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Conservation laws

4 Gasdynamics can be applied if particles collide
many times before crossing the region, i.e. the
mean free path A<< typical size L. Gas can be
described by P, p, T, u.

@ Mass conservation. Continuity equation:
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Momentum conservation. Euler’ s equation.

 We assume that the gas pressure is the only force acting on the gas.

« |n astrophysics other forces are often important: magnetic,
gravitational, viscous, and radiation pressure forces
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@ Conservation of energy. Most complicated
equation. Consider two simple limiting cases.

@ Adiabatic flow. No radiation losses or input, no conduction.
Volume element perform work on surrounding. The equation of
state:

P=Kp’", y=c,/c, is the ratio of specific heats.

¥=35/3 monoatomic gas, =7/5 for diatomic gas,

@ Isothermal flow. Temperature is determined by heating=cooling
balance. T is adjusted much faster than dynamical time-scale.

T =const




Sound waves

# Instead of the energy equation:

# Consider gas at rest
and small perturbations

P=Kp’

Y =35/3 - adiabatic, y=1

- isothermal

P=F, =const, p=p,=const, u=0
P=F,+F,p=py+p,u=u

P =Ky, "'p, =72 p,, define ¢”=y-L
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@ Solution: [, = f(x X ¢ )| if up#0 sound propagates with u,*c;.
# Note

c, o< p"™V2 y=5/3, ¢, o< p"” adiabatic;

y=1, ¢, =const— isothermal




Spherical accretion j

# Given a large cloud with T'(« ) and
p(). Black hole (BH) in the cloud ~ R
is an ideal “vacuum cleaner”. %

® R_=2GM/c? is the radius of the g
aésorbing surface, the event ~ ™~
horizon. GMm, T

& R, is the radius of which the BH z_ ~ ' =
gravitational pull dominates over GMm, GM GM GM
thermal motions in the cloud: Roee = =77 = KT /m, “Pip &

@® For M=Mg and ¢,=10 km/s, Ip
R,..=1.3 10" cm=10 au. {P:LkT:wfz—}

pm, op

*What is the accretion rate M ?

*\What is the inflow velocity profile V(r)?
*What is the gas temperature profile T(r)?
*What is the emission from the flow?



# Consider steady-state solution for a spherically symmetric flow.

€ Simple equations of hydrodynamics
Euler equation

Continuity equation
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@ V. speed of a given element. But if we are interested in velocity profile at a

given space coordinate, we have to make a transformation:

dV = ﬂdt+ﬂdr

ot ar
4 Change of velocity consists of two parts.
- change of the velocity in a given point during time dt

- Difference in velocities (at the same moment t) in two points separated by dr,
which is the distance the elements moves in dft:
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Equation of state

(3) P= PRT ideal gas, 1 1s the mean mass per particle

Hm

u =1 for neutral H, u =1/2 for ionized H.

The Mach number
M= 4 , where c, 1s the sound speed
C

A

M < 1- subsonic flow. In the limit M <<1 hydrostatics

M > 1- supersonic flow. In the limit M >> 1 free-fall

Polytropic flow

P=Kp’
Examples : adiabatic flow, y=5/3 ; isothermal flow (T = const), y=1.
¢l = P _ y£ , ¢, - sound speed

d p
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Hence at some point M =1 - transonic flow
Let M=1at r=r, (sonic point)
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'The general "regularity" condition for any transonic flow. After

av = N(r). There exists such r, that N(r)=D(r)=0

GM
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We choose a

physical solution




For a polytropic gas, one can integrate
the Euler equation (2) to get the

Bernoulli equation

Vi, _GM
2 y-1 r
The constant can be found by considering

the limit » — . Then V —=0,GM /r =0

=const

and const = ¢Z(®)/(y-1) .
We thus get a set of algebraic equations

describing the accretion problem:

v2/c? 4

re r

Figure 1. Spherical adiabatic gas flows v?(r)/c%(r) in the gravitational field of a
star. For v < 0 these are accretion flows, while for v > 0 they are winds or
‘breezes’. The two trans-sonic solutions 1, 2 divide the remaining solutions into
the families 3—6 described in the text.
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(the regularity conditions)



The case y=5/3 (adiabatic accretion)

At home you will show that

| [ 2 5-37)/2(y-1)
(a) M=nGM*L { T
c. () 53y

When y—5/3, r, decreases from GM /c>(%) tor, =0.

