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ABSTRACT

The reflection of X-ray radiation produced near a compact object from its stellar companion contributes to the orbital variability of
polarization in X-ray binaries. The X-rays are reflected mainly via Thomson scattering resulting in a high polarization. The orbital
variability of the polarization strongly depends on the inclination and the orbital parameters allowing us to constrain them. To explore
this phenomenon, we present analytical single-scattering models for the polarized reflection. We find that while diluted by the direct
emission, the reflection can produce a polarization degree of about 1% in the case of a large reflection albedo. We fitted the orbital
variations of the X-ray polarization observed by the Imaging X-ray Polarimetry Explorer from an accreting weakly magnetized
neutron star “clocked burster” GS 1826−238 and found that the amplitude of the variations is too large to be primarily caused by the
companion star. The polarized reflection is more significant if the compact object is obscured from the observer, and thus it should be
more easily observable in certain high-inclination targets.
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1. Introduction

X-ray binaries (XRBs) comprise a compact object, a black hole
or a neutron star, that accretes matter from a stellar compan-
ion. A fraction of the X-ray emission produced in the vicin-
ity of a compact object is reflected from the companion star.
This fraction is defined mostly by the ratio of the Roche lobe
size to the separation, which is a function of the mass ratio
(Eggleton 1983; Frank et al. 2002). Soft X-rays are mostly
absorbed in the stellar atmosphere, but the harder X-rays are
reflected through electron scattering, which incurs a high linear
polarization on the reflected light. The orbital motion of the com-
panion leads to a variation of the X-ray polarization degree and
angle (Gnedin & Sunyaev 1974). In principle, this polarization
may be used to constrain the orbital parameters of the XRBs.

Optical polarization has been used for decades as a
tool to study orbital parameters, inclination, and orien-
tation on the sky (Brown et al. 1978) in massive binary
stars (Berdyugin et al. 2016, 2018; Abdul Qadir et al. 2023),
exoplanets (Berdyugina et al. 2011; Madhusudhan & Burrows
2012), gamma-ray binaries (Kravtsov et al. 2020), as well
as X-ray binaries (Kemp et al. 1978; Dolan & Tapia 1989b,a;
Kravtsov et al. 2023). In the X-rays, polarimetry in the 2–8 keV
band has recently been made possible with the launch in Decem-
ber 2021 of the Imaging X-ray Polarimetry Explorer (IXPE)
(Weisskopf et al. 2022). The contribution of the companion star
reflection is small, but it may be marginally detectable within
the accuracy of IXPE. For example, low-mass X-ray binary
GS 1826−238 exhibits weak but detectable orbital polarization
variations (Rankin et al. 2024), which have been described using
an optically thin electron-scattering model (Brown et al. 1978;
Kravtsov et al. 2020). IXPE did not detect any orbital polariza-
tion variations in Cyg X-1, so the reflected component may be
too faint to be observable (Krawczynski et al. 2022). Moreover,

resolving the orbital polarization is difficult if the orbital period
is long. The IXPE observations of LMC X-1 hinted at a variabil-
ity of the polarization with the orbital period, but it was observed
only for two and a half periods (Podgorný et al. 2023). Cyg X-3
has high polarization varying with the orbital phase, but pro-
duced by processes other than stellar reflection (Veledina et al.
2024).

The fraction of the incident light reflected by the star depends
on the energy of the photons and the composition of the stel-
lar atmosphere. For an atmosphere of cosmic abundances with
low ionization, the photoionization absorption coefficient αph
is approximately equal to the Thomson scattering coefficient
αT at ∼10 keV and reduces as ∝E−3 with increasing energy
(George & Fabian 1991). Below this threshold, most of the
incoming radiation is absorbed and reprocessed to lower ener-
gies. At energies greater than 10 keV, the electron scattering
dominates over absorption and most of the X-rays will be
reflected (Basko et al. 1974; Matt 1993). If the reflected photons
undergo only one scattering, their polarization degree (PD) is
(Chandrasekhar 1960)

