the radiation’s observer becomes
1 1 A6 1
Atx SAtgr S— = ——. (7.15)
Y Y we Y Ws

The radiation’s observer sees
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E(t)

| | t

‘% 2/, — ‘
The frequency spectrum then extends up to very high harrsanic y*wg:

log |[E@ )f

log w

Ve,

A typical frequencyy’ws = y*y . = y’wi, wherew = 52 is Larmor fre-
quency. Here we have threffexts: y?> comes from Doppler factor, the next
comes from the beaming of radiation, and the fast the denominator comes
from the increase of the gyroradius (relativistic mass).o Bffects cancel each
other: (a) gyroradius increases wigh(wg o< 1/v); (b) the beam becomes nar-
rower withy. The only remaining fect is time compression due to Doppler
factorec 1/%2.

The emitted spectrum can be represented as

P(¥) = Pemitead,(y)  [erg'sHz],

where¢ is normalized frequency distributiorf ¢,(y)dv = 1. Detailed calcula-
tions give that

40) = 5F|3 [Hz ], (7.16)

Sy?vLsina

9\/5( y ) 1

3y2v sina
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whereF(X) = xfxw Kss(y)dy ~ 1.8xY3%e™*. HereKs is the modified Bessel
function. The spectrum consists of closely packed harnsonfee Rybicki &

Lightman ch 6.6.

o

Py

9, log @
closely packed harmonics

| 3 13 X

| \Y) X e

| v I

%yvasin a
E(t) E(t) E®)
o

Wg

cyclotron radiation

‘ log w

y3 oy

synchrotron radiation
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7.5 Spectrum from a power-law electron distribu-
tion

Cosmic rays (protons and ions) that hit Earth have a powerdiaergy distri-
bution. It is reasonable to expect that relativistic eleasralso have power-law
distributions due to acceleration processes in the Urevekgpower-law distribu-
tion

n()/)d)/ = nO?’_pdy, Ymin <Y < ¥Ymax

has typicallyp = 2 - 3.
The spectrum from an electron distribution witly)dy cm™ electrons be-
tweenymec? and { + dy)meC? is given by

dnj, = f CP.o)NG) dy ergsHz/ent. (7.17)
1

It is hard to do analytical integration using ex&(y). It is simpler to ap-
proximatee,(y), e.g. by assuming that all emission occursvat y?v,, i.e.
#,(y) = (v — y?v). One can do this ifi(y) is a broad distribution.

[
°9% approximation
@, (V)=8(v—% v )

e‘/\act \

‘ log v

Then

. 4 Ymax Cpp2.2 ) 4 (/yz_p)
4r )y, = zCorUsno dy y "By 6(v —y'v) = georUsNo g —
Ymin |@(V =Y VL)l y= T
2 2 v\

_ 2 .2 Mo (v 7.1
3CO-TUBnOVL (y )y_ Wive 3CO-TUBV|_ (VL) P ( 8)
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Whereyrznva <v <yl The exponen%1 is called the spectral indeXrrom
observed spectral indices one can determine the gi@béhe electron power-law
distribution.

2
d-function approximation &, (Y)=0(v-y v )

log n(Y) log (j,)
-pl
Y v o2
logy log v
Y Y 2y, Yove
sum of O functions with different v
903
Exact @ (Y)=— F(x)... )
vU8m log (j,)
log n(Y) v
y-P
log Y 1 logVv
ymin ymax ynfmv L ymzaxv L
the spectrum is the sum of frequency
distributions with different "peak" frequencies
SPECTRUM of a NORMAL GALAXY
log I,
intensity

synchrotron radiation _| v -7from supernova
v remnants

thermal bremsstrahlung, V=01
from HIl regions

radio IR log v
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7.6 Synchrotron self-absorption

Solution of the radiative transfer equation for a slab (tfitaltobserved intensity)
IS

I, = 1,0 +S,(1-e™) (7.19)

We assume no background radiatigf0) = 0. For an optically thick opaque
source t, > 1), the intensity

Jv B,(T), thermal gas, i.e. Maxwellian distribution
l,=S,=—=1 (37.20)
a, - non-thermal gas, e.g. power-law electron
The thermakase (i.e. thermal bremsstrahlung). Planck function
v¢  hy v\2
B,(T :2(—) —zZ(—) KT). 7.21
M=2() =g ~2(5) &N (7.21)

Wherehy <« kT. Here 2 is the number of spins;/€)? is the phase space factor,
andkT would be the typical energy of the electron doing the absampt
In the nonthermal case

log |

all photons escape
optically thin
optically
thick | |Og V
onty surface

photons Y,
escape

The typical electron energy #8nc? of the electron emitting atis determined
fromv = y?v, i.e. yme® = (v/v)Y?mc?. It is natural (and is indeed the case)
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that the electron that emits atalso absorbs at, i.e. electron with energymc?
absorbs mainly at = y?v_. Then

i 2
b 2(%) [typical electron energy that absorbs/at
07

L,
14

(2w

5/2

Thusl, o v*2 for 7, > 1.

7.7 Compact radio sources

In these sources, self-absorption frequengyi.e. frequency where, = 1) oc-
curs in the radio or far IR. One can then obseryeandF, . We have earlier

shown that forr, > 1,
5/2 5/2

Vv V

l, =S, 0c — o« —. (7.24)
1/2 2
VL/ BL/
The flux from the source at frequencies where> 1 becomes
V5/292
F, = 7S,6% « Bl/zs_ (7.25)

This is also approximately valid a,, where it is easy to measure. If one observes
6s, F,., vm, ONE can determinB. Typical valuesB = 107! — 10 Gauss.

In compact radio sources the brightness temperature isajypil, < 10'? K.
Which electrons emit at,,? Well, those with energym.c? ~ kT, i.e.y = LATRNY

10'2 e
m =~ 200.



Chapter 8

Compton scattering

Compton scattering is scattering of photons against freg photon energies are
large enough, against bound) electrons. Both photons a&ctire@hs change ener-
gies (incoherent scattering). In some cases the energgehsnegligible (coher-

ent or elastic scattering, also called Thomson scatterihgg energy change is,
however, never equal to zero.

