Physics of X-ray pulsars

Sergey Tsygankov (University of Turku) sergey.tsygankov@utu.fi

Neutron stars

- Size: about 10-15 km.
- Mass: 1.25-2.0 solar masses are accurately measured in pulsars in binary systems

 $E_{\text{grav}} \sim GM^2/R \sim 5 \times 10^{53} \text{ erg} \sim 0.2 Mc^2,$ $g \sim GM/R^2 \sim 2 \times 10^{14} \text{ cm s}^{-2},$

Mean mass density: $\bar{
ho}\simeq 3M/(4\pi R^3)\simeq 7 imes 10^{14}~{
m g~cm^{-3}}\sim (2-3)\,
ho_0$ Normal nuclear density:

 $ho_0 = 2.8 \times 10^{14} \text{ g cm}^{-3}$

Neutron stars

- Size: about 10-15 km.
- Mass: 1.25-2.0 solar masses are accurately measured in pulsars in binary systems

Remnants of massive stars

Ginzburg(1964) and Woltjer(1964) proposed that the magnetic flux (~BR²) of a star is conserved.

Magnetic field of NS

Ginzburg(1964) and Woltjer(1964) proposed that the magnetic flux (\sim BR²) of a star is conserved, so that strong magnetic fields would be generated in degenerate stars.

Magnetic field of NS

Ginzburg(1964) and Woltjer(1964) proposed that the magnetic flux (\sim BR²) of a star is conserved, so that strong magnetic fields would be generated in degenerate stars.

The strongest magnets in the Universe

Earth

0.5 G

Earth

Magnet on fridge

0.5 G 50 G

Earth 0.5 G Magnet on fridge 50 G Stars 10-1000 G

Field for the levitating frogs	10 ⁵ G
Stars	10-1000 G
Magnet on fridge	50 G
Earth	0.5 G

Field for the levitating frogs

Strongest steady field in lab	10 ⁶ G
Field for the levitating frogs	10 ⁵ G
Stars	10-1000 G
Magnet on fridge	50 G
Earth	0.5 G

$E_{\rm cycl}$ comparable to $E_{\rm Coulomb}$	10 ⁹ G
Strongest steady field in lab	10 ⁶ G
Field for the levitating frogs	10 ⁵ G
Stars	10-1000 G
Magnet on fridge	50 G
Earth	0.5 G

Young neutron stars	$10^{12-15} \mathrm{G}$
$E_{\rm cycl}$ comparable to $E_{\rm Coulomb}$	10 ⁹ G
Strongest steady field in lab	10 ⁶ G
Field for the levitating frogs	10 ⁵ G
Stars	10-1000 G
Magnet on fridge	50 G
Earth	0.5 G

NS magnetic field

NS magnetic field

Strong magnetic fields:

Cyclotron energy is comparable with the typical Coulomb energy at

 $B_0 = 2.3505 \times 10^9 \,\mathrm{G}$

Theoretical upper limit for NSs:

$$\frac{E_{\text{mag}}}{E_{\text{grav}}} \sim \frac{B_{\text{in}}^2 R^3/6}{GM^2/R} \lesssim 1$$
$$B_{\text{in}} \lesssim 10^{18} \text{ G}$$

What if NS has a companion?

90% of all neutron stars are isolated. The main source of energy is rotation.

If neutron star has a close companion, it will be powered by accretion.

Accretion is the most efficient way for energy production in the Universe

 $E_{acc} = G \frac{Mm}{R}$

Compare this to nuclear fusion: H => He releases ~ 0.007 mc^2 - <u>20x smaller</u>

X-ray pulsar

Rotating neutron star in binary systems

Neutron star parameters:

$$\begin{split} &M_{\rm NS} \sim 1.4 \ M_{\rm sun} \\ &R_{\rm NS} \sim 10 \ {\rm km} \ (10^6 \ {\rm sm}) \\ &P_{\rm spin} \sim 1-10^3 \ {\rm s} \\ &B_{\rm NS} \sim 10^{11\text{--}13} \ {\rm G} \end{split}$$

X-ray pulsar

Rotating neutron star in binary systems

X-ray pulsars

• Pulse periods from ~1 s to ~1000 s.

X-ray (?) pulsars

Emission is not a

black body!

Stefan-Boltzmann law:

• L=σ T⁴ S

• σ =5.67 10⁻⁵ erg s⁻¹ cm⁻² K⁻⁴

(Stefan-Boltzmann constant)

• Radius of the polar cap ~100 m

S~10⁸ cm²

- Observed L~10³⁷ erg s⁻¹
- T=(L/σ S)^{1/4}~10⁸ K
- 1 eV = 11605 K ~ 10⁴ K
- T ~ 10 keV

X-ray pulsars

- Currently about 100 X-ray pulsars are known.
- Usually in massive binary systems with O-B optical companions. Only a few are known in low-mass Xray binaries (e.g., Her X-1).
- Orbital periods from ~1 day to ~1 year.