P =
1 − µ2

1 + µ2 , (1)

where µ is the cosine scattering angle. Single-scattered light can
therefore be strongly polarized, but further scatterings reduce the
PD. The number of scatterings depends on the single-scattering
albedo λ = αT/(αT + αph). The reflection is thus well approx-
imated with single scattering in the standard X-ray band 2–
10 keV. In the hard X-rays, the larger albedo will lead to a greater
reflected flux, yet the polarized flux will not increase as much
due to multiple scatterings reducing the PD (e.g., Matt 1993;
Poutanen et al. 1996). The scattering albedo in the soft X-rays
is small for a normal stellar atmosphere, although it may be
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Fig. 1. Illustration of how X-rays emitted near the compact object are
reflected from the binary companion in XRBs.

enhanced due to the effects of irradiation. Specifically, some
of the energy absorbed by the companion is transformed into
evaporative winds near the surface layers of the atmosphere
(Blondin 1994). The outflowing gas is hot and highly ionized,
and therefore absorption is negligible compared to scattering.
The gas would have a significant Thomson optical depth, and
its reflection albedo remains nearly constant in the soft X-rays
(Basko et al. 1974). Different XRBs likely have different albe-
dos, so the amplitude of the orbital polarization may vary from
target to target.

In this paper, we present analytical single-scattering models
for the X-ray stellar reflection in XRBs. In Sect. 2 we detail the
geometry and polarization basis of our models. We describe the
methods to compute polarized reflection under different approxi-
mations in Sect. 3. We move on to study how the models behave
with different parameters in Sect. 4. We then apply the model
to observations of an accreting neutron star GS 1826−238 in
Sect. 5, and discuss the results in Sect. 6.

2. Model

2.1. Geometry

We considered an X-ray binary containing a point-like compact
object in a circular orbit (see Fig. 1 for illustration). The compact
object emission is assumed to be unpolarized and isotropic. We
first modeled the reflection geometry as a spherical companion
of radius r at a binary separation of d, as depicted in Fig. 2. In
the case of the Roche lobe overflow, the shape of the star deviates
from a sphere, and the shadow of the accretion disk covers the
equator. We did not model the shadowing here, but we make
calculations for the Roche lobe in Sect. 2.4.

We chose a coordinate system with the origin coinciding
with the companion star and the z-axis aligned with the orbital
axis Ω̂ = (0, 0, 1). The unit vector pointing from the center of the
companion star toward the compact object lies on the x-axis:

d̂ = (1, 0, 0). (2)

In these coordinates, the direction toward the observer rotates
clockwise as a function of the orbital phase angle ϕ (shifted true
anomaly):

ô = (− sin i cosϕ, sin i sinϕ, cos i), (3)

where i is the inclination of the observer to the orbital axis. With
this definition, the star is between the observer and the compact

o kdα
 Θ

η
n
0
η

Fig. 2. Geometry of the reflection model. The light emitted by a point-
like compact object along vector k̂ is intercepted by the binary compan-
ion and reflected toward the observer along vector ô.

object when ϕ = 0. The cosine of the phase angle (i.e. the angle
between the observer direction and the vector pointing from the
center of the companion star toward the compact object) is

cosα = d̂ · ô = − sin i cosϕ. (4)

The stellar surface normal can be written as

n̂ = (sin θ cos φ, sin θ sin φ, cos θ), (5)

where θ and φ are the co-latitude and azimuthal angle. The
cosine angle between the reflected photons propagating toward
the observer and the surface normal is

η = ô · n̂ = cos i cos θ − sin i sin θ cos(φ + ϕ). (6)

The direction of the incident light, k̂, can be calculated as a
linear combination of vectors d̂ and n̂. First, we define the angle
between the surface normal and the orbital vector as

cos Θ = n̂ · d̂ = sin θ cos φ. (7)

Using the law of cosines, the distance between the compact
object and the point on the surface is

k2 = d2 + r2 − 2rd cos Θ. (8)

Vector k̂ can be expressed as

k̂ =
r
k

n̂−
d
k

d̂, (9)

which yields the cosine angle between the incident light and the
surface normal

η0 = −n̂ · k̂ =
d cos Θ − r

k
, (10)

and the cosine of the scattering angle

µ = k̂ · ô =
r η − d cosα

k
. (11)
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2.2. Visibility conditions

The visibility of the reflected light depends on the overlap
between the stellar area visible to the observer and the area illu-
minated by the compact object. Firstly, the element of the stellar
surface has to be visible from the compact object:

η0 > 0, (12)

which is satisfied when cos Θ > r/d. This limits the visible area
to

arcsin
( r
d

)
< θ < π − arcsin

( r
d

)
, (13)

