
HIGH ENERGY ASTROPHYSICS
Compulsary Home Exercises. Problem set 1. Solutions.

1.1: Consider three model mass density profiles in a neutron star of radius R: (1) ρ(r) = ρc;
(2) ρ(r) = ρc [1 − (r/R)2], where r is radial coordinate within the star and ρc is the central
density. Take the canonical neutron star model with M = 1.4M� and R = 10 km. Find ρc
(expressed in units of standard nuclear matter density ρ0 = 2.8× 1014 g cm−3).

Solution:

M =

∫ R

0
4πr2ρ(r)dr =

4π

3
R3ρ̄ = V ρ̄

where ρ̄ = M/V = 6.65× 1014g cm−3=2.38ρ0 is the average density.
Case 1:

M =
4π

3
R3ρc = V ρc,

as thus
ρc = ρ̄ = 2.38ρ0.

Case 2:

M =

∫ R

0
4πr2ρc [1− (r/R)2]dr = 4πR3ρc

∫ 1

0
x2(1− x2)dx = 4πR3ρc

2

15
=

2

5
V ρc,

where x = r/R and
∫ 1
0 x

2(1− x2)dx = 1/3− 1/5 = 2/15. Thus we get

ρc =
5

2
ρ̄ = 5.95ρ0.



1.2: Calculate moment of inertia I of a neutron star of M and radius R for the two model
density profiles (from problem 1.1, neglecting the effects of General Relativity). Evaluate I for
a canonical neutron star with M = 1.4M� and R = 10 km.

Solution: MR2 = 1.4× 2× 1033 × 1012 = 2.79× 1045 g cm2. General expression for I:

I =

∫ R

0
r2dr

∫ π

0
sin θdθ

∫ 2π

0
dφ ρ(r)(r2 sin2 θ) = 2π

∫ 1

−1
(1−cos2 θ)d cos θ

∫ R

0
ρ(r)r4dr =

8π

3
R5
∫ 1

0
ρ(x)x4dx.

Case 1: ρc = M/V = 3M/4πR3,

I =
8π

3
R5 ρc

5
=

8π

15
R5 3M

4πR3
=

2

5
MR2 = 1.11× 1045 g cm2.

Case 2: ρc = 5M/2V = 15M/8πR3,
∫ 1
0 x

4(1− x2)dx = 1/5− 1/7 = 2/35.

I =
8π

3
R5ρc

(
1

5
− 1

7

)
=

8π

3
R5 2

5 · 7
15M

8πR3
=

2

7
MR2 = 0.78× 1045 g cm2.
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1.3: Estimate at what density inside a neutron star neutrons become degenerate. Assume
temperature of the neutron star of 109 K. At what density neutrons become relativistic?

Solution: The neutron concentration when they become degenerate is

nn =
8π

3

(3mnkT )3/2

h3
= 1.66× 1034 cm−3,

this corresponds to the density

ρ = nnmn = 2.78× 1010 g cm−3,

They become relativistic when the Fermi momentum

pF =

(
3h3nn

8π

)1/3

becomes comparable to mnc. This happens at

nn =
8π

3

(
mnc

h

)3

= 3.6× 1039 cm−3,

corresponding to the density

ρ = nnmn = 6.1× 1015 g cm−3,

which is not achieved in neutron star cores.

1.4: Suppose a spherical body of a radius R1 is spinning originally at a rate ν1 Hz collapses
to a body of radius R2 conserving its mass M and angular momentum L. Express the ratio of
the new and old spin rates ν2/ν1 and the new and old rotational energies E2/E1 in terms of
the ratio R2/R1. You may assume the moment of inertia for a homogeneous sphere. By what
factor would the star spin faster if it were to collapse from a radius typical of a white dwarf to
the dimensions typical of a neutron star? By what factor would the rotational energy increase
in such a collapse? Where ultimately does this energy come from?

Solution: The angular momentum is

L = IΩ,

where Ω = 2πν, I = (2/5)MR2. Thus

ν1R
2
1 = ν2R

2
2 ⇒

ν2
ν1

=
R2

1

R2
2

.

Rotational energy E = IΩ2/2, thus

E2

E1
=
I2
I1

ν22
ν21

=
R2

2

R2
1

R4
1

R4
2

=
R2

1

R2
2

.

For WD to become NS, radius changes by a factor ∼ 103, so the frequency and the energy
increase by a factor ∼ 106. Energy comes from gravitational energy.
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1.5: A neutron star cannot spin with less than a certain period or it will start to shed mass
from its equator due to centrifugal force. Consider a neutron star of mass M and radius R.
Show that this critical period is

Pmin = K

(
1.4M�
M

)1/2 ( R

10 km

)3/2

ms,

where K is a constant. Compute K using Newtonian gravity (neglect also any deformation of
neutron star due to rotation). Calculations using general relativity give K = 0.77. Compute
the limit on the radius of the neutron star which has a period P = 1.4 ms.

Solution: The neutron star angular frequency should be smaller that the Keplerian one

ΩK =

√
GM

R3
.

The limiting period is then

Pmin =
2π

ΩK
=

2π√
G
M−1/2R3/2 = 0.46 (1.4M�/M)1/2(R/10 km)3/2 ms.

The upper limit on the radius for P = 1.4 ms is (taking K = 0.77)

R = 14.9 (M/1.4M�)1/3 km.

1.6: Crab pulsar has period of P = 0.033 s and period derivative Ṗ = 4.21 × 10−13 s/s.
Estimate the age of the pulsar. Compare it with the true age (SN in year 1054). Estimate the
pulsar magnetic field using magnetic dipole radiation formula.

Solution: The characteristic age is

τ =
P

2Ṗ
= 3.9× 1010 s = 1250 yr.

The actual age is about 970 yr, i.e. slightly smaller. The magnetic field is

B = 6× 1019
√
PṖ G = 7× 1012 G.
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