Ultra strong magnetic field

B

Magnetic field of the neutron star

Cyclotron absorption line

PHOTON ENERGY IN KEV

Cyclotron lines directly probe the magnetic fields of neutron stars!

$$B_{12} = \frac{E_{\text{cyc}}}{11.2} \qquad \text{E}_{\text{cyc}} \text{ in units of keV, } B_{12} \text{ in units of } 10^{12} \text{ G}$$

Spectra of X-ray pulsars

X-ray pulsars

There are two main characteristic radii related to the accretion onto the magnetized NS:

- Magnetospheric radius
- Corotation radius

Romanova et al. 2009

Magnetospheric radius (Alfven radius)

$$\frac{B^2}{8\pi} = \rho V^2$$

Free fall velocity

$$\frac{GMm}{r} = \frac{1}{2}mV^2 \qquad \qquad V = \sqrt{\frac{2GM}{r}}$$

Accretion rate; continuity equation

$$\dot{M} = 4\pi r^2 \rho V \qquad \qquad \rho = \frac{M}{4\pi r^2 V}$$

Magnetic field strength in the dipole configuration

$$B = B_0 \left(\frac{R_{ns}}{r}\right)^3 \quad \text{(/2)} \quad \begin{array}{c} \text{for dipole} \\ \text{magnetic field} \end{array}$$

$$\frac{B_0^2 R_{ns}^6}{r^6 8\pi} = \frac{\dot{M}}{4\pi r^2} \sqrt{\frac{2GM}{r}}$$

Magnetospheric radius (Alfven radius)

Magnetospheric radius

$$r_{A} = \left(\frac{B_{0}^{4} R_{ns}^{12}}{8GM\dot{M}^{2}}\right)^{1/7}$$
$$r_{m} = \xi r_{A} \qquad \xi \sim 0.5$$

$$R_m \simeq 1.8 \times 10^8 \xi B_{12}^{4/7} \dot{M}_{17}^{-2/7} M_{\odot}^{-1/7} R_6^{12/7} cm$$
$$R_m \simeq 2.5 \times 10^8 \xi M_{1.4}^{1/7} R_6^{10/7} B_{12}^{4/7} L_{37}^{-2/7} \quad \text{cm}$$

Corotation radius

Radius where velocity of the magnetic field lines is equal to the Keplerian one

$$\omega R = \sqrt{\frac{GM}{R}}$$

$$R_c = \left(\frac{GM}{\omega^2}\right)^{1/3}$$

$$R_{\rm c} = \left(\frac{GMP^2}{4\pi^2}\right)^{1/3} \simeq 1.68 \times 10^8 M_{1.4}^{1/3} P^{2/3} \,{\rm cm}$$

"Propeller" effect

Patterson, 1994

"Propeller effect"

Illarionov & Sunyaev, 1975

- $R_m < R_c$ accretion is possible
- $R_m > R_c$ accretion is prohibited due to centrifugal barrier

"Propeller" effect

"Propeller" effect

Transient X-ray pulsars

Neutron star in binary system with Be optical companion demonstrates periodic episodes of accretion due to interaction with decretion disc of the companion.

Temporal analysis

Pulse period of the transient X-ray pulsar V 0332+53 during bright outbursts in 2015 and 2004.

Matter moving in the accretion disk carries a significant angular momentum. When matter interacts with the NS magnetic field, this angular momentum accelerates rotation of the star.

A 0535+26

Angular moment of matter in the accretion disc

$$L = I \times \omega = r^2 \times m \times \omega$$

Specific angular momentum

$$l = \frac{L}{m} = r \times V \qquad \omega = \frac{V}{r}$$

$$l(r) = \sqrt{GMr}$$
 $V_{\rm K} = \sqrt{\frac{GM}{r}}$

I – moment of inertia

Torque (moment of force)

$$N_{\rm acc} = \frac{\mathrm{d}L}{\mathrm{d}t} = \frac{\mathrm{d}I\omega}{\mathrm{d}t} = I\frac{\mathrm{d}\omega}{\mathrm{d}t}$$

$$\omega = \frac{2\pi}{P} \qquad \qquad N_{\rm acc} = \frac{dL}{dt} = \frac{dI\omega}{dt} = I\frac{d\omega}{dt}$$
$$N_{\rm acc} = I\frac{d\omega}{dt} = -2\pi I\frac{\dot{P}}{P^2}$$
$$N_{\rm acc} \approx \dot{M}l(r_{\rm m}) \approx \dot{M}\sqrt{GMr_{\rm m}}$$
$$-\dot{P} = \frac{N_{\rm acc}P^2}{2\pi I} \approx \frac{\dot{M}\sqrt{GMr_{\rm m}}P^2}{2\pi I}$$

 $R_{\rm m} \simeq 2.5 \times 10^8 \, \xi \, M_{1.4}^{1/7} \, R_6^{10/7} \, B_{12}^{4/7} \, L_{37}^{-2/7}$ cm

Prediction of the Ghosh and Lamb (1979) theory is a relation between the spin-up rate, the period, luminosity and magnetic moment:

Prediction of the Ghosh and Lamb (1979) theory is a relation between the spin-up rate, the period, luminosity and magnetic moment:

Spin-up time

Note that about a Gy is needed to reach a ms period. For ULX pulsars (with $\dot{M} \sim 10^{-6} M_{\odot}$), the spin-up time is ≤ 100 yr.