− arccos
( r
d sin θ

)
< φ < arccos

( r
d sin θ

)
. (14)

Secondly, the surface element must be visible to the observer as
well:

η > 0. (15)

The illuminated surface is completely invisible for α close to π
when

cosα < 0 and sinα < r/d. (16)

The visible range of angles for the observer is

i − π/2 < θ < i + π/2, (17)
arccos(cot i cot θ) < φ + ϕ < 2π − arccos(cot i cot θ). (18)

If θ < π/2 − i, the surface is visible to the observer for all φ. The
combination of the two visibility conditions can be complicated,
as the visible ranges of φ can overlap in two separate intervals.

2.3. Polarized reflection

Linear polarization of the reflected radiation is fully described by
the Stokes parameters I, Q, and U. The PD is P =

√
Q2 + U2/I

and the normalized Stokes parameters q = Q/I and u = U/I can
be written as

q = P cos(2χ), u = P sin(2χ), (19)

where χ ≡ (1/2) arctan(U/Q) is the polarization angle (PA).
The angle depends on the choice of polarization basis, which
we defined by the projection of the orbital axis on the plane of
the sky:

ê1 =
Ω̂ − cos i ô

sin i
= (cos i cosϕ,− cos i sinϕ, sin i), (20)

ê2 =
ô× Ω̂
sin i

= (sinϕ, cosϕ, 0). (21)

The scattering plane can be expressed using the polarization
pseudo-vector:

p̂ =
ô× k̂
|ô× k̂|

. (22)

The PA is the angle between the polarization vector and the
basis:

cos χ = ê1 · p̂ =
d sinϕ − r sin θ sin(φ + ϕ)

k
√

1 − µ2
, (23)

sin χ = ê2 · p̂ (24)

=
r[sin i cos θ + cos i sin θ cos(φ + ϕ)] − d cos i cosϕ

k
√

1 − µ2
.

The PD after single scattering is determined by Eq. (1). If the
compact object’s intrinsic emission has a small PD, it does not
considerably change the polarization of the reflection emission.
Thus, a constant term corresponding to the intrinsic polarization
can be added to the Stokes parameters to model its contribution.

2.4. Scattering from a star filling its Roche lobe

In some XRBs, the companion star loses its mass through Roche
lobe overflow. The Roche lobe is described as the equipoten-
tial surface that includes the first Lagrange point (L1), which is
a point along the x-axis where the gradient of the gravitational
potential is zero. The dimensionless gravitational potential under
synchronous rotation is (Leahy & Leahy 2015)

ψ =
1
ρ

+ qm

 1√
1 − 2ρ sin θ cos φ + ρ2

− ρ sin θ cos φ


+

qm + 1
2

ρ2 sin2 θ, (25)

where ρ is the radial distance from the center of the star in units
of binary separation and qm = Mx/Mc is the ratio of the compact
object mass Mx and the companion mass Mc. Expressed using
Cartesian coordinates, the gradient of the potential is

dψ
dx

=
x
ρ3 − qm

(
1 − x

(1 − 2x + ρ2)3/2 − 1
)
− (qm + 1)x, (26)

dψ
dy

=
y
ρ3 + qm

y
(1 − 2x + ρ2)3/2 − (qm + 1)y, (27)

dψ
dz

=
z
ρ3 + qm

z
(1 − 2x + ρ2)3/2 , (28)

where ρ =
√

x2 + y2 + z2. The position of the L1 point and the
value of the potential there can be found from the condition
dψ/dx = 0 at y = z = 0 as a function of qm, although it is a fifth-
order polynomial and thus requires some numerical root-finding
method. Finding the shape of the Roche lobe ρ(θ, φ) where the
potential is equal to that at L1 has to be done numerically as well.
The surface normal of the Roche lobe, n̂∗, is the unit vector of
the gradient along the equipotential surface. Similar to the spher-
ical star, the cosine scattering angles are η = ô · n̂∗, η0 = − k̂ · n̂∗,
and µ = k̂ · ô. The visibility conditions do not have a simple
analytical form due to the complexity of this geometry.