8.1 Thomson scattering

8.1.1 Cross-section

We have already discussed as a special case of dipole oadiaille repeat it
here. In this limit one can discard the photon picture andsiar plane waves.
Consider incoming plane against a free electron (or, bolgatren if w > wo,
wherewy is the oscillating frequency of the bound system).

Incoming linear polarizeelectric field: E(t) = Eo@®*“). The equation of
motion for non-relativistic charge &= 0

mX = F = —eE = —eEpe !, (8.1)

The charge is oscillating in the-field. Larmor formula gives

P 1 s o AR, @ e,
G = ape0x K= st 0 = Sl sint e
= e4—Egsinze)co&ut [erg st sr] (8.2)
4rimRc3 ' '

101
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The time-average becomes
<—dp>—r2 s SC) (8.3)
dQ”  ¢| 8r ' '

The expression in [ ] is the mean Poyting (&) = 2(E x B).
Define the diferential cross-sectidior linearly polarizedadiation, that scat-
ter into solid anglelQ as

do (dP/dQ)

@ (g Zsif® cnfsrt (8.4)

Dipole pattern

scattered wave with

|ncom|ng
wave

The total cross-section

740

fdQ—_Zyrr fsmze)dcos@_

which is called the Thomson cross-section.
Properties
1) Frequency independent.
2) A classical cross-section, no energy exchange.
3) Valid for non-relativistice™ with kinetic energy« mec? and photons witly <
mec? ~ 511 keV.
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8.1.2 Thomson scattering of unpolarized radiation

Unpolarized radiation can be decomposed into 2 indeperioearly polarized
waves. One along, that scatters with angl® relativeé€;, and one along, that
scatters with angle/2 relativeé,. The scattering anglé = n/2 — @. The total
differential cross-section becomes

(&).... = 2], 2+ 3(a),0)

1 . r2
Erﬁ[l +sirf 0] = 58(1 +Ccos0). (8.6)
Radiation patterifscattering pattern) is, in principle, the dipole pattevera

aged over dferent directions. The zero aloxfg:auses the "waist” of the peanut.

peanutshape

100% unpolarized

100% pol

Properties:
1) O unpol = fdQ(dg)unpol 87; =0T,
2) axially and forward-back symmetric (peanut),
3) radiation becomes polarized. The intensity of the incid@epolarized radiation
can be represented as a sum of two equal linearly polarizegaoents = I, +1;,
wherel, = |, are the intensities of radiation polarized perpendicutal parallel
to the scattering plane, respectively. The intensity oftecad radiation is then a
sum ofl + 11, wherel’ o I, %2 (r/2) oc 1, r2 andlf oc 1,§5(®) o IjrZcos 6. The

I
polarization degree is

= (8.7)

Q -1 1-coge
B _|;+||'| 1+cog6’
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8.2 Compton effect

Quantum nature of Compton scattering appears in two waysudg the kine-

matics of the scattering process and through the change oftiss-section. Con-
sider a scattering of a photon on an electron at rest. Thialipitoton has four-

momentunk = hy/c(1, i) and the initial electrorp = (mcc, 0). After scattering

they arek’ = hv’/c(1, ¥) andp’ = (E’/c, B). HereR andf’ are the unit vectors in
the direction of photon momentum, with i’ = cos® and® being the scattering
angle.

The conservation of four-momentum can be written as

k+p=K+p. (8.8)

Expressingy” = k+ p — k' and computing the scalar product of the four-vector
P, we get

p? = (M) = p? + 2mecm -~ 2mechv -~ 2m h (1-i-) (8.9)
= = c c C C
(here we used the fact thigh = k'? = 0). Thus we get
= . (8.10)
1+ 75 (1 - cos®)

We see that the scattering is no longer elastic, because oétoil of the electron.
In terms of wavelengths this can be rewritten as

A" =2+ A(1 - cos0), (8.11)

where

Ao = (8.12)

n
mc
is the Compton wavelength.

8.3 Scattering by arelativistic electron

Consider now scattering of photons of frequenggtistributed isotropically by an
electron moving with Lorentz factar > 1 through that photon field.
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Before scattering

Lab-frame e-rest frame
y>>1 j>> ~—

In the laboratory frame, photons are isotropic. Let us aersa photon with mo-
mentum making anglé; with the direction of electron. The frequency of that
photon in the electron rest frame (marked by prime) is giwethie Doppler for-
mula:

vi = viy(1 - B cosh) (8.13)
Let us consider such Lorentz factors and photon incidenpgeethat the photon
energy in the electron rest frame is still not very large, hel ~ hyy < mec?.
In that case, the scattering in the instantaneous rest framere the electron
is at rest, can be considered as elastic (Thomson) and tipeeiney of the final
scattered photon does not change upon scattering. So that

v = V. (8.14)
After scattering

In the e instantaneous rest frame Back to the Lab-frame

P NYAAA Akl

peanut

The frequency of the scattered photon in the laboratory dream

v = viy(1+ B cosb;), (8.15)
where#; is the angle the photon momentum makes to the electron patipag
direction in the electron frame. Thus

1- 6,

_— A
'1-Bcost;’ (8.16)
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wheref; is the angle between photon and electron momenta in thedatefr

For a typical incident anglé, ~ n/2, we gety] = vyy. In the electron frame,
the incoming photon moves at very small angle in the direciionost opposite to
the direction of motion of the electron. The photons aretsoad in all direction
(according to "peanut” pattern), i.e. typically@t~ /2, so we have ~ viy ~
vy ~ viy?