Spin equilibrium

If magnetospheric radius is smaller than corotational radius, then the accreting matter rotates faster than the star, which is spun-up as a result (and vice versa). The spin equilibrium is achieved when $R_m \approx R_{co}$:

$$L = \eta \dot{M}c^{2}, \text{define } m = M / M_{o}, \ \dot{m} = \frac{\eta \dot{M}c^{2}}{L_{Edd}} = \frac{\eta \dot{M}c^{2}}{1.3 \ 10^{38} m}$$

$$1.5 \, 10^8 B_{12}^{4/7} R_6^{12/7} \dot{m}^{-2/7} m^{-3/7} = 1.5 \, 10^8 P_s^{2/3} m^{1/3}$$
$$P_s = B_{12}^{6/7} R_6^{18/7} \dot{m}^{-3/7} m^{-8/7} s$$

For
$$\dot{m} = 1, R_6 = 1, m = 1.4$$

 $P_{s,\min} = 0.7 \text{ s } B_{12}^{6/7} = 1.8 \text{ ms } B_9^{6/7}$ - "spin-up" line

 $\begin{array}{l} \mbox{log[Period (s)]} \\ \mbox{Figure 5: Distribution of pulsars and anomalous X-ray pulsars (AXPs) in the $P-\dot{P}$ plane. Binary systems are indicated by a circle around the point. Lines of constant pulsar characteristic age, $\tau_c = P/(2\dot{P})$ and surface dipole magnetic field strength, $B_s \propto (P\dot{P})^{1/2}$ are indicated. The spin-up line, representing the minimum period attainable by accretion from a binary companion, is also shown. } \end{array}$

$$B \approx \sqrt{3c^3 IP\dot{P} / 2\pi^2 R^6} \text{Gauss} \approx 6 \times 10^{19} \text{G} \sqrt{P\dot{P}}$$

Eddington luminosity (Eddington limit)

Eddington luminosity (Eddington limit)

radiation pressure = gravitational pull

At this point accretion stops, effectively imposing a 'limit' on the luminosity of a given body.

$$\frac{L\sigma_T}{4\pi r^2 c} = G\frac{Mm}{r^2}$$

So the Eddington luminosity (for pure H plasma) is:

$$L_{\rm Edd} = \frac{4\pi G M m_{\rm p} c}{\sigma_{\rm T}} \approx 1.3 \times 10^{38} \frac{M}{M_{\odot}} \ {\rm erg \ s^{-1}}$$

Ultraluminous X-ray sources (ULXs)

- Brightest extra-nuclear X-ray sources, with L_X>10³⁹ erg s⁻¹
- Now around 500 candidates are known (Walton et al. 2011)

 10^{39} erg s⁻¹ is ~ Eddington limit for a 10 M_{sun} black hole

ULX: either (1) a new class of intermediate-mass black holes with $M \sim 10^2 - 10^4 M_{sun}$ (IMBHs; e.g. Colbert & Mushotzky 1999) or (2) stellar mass black holes that exceed the Eddington limit, i.e. accrete in the most extreme environments (e.g. King 2001, Poutanen et al. 2007).

Discovery of pulsations from ULX in M82 galaxy

and the modulation arises from its binary orbit. The pulsed flux alone corresponds to an X-ray luminosity in the 3–30 kiloelectronvolt range of 4.9×10^{39} ergs per second. The pulsating source is spatially coincident with a variable source⁴ that can reach an X-ray luminosity in the 0.3–10 kiloelectronvolt range of 1.8×10^{40} ergs per second¹. This

Bachetti+ (2014)

More pulsating ULXs: NGC7793 P13 and ULX-1 NGC5907

L~10⁴¹ erg s⁻¹

L~5x10³⁹ erg s⁻¹

Israel+, MNRAS 2017; Fuerst+, ApJ, 2017, Israel+, Science, 2017

Maximal luminosity of X-ray pulsar

Galaxy M82 as seen by Chandra

Tsygankov et al. (2016)

Luminosity distribution in M82 X-2

Tsygankov et al. (2016)

Propeller effect in ULX

Neutron stars: the strongest and the brightest magnets in the Universe