3. Reflected flux from a stellar surface

3.1. Exact calculations

The radiative transfer equation for a plane-parallel atmosphere
with absorption and Thomson scattering is (Chandrasekhar
1960)

η
dĨ(τ, η,Φ)

dτ
=

1
λ

Ĩ(τ, η,Φ) − S̃ (τ, η,Φ), (29)

where λ is the single-scattering albedo, η is the cosine of the
zenith angle, Φ is the azimuthal angle relative to the scatter-
ing plane, and dτ = −αTdz the vertical Thomson optical depth.
Using the source function for Thomson/Rayleigh scattering and
assuming unpolarized incident light, the Stokes vector of the
single-scattered radiation is (see Veledina et al. 2024 and p.146
of Chandrasekhar 1960)

Ĩ1(η,Φ) =
3

16π
I0 λ (1 + µ2)

 1
P cos 2χ
P sin 2χ

 η0

η + η0
, (30)
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Fig. 3. PD (in percent) of light reflected from the surface of a spherical
star as a function of the phase angle α and separation parameter d/r.
The magenta line represents the eclipse limit given by Eq. (16), above
which the reflected flux is zero (white area). To highlight the behavior
near eclipses, each contour below 10% is half the PD of the previous
one, down to 0.375%.

where I0 is the flux of the incident light. In the isotropic case,
I0 = L/(4πk2), where L is the luminosity of the compact object.
The total Stokes vector of the reflected light can be obtained by
integrating over the surface of the star. In spherical coordinates,
the surface element of a sphere at a constant radius is

dS = r2 sin θ dθ dφ. (31)

In the case of a nonspherical star, the element is

dS = r2

√
sin2 θ +

(
sin θ

r
dr
dθ

)2

+

(
1
r

dr
dφ

)2

dθ dφ. (32)

For a Roche lobe, we estimated the radius derivatives numeri-
cally. The reflected flux from the projection of a surface element
is

dF̃r =
η dS
D2 Ĩ1(θ, φ), (33)

where D is the distance of the observer. Thus, the reflected flux
(Stokes vector) from a spherical star is

F̃r = F?
3λ
16π

π∫
0

r2 sin θ dθ

2π∫
0

1 + µ2

k2

 1
P cos 2χ
P sin 2χ

 ηη0

η + η0
dφ, (34)

where F? = L/(4πD2) is the direct flux of the compact object.
This integral can be performed using standard quadrature meth-
ods. We used the visibility conditions to set the integral limits for
the spherical star. For the Roche lobe geometry, we integrated
over the entire surface but set the flux to zero when the visibility
conditions were not met. Due to symmetry around the x-axis, the
integrated PD of the spherical star reflection depends only on α
and d/r, as is shown in Fig. 3. However, the asymmetric shape
of the Roche lobe makes its PD depend on i and ϕ separately.

The observed Stokes vector is a sum of the reflected compo-
nent and the direct unpolarized emission:

F̃tot = F?

10
0

 + F̃r. (35)

The direct emission therefore dilutes the observed PD depend-
ing on the amount of reflected light. The observed PD is Pobs =
FrP/(Fr + F?). The PA is computed from the Q and U compo-
nents of the Stokes vector F̃r.

3.2. Large separation approximation

The reflected flux can be solved analytically if a very large
binary separation is assumed. For small values of r/d, the direc-
tion of incident light is k̂ ≈ d̂. It follows that η0 ≈ cos Θ and
µ ≈ − cosα. The PD becomes

P =
1 − cos2 α

1 + cos2 α
, (36)

and the PA

sin χ = −
cos i cosϕ

sinα
, (37)

cos χ =
sinϕ
sinα

. (38)

Under this approximation, the integral in Eq. (34) becomes ana-
lytically solvable (p. 192 in Sobolev 1975):

Fr = εF?
3λ
8

(1 + cos2 α)ΦLS(α), (39)

ε =
1
2

1 −
√

1 −
r2

d2

 , (40)

ΦLS(α) = 1 − sin
α

2
tan

α

2
ln

[
cot

α

4

]
, (41)

where ε is the fraction of the compact object flux intercepted
by the star and ΦLS is the Lommel-Seeliger phase function as
described in Russell (1916). Assuming Fr � F?, the normalized
Stokes q and u for the diluted reflection is

q = f0
(
sin2 ϕ − cos2 ϕ cos2 i

)
ΦLS(α), (42)

u = − f0 sin 2ϕ cos i ΦLS(α), (43)

where f0 = 3
8λε is the flux normalization factor.