8.4 Energy lossby Compton scattering

Consider an electron of energyn.c? in an isotropic radiation field of energy den-
sity U,qq [€rg cnT3]. For simplicity assume that radiation consists of the phet
of frequencyy;. The energy density is proportional to the integral of tHemsity
over solid angles

urad:%ﬁ do. (8.17)

Let us define the number of photons per solid angle passiogdhrunit area in
unit timedn/dQ = 1/(hv;), then for isotropic radiation

dn iUrad

E_4ﬂhvi'

(8.18)

The number of interactions of the electron with the photarsymit time is

dn

-5 42 (8.19)

dN

Friakal f(l—ﬁcosei)
The factor 18 cost; is related to the Doppler factor (the ratity dt,,=1—8 cosb),
which accounts for the fierence in the intervals between the emission of the

photons and their arrival to the moving electron. Each adgon produces more
energetic photons of energy given by equation (8.16). The®mitted power is

Peamon= e [ (L= peosa)(twr — ) 20 d0) 8.20)
= caTurad%T f [*(1 - Bcos)*(L + B cosd;) — (1 - B costy)] dQ),

where the angular brackets means averaging over diredtiaihe electron rest
frame. Because in the electron frame we assume the scgtterbe elastic and it
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is forward-back symmetric, the term with disappears after averaging. Comput-
ing the remaining integral we get

4
I:’Compton: CO'TUrad[yz(l +ﬁ2/3) -1] = §CO'TUrad)/2ﬁ2 erg st (8.21)

Compare this expression to the synchrotron power emittaddiyopic electrons
moving in the magnetic field (consisting of virtual photomg)h energy density
Ug:

4
I:)synchro = §ﬁ27/ZCO'T Ug erg st. (8.22)

The expressions are fully identical, although the processem so apparently
different. They? factor in Psynchro cOMes from the observed photons having the
frequencyy ~ y?v.. Similarly, for Compton scattering, the photons with iaiti
energyv; are scattered to ~ y?v;.

The relative contribution of these processes in electraning can be esti-
mated from the ratio

402 2
Pcompton _ 3By CotUrag B Urad
Psynchro gﬁZ)/ZCO'TUB Ug '

(8.23)

It is determined only by the ratio of the energy densitiesadfation and magnetic
field. By U,oq One should understand the energy density of the radiatitehthat
can interact with the electron in the Thomson regimejite; /m.c? < 1.

8.5 Spectrum from a singlerelativistic charge

In analogy with synchrotron radiation we write

Pv(?’) = PComptor¢v(7)a (8 . 24)

whereg, is the normalized frequency distribution. It is not exatklg same as for
synchrotron radiation but has similar properties. Theeenarphotons with larger
v than 4/%y; due to momentum and energy conservation. Most power enitted
v ~ viy?. The low-energy slope at< v;y? is P, o« v*.
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®, log @,

061 1 v log -V
APy Ay

8.6 Spectrum from a power-law distribution

To estimate the emission daieient for the power-law distributiom(y)dy =
noy Pdy, of relativistic electrons, we can use thdunction approximation simi-
larly to the synchrotron case:

¢, (y) = 6(v — Y*n). (8.25)

A power-law electron distribution, scatters photons offrencyy; into a power-
law:

o2 no (v\ "2
4r), = §wTUrad7 (;) : (8.26)
| |
log n(Y) log Jv
y-p V—(p—l)/2
ymin ymax IOg Y Vi ynfin\{ ynzwx\{ log v

In radio-sources, the electrons that radiate synchroadiation in the radio to X-
ray range, can scatter these photons up to gamma-ray esneigiss mechanism
is called Synchrotron self-Compton (SSC). The spectratsfffem blazars are
believed to be produced this way (see pictures below).
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8.7 Non-relativistic Compton scattering

When electrons are non-relativistic, i.e. whge u/c < 1 orkT ~ (muU?/2) <
mec?, then the energy exchange in a single scattering is verylsmal

This smallenergy exchange will be considered now in some detail. @ensi
the case when the electrons have more energy than the phkloase. Then
the electrons lose the energy to photons. The energy lossrpetime for a
nonrelativistic 8 < 1,y ~ 1) electron becomes:

4 4
<PComptor> = éﬂch'TUrad = §IBZCU'Tnphotorfi erg S_l, (8.27)

whereeg = hy;/me? is the dimensionless photon enerfinoon IS the photon
number density [crF]. The number of collisions that the electrorffaus per unit
time is

dN _
— = CO1Mphoton S g (828)
dt
The mean energy logser collision, for the electron, i.e. the mean energy gain
(Aé€), for the photon, becomes o

(A€) = w = gﬁzei. (8.29)

dt

Consider two extreme cases:
(a) Before the collision electron and photon moving towagdsh otherd; = n)
and after the collision the photon is moving in the same timacas the electron
(¢ = 0). The head-owollision gives maximal energy increase for back-scattere
photons:

1-Bcosti)  (1+B8)
1 —ﬁcosef) (1 —,8) ~ 6(1+ 2B6). (8.30)

€ — €f = € (
(b) Before the collision electron and photons are movinghim $ame direction
(6 = 0), while after the collision in exactly opposite direct®of; = x). The
tail-on collision gives maximal energy decrease for back-scattphetons:

€ — € = € (ﬁz) ~ (1 - 2pB). (8.31)
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BEFORE SCATTERING AFTER SCATTERING
£ 7 N
i €(1-2B) g (1+2p)

The small asymmetry (of ordé(5?)) gives mean increase

€t — €

A 4
(=) =(1—y = 242 (8.32)
€ 3

5
The mean over a Maxwell-Boltzmann distribution becomes

Ae kKT T
<?i> - 4me(:2 = 45X 10K (8.33)

8.8 Comptonization

By Comptonization we mean multiple scattering of low enepiptons by hot
electron gas. A single scattering gives a smafinge in photon energy. However,
many scatterings may give a noticalsleange. The total relative change afer
scatterings becomes

kT

Ae
(—) X = X ( )

A
(=)
€

tot € lsingle

The scattering optical depth; = R/mean free path n.orR, in a cloud of
sizeR and electron density. needs to be larger than unity for a large fraction of
photons to scatter many times before escaping. The phatensdifuseout of
the cloud (random wa)k

In a random walk, the mean displacement aitescatterings is¥Nxmean free path.
Therefore, for the mean displacement of a photon t® bequires