A different analytical approximation of scattering from a dis-
tant spherical object is the Rayleigh-Lambertian reflector. Using
the Lambertian phase function, the reflected flux is (Russell
1916)

Fr = εF?pΦL(α), (44)

ΦL(α) =
sinα + (π − α) cosα

π
, (45)

where p = 2/3 is the geometrical albedo of a Lambertian disk.
While the Lambertian phase function ΦL assumes isotropic scat-
tering which does not polarize the light, we used the above
Thomson scattering formulae to calculate the polarization under
this approximation.

3.3. Optically thin cloud

As a point of comparison, we also considered scattering from
an orbiting optically thin cloud. If the cloud is distant, the PD
and PA of the reflected radiation are identical to those deter-
mined in the large separation approximation. The reflected flux
is (Kravtsov et al. 2020)

Fr = εF?
3
8

(1 + cos2 α), (46)

where ε is the fraction of scattered radiation. The distant cloud
does not have a set size or shape, and is rather characterized
by the number of scattering electrons. The density structure and
shape of the cloud begin to matter if the cloud is closer to the
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Fig. 4. Comparison between the phase function of the different models:
Thomson scattering spherical star including the exact calculation (solid,
black) and the large separation approximation (dotted, black), Lamber-
tian reflector (dashed, orange), Thomson scattering cloud (dash-dotted,
blue), and Thomson scattering from a Roche lobe (green, dash-double
dotted). The binary separation parameter is d/r = 2.673 and the mass
ratio qm = 1.0.

Fig. 5. Comparison of the diluted PD between the same models as
Fig. 4.

point source. Modeling such a cloud is beyond the scope of this
work, especially as we did not use it to represent any physical
feature in XRBs. The purpose of the model is to demonstrate the
difference between optically thick and optically thin reflecting
media.

4. Results

4.1. Comparison between models

We calculated the binary companion reflection using Eq. (34)
for both the spherical and Roche lobe cases and compared it to
the large separation approximation, Lambertian reflector, and the
optically thin cloud. Although the Roche lobe reflection depends
on both i and ϕ rather than just α, we compared it to the other
models as a function of α by varying the inclination while keep-
ing the orbital phase angle fixed. This produces slightly different
results than with a fixed inclination, but it does not change the
qualitative comparison. Additionally, as the size of the Roche
lobe depends on the mass ratio qm rather than d/r, we set the
size of the spherical star so it corresponded to the radius of the
Roche lobe along the y-axis. We find that this produces results
more similar to the spherical star than using the equivalent spher-
ical radius of the lobe’s surface area. For both the cloud and the
Roche lobe, we set ε equal to that of the spherical models.

Fig. 6. PA as a function of orbital phase angle at inclinations of 80◦ (top)
and 10◦ (bottom) for a Thomson scattering spherical star (black, solid)
and one filling its Roche lobe (green, dashed), and a distant scatterer
(orange, dash-dotted). The orbital separation and mass ratios are the
same as in Fig. 4.

Figure 4 shows the ratio Fr/(F?ε) for all five cases for
the conservative limit λ = 1. The angular dependence of the
reflected flux is similar between the Roche lobe and the spherical
star. Both the large separation approximation and the optically
thin cloud reflect 3/4 of the incoming flux at maximum, which
is the classical result for Thomson scattering. The spherical and
Roche lobe models reach a higher normalized flux because of the
different geometry of the reflecting area. The Rayleigh-Lambert
approximation differs significantly from all of the Thomson scat-
tering cases since it uses a different law of reflection. Unlike all
the other models, the optically thin cloud is symmetric around
α = 90◦ as the observer always sees the full reflection.

The angular dependence of Pobs assuming λ = 1 is shown
in Fig. 5. The models act similarly under α . 40◦ but diverge as
the angle increases. The spherical and Roche lobe models are the
most different at α ∼ 90◦, thus the error of assuming a spheri-
cal geometry is most significant at low inclinations and at orbital
phase angles of 90◦ and 270◦. Overall, the spherical star is a
good approximation of the Roche lobe as long as i & 45◦. The
large separation approximation has a lower maximum PD and is
skewed toward higher phase angles as the visibility is less lim-
ited. The Rayleigh-Lambert model is clearly different from the
Thomson scattering stars outside of certain orbital phases. The
PD of the optically thin cloud is much higher than the other mod-
els and is symmetric like its flux.

The PA is nearly the same for each model, as can be seen
in Fig. 6. Unlike the PD, the PA depends separately on i and ϕ
rather than just α, so we compared it over one orbital period at
two different inclinations. It undergoes two full rotations each
orbit with a different shape depending on the inclination. The
only difference between the models is the presence of eclipses
at high inclinations, with 90◦ jumps near the eclipse as the PD
goes to zero. The jumps are a consequence of a narrow visible
area limiting the scattering angles, making the Stokes Q and U
average to zero at some orbital phase. This can be seen in Fig. 3
as a narrow contour of zero polarization near the sinα < r/d
eclipse limit. Besides the eclipse jumps, Eqs. (37) and (38) are
an excellent approximation for the PA.

In conclusion, the limited visibility of the stellar surface in
close binaries has a significant effect on the reflection. An opti-
cally thin reflector is clearly distinguishable from a star, espe-
cially as the polarized flux is much higher than in the other
models. A star filling its Roche lobe can be effectively simpli-
fied as a sphere, albeit with some inaccuracy that increases if the
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Fig. 7. Orbital polarization curves of the reflected emission for inclinations of i = 0◦ (solid black), 30◦ (dashed orange), 60◦ (blue dotted), and 90◦
(green dash-dotted). The orbital separation parameter is d/r = 1.5 (left) and 5.0 (right).

inclination is low. The large separation approximation is the
most accurate of the analytical formulae, although it is notice-
ably different even at moderate separations. We continue our
analysis only for the spherical star because of its mathematical
simplicity.

4.2. Parameter study of the spherical reflector

We calculated orbital polarization curves of the reflected emis-
sion at different inclinations and orbital separations (Fig. 7). The
variability is strongly dependent on the inclination; at i = 0◦,
the PD remains constant, and at higher inclinations, it has an
increasingly double-peaked profile. Besides the eclipsing behav-
ior, the curve of the PA is entirely determined by the inclination,
transforming from a linear profile to a more sinusoidal one as the
inclination increases. At an inclination of exactly 90◦, it remains
constant over the orbit.

Decreasing the binary separation reduces the PD of the
reflected light because the smaller visible area increases the
range of scattering angles. At d/r = 5.0, the difference amounts
to only a few percent lower polarization than at large separa-
tions, but at d/r = 1.5, it is lower by ∼50%. The difference in
geometry causes the maximum polarization to occur at smaller
phase angles, and therefore at orbital phase angles closer to 180◦.
Additionally, the separation determines the length of the eclipses
and the phase angle when the PA jumps. Otherwise, the separa-
tion has no noticeable impact on the PA, as evidenced by the
accuracy of the large separation approximation.

Dilution of the reflected radiation by the direct emission
reduces the PD of the observed light. As we only consider sin-
gle scattering, the albedo λ acts as a simple coefficient for the
amount of reflected flux. While at λ ∼ 1 the light realistically
undergoes multiple scatterings, we set it to unity in the following
analysis to find an upper limit for the reflection. Figure 8 shows
the diluted PD Pobs and its maximum at each d/r. Because the
reflected flux and PD depend on the binary separation in oppo-
site ways, the observed PD only goes up to a maximum of ∼2%
in the range d/r ∼ 1.2–1.6. Compared to a Roche lobe, this
separation corresponds to small mass ratios of qm ∼ 0.005–
0.1. When qm > 1, the polarization is less than one percent.
Accounting for the scattering albedo, the maximum at close sep-
arations is likely on the order of 0.1%–0.7%. The PD increases
at extremely small separations due to the geometry of the vis-
ible area approaching a plane. However, this is an unphysical
scenario.

Fig. 8. Contours of constant PD (in percent) of the total radiation at the
plane d/r − α (top). The location of the maximum PD for different d/r
is shown with a magenta line and its dependence on d/r at the bottom
panel.