R 2
N=[—— ] =(R 2= 12 8.35
(mean free pat)r (Recrr)” = 7 (8.35)

number of scatterings. This is valid fof > 1. Forrr < 1,N ~ 71. Thus for any
71, one can write approximateN ~ (1 + 77).
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The relative energy change of escaping photons then becomes

Aol KT

— 2=y, 8.36
€ liot MeC? T=Y ( )

which is called Comptory-parameter (for no obvious reason). We call it the
Kompaneets parameterz 1 is required for photons to get non-negligible energy
increase, i.e. eithe&dT or 71, or both must be dticiently large. When the photons
diffusealong the energy axis (i.e. sometimes they lose, but moen dftey gain
energy), then the time evolution is described byféudion equationMost easily
this equation is written in terms of the phase-space defstyupation number)
n(x) of photons of energx = hy/KT = €/kT. The photon density x?n(x) and
the intensity and energy densitydsx®n(x). This diffusion equation

1 an(¥ KT 10 [ ,(on
=————|¥= 37
NeCoT ot Comp meCZ X2 OX [ ((9X ’ n)] (8 > )

is called the Kompaneets equatidhwas derived by A.C. Kompaneets in Soviet
Union aroud 1950 but was classified due to bomb research1986. Since the
advent of X-ray astronomy is 1970, it has been heavily used by astronomers.

8.9 Comptonization spectra

Let us inject photons with energy = & < 1in a gas cloud with radiuR and

electron density,, and optical deptht = ncotR > 1. The number of photons
per unit phase space volume escaping the cloud per unit sigigen by

on(x) - n(x) (8.38)
at escape tesc ’
where the escape time is given by
N x mean free path NR/VN R
tesc ® P = / = —T7. (839)

C C C

If the cloud had been optically thinf < 1, N ~ 71 scatterings), thehs. ~ R/C.
Now, sincerr > 1 the photon sfiersN ~ 72 scatterings and the escape time is
prolonged by a factorr.
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The total time evolution is desribed by

on(x)  an(x) on(x)
- Y + —2 8.40
at at Comp at esc ( )
for X, < x < 1. Now we get
1 on KT 190 on n
— = —— |X*=+n||- =. 8.41
NeCor Ot MeC? X2 AX [ (ax " )] 72 (8.41)

Considerx < 1, thenZ! ~ n/x > nand the steady state, i.&2 = 0. Assume a
power-law solution such as photon intendify) o«« X, wherea is spectral index.
Then the phase space density) o | (X)/x3 oc x(@+3),

10 0 x(@+3)
-7 Il RV (23 ) A Y I
o [x“ o (x )] ks 0. (8.42)
mec2 " T
We get
4
(@ +3)a - )—/ =0 (8.43)
and
3 9 4
a/__éi Z+§/ (8.44)

There are three typical cases.

(a) Very unsaturated.e. y < 1, thereforer ~ % > 1. Example: Sunyaev-

Zeldovich dfect, i.e. scattering of the microwave background radiatiothe hot
electron gas in clusters of galaxies.
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log IV

: escape w/o scattering

\ escape after 1st scattering
L, Ve
2nd scattering

log v

\
KT/h

(b) Unsaturatedy ~ 1, thena ~ 1. Examples: hard X-ray spectra of Galac-
tic black hole candidates, accreting neutron stars, sortieeagalactic nuclei
(Seyferts).

log IV

KT/h

(c) Saturatedy > 1, then two solutions; = —2+3 = 0anda, = -3-3 = -3.
The first solution descibed the spectrum betwee@c e < KT, while the second
for € closer tokT. Example: high accretion rate neutron stars or black holes.
Wheny > 1 photons stay in the medium very long so that they can scatter
into a Bose-Einstein distributior:(Wien distribution) before escaping.
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log IV

Wien peak

log v

v KT/h

We see that thermallasma cloud can also give rise to a power-jaloton
spectrum. Observed power-law spectra in compact X-rayceswould be due to
either thermabr non-thermaCompton scattering. The hard state spectrum of the
Galactic black hole Cyg X-1 (see picture below) is probaloigrfed by thermal
Comptonization, while the soft state is better describe@bgpton scattering of
non-thermaklectrons distributed according to a powerlaw.
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Problems set 1

1.1 (RL1.3) X-ray photons are produced in a cloud of ratRas$ the uniform raté& (photons
per unit volume per unit time). The cloud is a distance d awdgglect absorption of these
photons (optically thin medium). A detector at Earth has reguéar acceptance beam of half-
angleA#d and it has anféective area oA.

a. Assume that the source is completely resolved. What istikerved intensity (photons
per unit time per unit area per steradian) toward the cerfitireccloud?

b. Assume that the cloud is complete unresolved. What isvithage intensity (in the above
units) when the source is in the beam of the detector?

1.2 (RL 1.5) A supernova remnant has an angular diandete4.3 arcminutes and a flux at
100 MHz of F1p0 = 1.6 x 107*° erg cnt? st Hz™. Assume that the emission is thermal.

a. What is the brightness temperattig® What energy regime of the blackbody curve does
this correspond to?

b. The emitting region is actually more compact than indidaby the observed angular
diameter. Whatfect does this have on the derived valud g?

c. At what frequency will this object’s radiation be maximuifithe emission is blackbody?

d. What can you say about the temperature of the material iherabove results?

Figure 1. Geometry for exercise 1.3.

1.3 (RL1.8) A certain gas emits thermally at the r&) (power per unit volume and
frequency range). A spherical cloud of this gas has ragjusmperaturd and is a distancd
from Earth @ > R).

a. Assume that the cloud is optically thin. What is the bmgisss of the cloud as measured on
Earth? Give your answer as a function of the distameevay from the cloud center, assuming
the cloud may be viewed along parallel rays witffelient impact parametebg(i.e. the closest
distance from the cloud center to the ray, see Fig. 1).

b. What is the fective temperature of the cloud?

c. What is the flu¥=, measured on Earth coming from the entire cloud?

d. How do the measured brightness temperatures compar¢heithoud’s temperature?

e. Answer parts (a)-(d) for an optically thick cloud.

1.4 In the excercise we examine the radiation from the plamgiter.
a. What is the power intercepted by Jupiter from the Sun?
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b. We define the albeddas the ratio of the incident over the reflected flExgecteda= AXFin.
Jupiter hasA = 0.52. What is the amount of energy from the Sun absorbed penddop
Jupiter?

c. We approximate the thermal emission by Jupiter as a paekbbdy. Jupiter rotates
fast, once per 10 hrs. This is fast enough to even out any textyse diferences between
the side illuminated by the Sun and the side turned away fr@rSun. Jupiter can therefore
be approximated as isothermal. What is the equilibrium teoire of Jupiter in the Sun’s
radiation field?

d. The observed spectrum from Jupiter can be reasonablgxdppated by a Planck curve.
It peaks at about.I3x 10'? Hz. What temperature do you deduce for Jupiter?

e. A possible explanation for this temperaturéatience is that it is a remnant from the
formation stage of Jupiter. The gravitational energy Blved as the protoplanterary material
coalesced into Jupiter, is stored as thermal energy (hé#teayas deep inside Jupiter’s inte-
rior. For this gas a specific heat capacity of 10" erg g* K~! can be assumed, appropriate
for atomic hydrogen. The energy liberated by the tempegatigcrease of this material con-
tributes energy to the budget that has to be evaluated talag#cJupiter’s surface equilibrium
temperature.

If we assume that the power delivered by Jupiter’s intesaranstant with time, calculate
the minimum temperature of the Jupiter’s interior at therfation time 4.5 Gyr ago.

1.5 (RL 1.4) The Eddington limit.

a. Show that the condition that an optically thin cloud of enatl can be ejected by radiation
pressure from a nearby luminous object is that the mass tmasity ratio (M/L) for the object
be less that/(4nGc), whereG = gravitational constant, = speed of lighty = mass absorption
codficient of the cloud material (assumed independent of frecyen

b. Calculate the terminal velocity attained by such a cloud under radiation and gravita-
tional forces alone, if it starts from a rest distafitom the object. Show that

V2

ZZGM( kL 1).

R \47GMc (1)

c. A minimum value fork may be estimated for pure hydrogen as that due to Thomson
scattering of free electrons, when hydrogen is completelized. The Thomson cross section
is o = 6.65x 1072° c?. The mass scattering dbeient is therefore- or/my, wheremy =
mass of hydrogen atom. Show that the maximum luminosity dhagntral mas$/ can have
and still not spontaneously eject hydrogen by radiatiosguee is

M
Legg = 41GMcmy /ot = 1.25% 1038M—erg si, (2)
(O]

whereM, = 2 x 10*® g is the mass of the Sun. This is called the Eddington limit.
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Figure 2: Left: geometry for exercise 1.6. Right: absompoeficient as a function of fre-
quency.

1.6 (RL1.9) A spherical, opaque object emits as a blackbot§naperaturd .. Surrounding
this central object is a spherical shell of material, thelyremitting at a temperatur@g (Ts <
T¢). This shell absorbs in a narrow spectral line; that is, soaption cofficient becomes large
at the frequency, and is neglibly small at other frequencies, such ag at,, > «,,. The
object is observed at frequencigsandy;. and along two rays A (passing through the center)
and B (passing only through the absorbing shell). See Figss8ume that the Planck function
does not vary appreciably from to v;.

a. At which frequency will the observed brightness be larwgleen observed along ray A?
And along ray B?

b. Answer the preceding questiongif > T..

1.7 Consider a spherical cloud with particles emitting tinarradiation. These particles all
have the same temperatufe= 4 x 10° K. The cloud has a diameter of 0.1 pc. At frequency
vo = 1.3 x 10'® Hz the particles have an absorption ffagenta, = 5.51x 102°cm™ and a
scattering coficiento, = 9.51x 10718 cmt. What is the luminosity at frequency emitted
by this cloud in all directions together?

1.8 (RL1.10) Consider a semi-infinite half space in whichhismattering4) and absorption
and emissiond,) occur. Idealize the medium as homogeneous and isothesmdhat the
codficientso anda, do not vary with depth. Further assume the scattering isapat (which is
a good approximation for the forward-backward symmetriomikon diterential cross section).

a. Using the radiative @fusion equation with two-stream boundary conditions, finores-
sions for the mean intensity(r) in the medium and the emergent fl&x(0).

b. Show thatl,(7) approaches the blackbody intensity at #ee&tive optical depth of order

r. = V3ra(ra 1) ~ L.
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Problems set 2

2.1—The magnetic field is defined using the Lorentz force equation

q
F=- B).
~(VxB)
Performing three experiments gives
V=i, SF=2k-4
q
v=j. <F=4i-k
q
v=k, <F=j-2i
q

Determine the magnetic fielB using these resultsi, j, k are unit vectors in the, y, and
z-directions.

2.2— Show the identity
E-(VxB)=B:(VXE)-V-(ExB)

that was used when deriving Poynting’s theorem. Do it byafiexpansion in cartesian coordi-
nates.

2.3— Show the identity
Vx(VxE) =V(V-E)- V.
2.4— Derive relations (3.37).

2.5— Two oscillating quantitieg\(t)andB(t) are represented as the real parts of the complex
quantitiesAe“t andBe“t. Show that the average #B is given by

(AB) = %Re(ﬂ*B) = %Re(ﬂB*). (3)
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2.6 — A sine-shaped pulse is given by the figure above and is destby the following
expression

N
E(t) = — coswot, It] < —ﬂ,
20.)0
N
E(t) = O, it > —,
2(1)0

whereN = 9. Determine the frequency spectriififw)|?. Make an illustrative figure showing
the frequency spectrum. Choose reasonable units for tqadrey and a reasonable normal-
ization for the spectrum.

(Hints: (i) E(t) = E(-t) = use the cosine transform. (i) See Example 15.3.1 in Arfken.