5. Applications

We fitted our model to existing IXPE data of the orbital polariza-
tion in GS 1826−238. It features a weakly magnetized neutron
star with near zero constant PD, making it ideal for the study of
orbital polarization (Capitanio et al. 2023). A previous study of
the IXPE data by Rankin et al. (2024) found that an optically
thin reflection model describes the data better than assuming
constant polarization. Optical observations of the binary show
a binary separation of d/r & 3, and so the companion star can
only cover a fraction of ε . 3% of the sky (Mescheryakov et al.
2011) as seen from the X-ray source. This sets an upper limit for
the flux contributed by the stellar reflection alone, and the high
flux fraction of λε = 2.7+1.0

−1.2% found by the Rankin et al. (2024)
fit implies that the reflection in GS 1826−238 is likely very sig-
nificant. We performed the fit using Eqs. (42) and (43) of the
large-separation approximation due to its simplicity and the low
accuracy of the data.

The orbital solution for GS 1826−238 is unknown, so we
assumed a circular orbit and added a phase shift parameter ω
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Fig. 9. Orbital variability of normalized Stokes parameters of
GS 1826−238 (Rankin et al. 2024) (red circles with 1σ error bars).
The solid blue lines show the large-separation reflection model given
by Eqs. (42) and (43) for 100 samples from the posterior distribution.

to the orbital phase angle ϕ. The model has four parameters:
the inclination i, the reflected flux normalization f0, the posi-
tion angle of the orbital axis Ω, and the phase shift ω. The
observed normalized Stokes parameters are related to the the-
oretically computed in Sect. 3 as :

qobs = q cos(2Ω) − u sin(2Ω), (47)
uobs = q sin(2Ω) + u cos(2Ω). (48)

We employed Markov Chain Monte Carlo (MCMC)
ensemble sampler implemented in emcee Python package
(Foreman-Mackey et al. 2013) to minimize the χ2 of the fit and
to derive the posterior distributions for the model parameters.
The best-fit model is presented in Fig. 9 and its posteriors in
Fig. 10. The values of i, ω, and Ω are consistent with the results
from the optically thin model fit of Rankin et al. (2024), so the
difference between the models may not be apparent within the
accuracy of current data. The optically thin fit is not sensitive
for inclinations of i & 120◦, but our model fit shows a pref-
erence for inclinations close to 180◦. Previously measured val-
ues for the inclination of GS 1826−238 are i = 62◦.5 ± 5◦.5
(Mescheryakov et al. 2011) and i = 69+2

−3 deg (Johnston et al.
2020) (note the degeneracy between inclinations i and 180◦− i in
those studies), so the reflection model does not seem to improve
the constraints on the inclination. The parameters ω and Ω are
degenerate with one another and thus are difficult to constrain
with no prior information. Our fit of the scattering fraction
λε ∼ 5% is higher than the optically thin model by a factor
of ∼2, which is a consequence of the optically thin reflector
predicting a much higher PD. The amplitude of the observed
variations cannot easily be explained by the stellar reflection
model, especially as the accretion disk shadow further reduces
the reflected flux. The stellar reflection model produces sinu-
soidal variations of q and u only when the orbit is nearly edge-
on, while the optically thin model is always sinusoidal. The fit
preferring inclinations near 180◦ could indicate that the reflect-
ing medium is optically thin, although the evidence for this is
inconclusive.
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Fig. 10. Posterior distribution of the large-separation model parameters
of the fit shown in Fig. 9. The contours are 1, 2, and 3σ.

6. Discussion

Polarized X-ray reflection from the companion star is rather
weak when diluted by direct emission from the compact object.
Even though the single-scattering albedo is larger in the hard
X-rays, the observed PD will remain less than 1%. The reflec-
tion should be most prominent in high-mass XRBs, since the
observed polarization Pobs peaks at separations corresponding to
the mass ratio qm < 1. The dilution of the reflected light may
be avoided if the direct emission from the compact source is
blocked while the companion star is visible. Because the opening
angle of XRB accretion disks is about 10◦ (de Jong et al. 1996),
an observer inclination over ∼80◦ can provide the necessary con-
ditions for the eclipse of the central source. Alternatively, the
direct emission can be blocked even at lower inclinations if the
disk is warped.