2.7—(From Jackson, Exercise 7.1) For each set of Stokes pagesrgiven below deduce
the amplitude of the electric field in the basechy (see Fig. 3.3). Make a drawing showing
the ellipse, the lengths of the axes, and the orientation.
(@ | =3, Q=-1, U=2 V=-2
(b) | =25, Q=0, U =24 V=7

2.8—Show that equations (3.64) for the Stokes parametersadiiom equations (3.63).
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Problems set 3
3.1—Prove relation (4.24).

3.2—In this problem, we derive the electromagnetic fields assed with the Lienard-
Wiechert potentials which are given by the following exjgiea

(X 1)\ _ q 1
(/i(xt) )‘ R_F—é.a/c( U/C)’ )

where

tet = t— R(tret)/ C,
ﬁ(tret) = X- r)(tret)’ (5)

andu = r(t,) is also evaluated at the retarded titpe Calculations of various derivatives over
time and space are complicated by the fact that the rhs otiegu@) depends not ohandX,
but on the retarded time through equations (5).

The electric and magnetic fields are given by

B=VxA (6)
16A
E-_vp--2 7
¢~ o (7)
We would need to comput®t,e; and % whereV operates at constantand(;—’t operates at
constantk.
1. Noticing that
R=R-R=x*+P-P-2%X-F, (8)
and taking derivative ovdy; show that
oR
- -Ad-q, 9
6tret ( )

wherefi = R/R. Differentiating equation (5) with respectttcshow that

atret 1
= ) 1
ot 1-nfA-d/c (10)
2. Take the gradient of the expression R3rto obtain:
2RVR = 2X + 27 - UVt — 2F — 2X - UVt (11)

Hint: write down the™ component of the gradient of e.g. a scalar prodicti.e. 9, x;r;.
or

Differentiate this product and notice tldat; = 6;; andoirj = =L ditet.

Otret

On the other hand, taking gradient of equation (5), we get

VR = _Cvtret. (12)
Collecting terms show that
fi/c
Vet = ——————. 1
tret l—ﬁ~d/c ( 3)
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3. Consider now taking gradient ¢f i.e. the first raw of equation (4):

q

v = (R-R.- /o)y

|[VR- V(R d/)]. (14)

Remember tha¥ R = —cVt, and show that

AR 0)

VR-O) =+ Ve = 0+ [-U2 + R U] Virer (15)
ret
Thus get: :
VR-V(R- U/c) = (~c + U?/c + R- U/C) Vit — U/cC. (16)
Obtain now the final expression for gradienigof
A gy ¥ g 8 U(gog.d
V¢__(R—F_\‘~Cf/c)3 lﬁ(l_ c? R 02) C(R R C)l (a7)

4. In a similar manner obtain
10A q

d_u? d)d d\ d
Eat__m(—ﬁ-—+R§—Rﬁ-?)E—R(R—R‘.E) ] (18)

C c2

5. Substitute equations (17) and (18) into equation (7) taialihe expression for the elec-

tric field:
£- m{(l_ g)(ﬁ_ag)+ Fix

6. Convince yourself that the magnetic fid= V x Ais given by the following expression:

R
sz

(R‘—Rg)xg

} . (19)

B= E. (20)

3.3—A pulsar can be described as a rotating neutron star. It B&®ag magnetic field,
since it traps lines of force during the collapse. If the netgnaxis of the neutron star does not
line up with the rotational axis, there will be magnetic dgradiation from the time-changing
magnetic dipolan(t). Assume the mass and radius of neutron stit andR, the angle between
the magnetic and rotational axesyisand the rotational velocity is.

1. Find an expression for the radiated powen terms ofw, R, By anda.

2. Assuming that the rotational energy of the pulsar is thienake source of the radiated
power, find an expression for the slow-down time-seatew/w of the pulsar.

3. ForM = 1.4M,, R = 10 km,By = 102 G, @ = 90, find P andt for w = 10%, 10°, 107
s1. The highest rater = 10* s7* is believed to be typical of newly born pulsars.
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4.

5.

6.

AssumeB, = 10° G, computeP andr for w = 10* s'1. Such small magnetic field is
believed to correspond to the so called recycled millisdqauisars, which are old stars
spun-up by the accreting matter from the companion.

Show that
w = -Cuw®, (21)

and derive cofficientC. Solve this equation to show that the actual pulsar agesshes
1/2 of the spin-down time.

Show that the so called breaking index is

=3, (22)

Hints: radiated power is

_2m?
P=3a

and the magnetic field is related to the magnetic dipole mo@en

2m
By = —.
" R3

Assume homogeneous sphere to calculate the moment otinéthe star.

3.4-A particle of massn and charge moves at constant, nonrelativistic speeid a circle
of radiusa.

1.

What is the power emitted per unit solid angle in a direcabangled to the axis of the
circle?

Describe qualitatively and quantitatively the polatiaa of radiation as a function of the
angled.

What is the spectrum of the emitted radiation?

Suppose a particle is moving nonrelativistically in astant magnetic fiel@. Show that
the frequency of circular motion isg = eB/mc and that the total emitted power is

2
P = Zrec(u./c)*B, (23)

(hereu, is the velocity component perpendicular to the field) andnmtted solely at
the frequencywg. This nonrelativistic form of synchrotron radiation is lea cyclotron
radiation.

3.5-Consider a medium containing a large number of radiatintgbes (e.g. electrons).
Each particle emits a pulse of radiation with an electriafigy(t) as a function of time. An
observer will detect a series of such pulses, all with theesahape but with random arrival
timesty, to, ..., ty. The measured electric field will be

N
E() = ), Eolt - ). (24)
i=1
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. Show that the Fourier transform Bft) is
E(w) = Eo(w) ) €, (25)
i=1

whereEy(w) is the Fourier transform df(t).

. Argue that
2

= N. (26)

N
Z eiu)ti
i=1

Hint: Use the fact the arrival times are random and considandom walk in complex
plane.