A famous example of an XRB with a warped disk is
the X-ray pulsar Her X-1, which is viewed nearly edge-on
(Gerend & Boynton 1976; Petterson 1975). It has a 35-day
superorbital period with two 10-d long low states, during which
the compact object is obscured by the accretion disk (Scott et al.
2000). Similar disk obscuration is also seen in slightly lower
inclination systems such as LMC X-4 and SMC X-1 (Inoue
2019; Ogilvie & Dubus 2001). However, all aforementioned tar-
gets are pulsars, whose direct emission is highly polarized (e.g.,
Doroshenko et al. 2022, 2023; Tsygankov et al. 2022, 2023;
Forsblom et al. 2023; Suleimanov et al. 2023; Mushtukov et al.
2023) and variable on a time scale much shorter than the orbital
period, making detection of orbital variations related to the
reflection from the companion an extremely difficult task. Some
XRBs such as SS 433 and Cyg X-3 have thick equatorial obscur-
ers that block the direct emission even at lower inclinations
(Fabrika 2004; Veledina et al. 2024), but the emission toward
the star is also blocked. Orbital variations of X-ray polarization
in Cyg X-3 are then inconsistent with the reflection from the
companion but rather consistent with reflection from inhomo-
geneities in the stellar wind (Veledina et al. 2024).

Additionally, in dipping low-mass XRBs, the accretion flow
obscures the compact object from the observer near the eclipse
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(Díaz Trigo et al. 2006). However, the PD of the reflection would
be low during this orbital phase, and the accretion disk corona
can still be visible. IXPE observations of the dipping XRB
4U 1624−49 set an upper limit of 22% for the PD during
dips (Saade et al. 2024). On the other hand, observations of a
high-inclination weakly magnetized accreting neutron star GX
13+1 revealed extremely complex variations of the polarization
on timescales much below the orbital period (Bobrikova et al.
2024), also making detection of polarized reflection from the
companion in such targets difficult.

Our models do not account for the shadowing of the stel-
lar surface by the accretion disk. The shadowing reduces the
reflected flux and overall reduces the amplitude of the orbital
variations. Consequently, our approximation is an upper limit for
the variability. The shadowing effect is most significant in XRBs
with low-mass companions due to the small size of the star rel-
ative to the disk. For a disk opening angle of 10◦ (de Jong et al.
1996) and separations of d/r = 5, 4, and 3, the shadow covers
roughly 80%, 60%, and 40% of the illuminated surface, respec-
tively. Depending on the exact geometry of the shadow it may
not cover the area visible to the observer, especially if the disk
is warped. The orbital polarization will therefore be complex for
XRBs with precessing warped disks.

Although the availability of observational data is limited, the
amplitudes of the observed variations can be compared with the
theoretical model. Both Cyg X-1 and LMC X-1 have high-mass
companions, and thus their binary separation is on the order
of d/r ∼ 2. The nondetection of orbital polarization variations
in Cyg X-1 (Krawczynski et al. 2022) means that any variabil-
ity must be smaller than the statistical noise, which is in line
with our predictions. Although LMC X-1 was not observed over
many orbital periods, the data are consistent with PD varia-
tions of a few percent (Podgorný et al. 2023). Assuming this
detection is reliable, our stellar reflection model cannot realis-
tically produce PDs this high. The X-ray light curve of the LMC
X-1 is modulated by about 7%, which is consistent with elec-
tron scattering in the stellar wind, so the polarization is likely
also dominated by wind scattering (Orosz et al. 2009). Our fit of
the GS 1826−238 data similarly shows a need for an unexpect-
edly high reflected flux, so either the direct emission is partially
obscured, the emission from the central source is anisotropic,
or the polarization is dominated by some other component.
This component can be associated with scattering off a non-
axisymmetric -disk, the bulge where the accretion stream hits
the disk, or the wind. Understanding the nature of the variability
of the polarization in this source requires more data.

7. Conclusions

We developed analytical models for the polarized X-ray reflec-
tion from the stellar companion in XRBs and performed fits to
the existing data on the low-mass X-ray binary GS 1826−238.
The quality of the data is not sufficient to constrain the orbital
parameters, but we find that the observed amplitude of the vari-
ations of the Stokes parameters is surprisingly large. If diluted
by the direct emission, the reflection from the companion’s stel-
lar surface cannot typically produce the observed PD of more
than 1% (unless the source is anisotropic), making the detection
difficult under most circumstances. The amplitude of the vari-
ability in both GS 1826−238 and LMC X-1 appears greater than
what stellar reflection could produce. The polarized reflection is

expected to be more noticeable in XRBs where the direct emis-
sion is obscured, although many such targets are pulsars with
highly variable compact object emission. Higher-quality data are
required to determine the origin of the orbital polarization.
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