. Thus show that the measured spectrum is siptimes the spectrum of an individual
pulse. (Note that this result still holds if the pulses oapr)

. By contrast, show that if all particles are in a region msictaller than a wavelength they
produce and they emit their pulses simultaneously, themibasured spectrum will be
N? times the spectrum of an individual pulse.
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Problems set 4

4.1—Derive formulae (5.16)—(5.17).

4.2—Consider a car moving straight with velocity directed along plane surface. Let a
photon be emitted at angté (in the car comoving frame) relative to the vertical dirent{as
viewed in the car frame) and projection of the photon monrantoi the surface makes angle
¢’ with the direction of motion. Compute the direction of theopdn propagation in the static
frame of the surface. What is the relation betwegfangle the photon makes with the surface
normal) andy’?

4.3—In astrophysics it is frequently argued that a source temhavhich undergoes a fluc-
tuation of duratiomt must have a physical diameter of ord2K cAt. This argument is based
on the fact that even if all portions of the source undergcstudbance at the same instant and
for an infinitesimal period of time, the resulting signalla bbserver will be smeared out over
the time intervalAt,,, ~ D/c because of the finite light travel time across the sourcep&sgy
however, that the source is an optically thick sphericall giferadius R(t) that is expanding
with relativistic velocity8 ~ 1,y > 1 and energized by a stationary point at its center. By
consideration of relativistic beamingfect show that if the observer sees a fluctuation from the
shell of duratiomt at timet, the source may actually be of radius

R < 2y%cAt,

rather that the much smaller limit given by the nonrelatigisonsiderations. In the rest frame
of the shell surface, each surface element may be treatsdtaspic emitter.

This later argument has been used to show that the activen®@i quasars may be much
larger thancAt ~ 1 light month across, and thus avoid much energy being craimmne so
small a volume.

4.4—L et two different uniformly moving observers have velocitigandd, in units where
c = 1. Show that their relative velocity, as measured by one@bthservers, satisfies

oo (-0 B - (1- w)(1- 1)
(1-U - Up)? '
A straight application of velocity transformation is paitly tedious, but an application of 4-

vector invariants (e.g. scalar product of two 4-velocjtisdrivial!
Consider now velocitieg; andu, very close to speed of light. Derive the relation between

the relative Lorentz factoy = 1/ V1 - V? and the corresponding, = 1/ \/1-u2 andy, =

1/ 41— u3. Consider the relative motion in the same direction and éndpposite directions.
What can you say about the relative Lorentz factor in thesecages?
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4.5—(a) Show that an observer moving with respect to a blackbody &ieteémperaturd
will see blackbody radiation with a temperature that degemdangle according to

(- V)
~ 1-(V/c)cosy

TI

where#’ is the viewing angle, i.e. angle between the line of sightdinection of motion.

(b) The isotropy of the 2.7 K microwave background radiation at 3 cm has been es-
tablished to about one part in 30What is the maximum velocity that the Earth can have
with respect to the frame in which the radiation is isotr@plsotropy is measured by the ratio
(Imax - Imin)/(lmax + Imin)-

Hint: the ratiol, /v (wherel, is the specific intensity) is Lorentz invariant.

4.6—A small, cubical, red-flashing tfiac light illuminated by sunlight is hanging over the
super-super-highway. Riding in a convertible with the topvd, you approach this tfigc light
along a straight road from a great distance at a constantspeeds = 0.866 (i.e. y = 2).
You pass directly under this ftitac light without slowing down and continue to a great distance
beyond it, keeping you eyes on theftialight as you go.

Calculate and describe the apparent appearence (geomneltrgodor) of the tréic light
during this ride. Consider the distributed hints.

Helps and Hints

Read first the distributed paper by Ghisellini "Special tiglty at action in the Universe”.

The problem is most easily considered in the observer'sfraste. Neglect that the tfigdc
light is an extended object, i.e. assume that the distantdeetobserver is always- the size
of the trdfic light. Assume that the tfiac light is a cube of sizé. In the observer’s frame the
angle between the direction of motion as the line of sigho{ph arrival direction) i¥'.

happ \
U] ) (

Lapp e[3
Determine as a function @f (and answer the questions):
a) the apparent lengthy,,/L of the bottom side of the tfic light in the direction parallel to the

superhighway.
b) the apparent slopé, and apparent heightg,,/L, of the trdfic light.

c) the projected sizes,,;/L, andhy, on the plane of the sky. You must do some geometrical

considerations in order to derive the projected sizes. @t is only the bottom side visible?
d) the blue or red shift of the light from the ffi light, which only reflects visible light (4000-

7000 A). Between which angleg, is the trdfic light visible to the car driver? Between which
anglesy’, is the blinking red light£ 6000 A) visible? How does the blinking period vary with
6'? Assume that the red light blinks once per second for an ebsstanding next to the tfigc
light.

e) Use the aberration formula to determine the anglesthe street frame, that correspond to

the angle®’ in the car frame. Note that the angleas we defined it in this exercisefldirs byr
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from the definition in Rybicki & Lightman (R&L) and our lectemotes, i.e. for the sangewve
havef,,, =6 +
Rybicki & Lightman This exercise

B
We have: < 5
COSOL,, +
COSOpgl = R&L
1+ B costg,,
Converting to9’ gives
—cost +p
—C0Ssf =
1+ g cosy
or
cosy’ -
cosh = .
1-pcosy

f) Finally, one can determine the position of the odd, relative to the tréic light (x andd are

defined in figure).

d x 0

O O
Make many figures to show your results. In particular, shgw/L, andh,;/L, as a func-
tion of ¢, and also as a function of/d. Mark on the curves where interesting things happen,
e.g. where the tféic light is visible, and where the blinking red light is visghl Final hint:

Most of the dfects above are simple classical Doppler and aberraffents. Do not forget the
special relativistic ffects of Lorentz contraction and time dilation (these ineaw extra factor

of ).
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Problems set 5

5.1—Compute the integral in equation (5.64) and prove theiozlat

5.2—In this exercise we will try to obtain a more accurate exgpi@sfor the bremsstrahlung
emissivity. Consider a Cartesian coordinate system (wiitswectors along the ax&g, g, &)
with the electron moving along theaxis with velocityd = u(0, 0, 1). Assume the observerisin
the directionk = (sinf cosg, sind sing, cosy), i.e. the angle betwednandd is 6. The heavy
ion is at positiorﬁ = b(1, 0, 0), whereb is the impact parameter. We assume that deviation of
the electron trajectory from the straight line are small.

1) Compute the Coulomb forde (which is a vector) acting on the electron as a function of
timet (with t = O corresponding to the electron passing the ion at the dlosgtance). This
force has two components aloxgandz-axes. Compute corresponding acceleratiari the
electron.

2) Compute the electric field at the position of the observdisaancea from the charges as
a function of time

E(t) = [(d X k) X k] 27)
whered_.): er. Show that the result can be represented as a sum of two terms
E(t) = Ea(t) + Ex(t), (28)
with
Ea(t) mzeizr T T (sin6 cospk-§,). (29)
Ea(t) ze ut Sin6(— cos# cos¢ &, — cosd sing § +sind &).  (30)

meC?r [b? + (ut)?]3/2

3) Compute the Fourier transform of both terms:

A 1 (] .
Eual) = 57 [ @Buatiat (31)
Hint: .
cosax X sinax
o @ Kl(ab) f 0+ xgzdX = Ko(@D), (32)
whereK,(x) are the modified Bessel functions
Kn(X) = fo e ch(nt) dt. (33)
4) Compute the square of the Fourier transform:
[E(w)P = |Ex(w) + Ex(w)? (34)
to obtain
7265 1 1 (wb)’ . .
|§( )P = R 2 (D)2 (w ) [(1—S|n29co§¢)Kf(wb/u)+sm29 Kg(wb/u)]. (35)
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Make sure that the cross-temnK K, disappears.

5) Integrate the previous expression over the surface afghere of radius (with Q being
the solid angle),
aw_ P,=cC f IE(w)Pr3dQ, (36)
dw
to get the the total energy (per units frequency) radiateallidirections passing through that
sphere

b _ 827% 1 (wb
“ " 3rmecd (bu)? | u
6) Compare this expression to that derived in class (equétit0). Remember th&, = 27P,,.

2
) |K3(wb/u) + K§(wb/u)]|. (37)

Using the asymptotic expansionskf(x) for small and largex:

Ko(X) ~ Ki(X) ~ \/g expEx), x>1, (38)
Ko(X) ~ —Inx, Kiy(X)~1/x x<1, (39)

compute the limiting expression féY, for w < u/b andw > u/b. How much wrong we were
in our derivation of the power in class?

5.3-Suppose X-rays are received from a source of known distandgéh a flux F (erg st
cm2). The X-ray spectrum has the form as sketched in the figu@abel

log F),

X

It is proposed that these X-rays are due to bremsstrahlumg ém optically thin, hot plasma
cloud, which is in hydrostatic equilibrium around a centnalssM. This means that the pressure
must balance the gravity, okB ~ GmM/R, wherem is the typical mass of the gas particles.
Assume that the cloud thickneaR is roughly its radiusAR ~ R. FindR and the density of the
cloudp in terms of the known observations and the conjectured malass

a. IfF = 10 erg st cm?, L = 10 kpc, what are the constraints Mhsuch that the source would
indeed be fectively optically thin (for self-consistency)?

b. Does electron scattering play any role?

log hv (keV)

|
10 1 2

5.4—An ultrarelativistic,y > 1, electron emits synchrotron radiation. Solve Eq. (7.12) a
show that its energy decreases with time according to
_2¢'B?

=vo(l+ Ayt)™t, A= —2=.
Y = vo(1 + Ayot) ™, IR
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Herey, is the initial value ofy, B, = Bsina, anda is the pitch angle. Show that the time for
the electron to lose half its energy is

5.1x 10

ti2 = (Ayo) " =
YoB?

How does one reconcile the decreaseydiere with the result of constagtimplied by Eq.
(7.1)?

5.5—Prove that the charged particle trajectory in the homogesenagnetic field is a heli-
cal curve given by Eq. (7.6).

5.6— The Radio Lobes of Cygnus A. Read the sectigplication to Radio Galaxies in
Shu, p. 179-181. The observational data consist of (i) aoradip at 6 cm of Cyg A (Fig.18.5
in Shu), and (ii) the radio spectrum of the lobes of Cyg A (shdelow).

Hubble’s law is given by = cz = Hod km/s, wherev is the expansion velocityl, = 50
km/s/Mpc, d is the distance, and= Aqs/ 1 — 1 IS the redshift. The redshift was determined
to bez = 0.0566 from the optical spectrum.

a) Determine the distance to Cyg A.

b) Make an estimate of the size of the radio lobes. Assumerigghébes. Calculate the
volume.

c) Assume that the number density of electrons has the emksgybutionN(y) = ngy=P
cm3. Calculate an expression for the volume emissivjityfrom theN(y) electrons, under the
assumption that one single electron radiate, 4 (Pem)d(v — y?v,) ergs/Hz. Determinep,
Vmin, @Ndvmax USINg the observed radio spectrum.

d) Calculateng, ymin, B using the following three relations:

1) Assume that the radio lobes contains the minimum possitéegy, i.e. assume equipar-
tition. Use Eq. (18.14). Note the sign error in Eq. (18.13).

2) Relateymin to vimin andB.

3) Determine using, and the volumé/, an expression for the total monochromatic radio
luminosity,L, (see Eq. 18.12), as a functionmy, B, andv,in (O Ymin).

e) Calculate the total energy in the radio lobes.

f) The center of the galaxy (i.e. the central black hole in @ygadiates~ 10* erg's from
radio to gamma ray wavelengths. Assume that the black heldsféhe same power into the
radio lobes through the jets. How long time has it taken taH#l lobes with the energy that we
deduce to be contained in magnetic fields and electrons?nfesshuat the lobes have not lost
much energy through radiation.

g) Calculate the cooling time (i.e. the radiative lifetinfe) electrons atymin? At Ymax?
Compare with the results from f). Discuss the implications.
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