As aresult, the transonic region get "stretched out" into the whole range of radii

r<<GM /csz(OO) :
The flow is near the regularity condition.
V(r)=c,(r) ]
GM | at r << S M=~1,V(r)= C;_M
(=== c; () 4
ro

The accretion velocity is about virial, V. =« GM /r , and the gas temperature is about virial
kT, ~GMm,/r (since c, = kT,

vir vir

/m,). The gas gets heated with decreasing r

(T «<1/r) owing to "adiabatic heating", dU = -PdV

vol

(1st law of thermodynamics).



mP ~ R mP
2
The temperature reaches k7T = m c-at c- m *m

e e

Inside 7, the electrons are relativistic (their internal energy >>m c?).

Then the adiabatic index changes.

One can show that internal energy density of a
polytropic gas satisfies the relation £=P/(y—1)

Ionized non - relativistic plasma, kT << m ¢’

8=§nkT+§nkT: 3nkT
2 2

N

= v=5/3.

P =nkT + nkT =2nkT

J

Tonized relativistic plasma, m,c’ << kT << m ¢’

8=§nkT+ 3nkT=2nkT
2 2

3\

r = v=13/9.

P =nkT + % 3nkT =2nkT

At r, the index y changes from 5/3 to 13/9. Since 13/9 <5/3, r, shifts

from O to a value <7, and the flow becomes supersonic at r << r..



Emission from the accretion flow

Most of the energy is released in the very vicinity of the BH, at radii r = R,

The innermost region makes the main contribution to the observed luminosity.
Therefore, to estimate the luminosity and spectrum, one needs to know the flow
parameters at r = R, <<r.. Here the gas is nearly free-falling (M>>1) with velocity = c.
The density can be found from the continuity equation (mass conservation):

M M
4nr’V N 4:n:R§c

The temperature is determined from the Bondi solution with y=13/9 which should match

M =4m’2pV:p=

the solution with y=5/3 atr = r..

T(r) (E
T. r

2/3
At home you proove: ) , at r <<r.

) m 2/3
ThusatR,, T(R)=m,c"|—| =70 MeV.
m

e

The observed spectrum is produced by a plasma cloud of size R, with temperature
T(R,) and density p(R,).



For the densities and temperatures of interest, the dominant emission is

free-free emission (if no magnetic field).

A=A, +A, erg/cm’ /s (emission rate per unit volume).

A, = 12051;27126'kT{E +In 2k7;
2 m,c

- 0.577}

A, = 24areznzckT{% +In 2k7;

m.

e

- 0.577}, for kT >>m c’.

2
e : : . :
Here OC=§ =1/137 - the fine structure constant, 7, 1s the classical electron radius.

The luminosity from the accretion flow:

_ 3
L.=| A.4xridr= 3 =10 = > —— | erg/s
4 jRg 7 Agg ?Rg lecm™) \10°K) (M, .

The resulting (free-free) spectrum is L, o< v with an exponential cutoff at
hv = kT =70 MeV.

. .o Lﬁ ~17
Note: the luminosity is low =107,
Edd



In the presence of magnetic field, an important emission mechanism is synchrotron

emission. The synchrotron emissivity of hot relativistic (kT >> m c”) electrons:

2 2 2 2
A, = L sz n= grjchn sz erg/cm’/s
"3 e\me ) \mge 3 m,c

The plausible magnetic field (Shvartsman 1971), is the "equipartition" field:
B> GMp
87T ro

Show that the resulting synchrotron luminosity from the accretion flow:

3
T Y[ M
L ~107| e > — | erg/s
o (1cm'3)(104K) (M ) -

sun

The luminosity from spherical accretion is thus low even in the presence of
the equipartition magnetic field.
The radiative efficiency of accretion

L
=" <107
1 Mc?




@ Where this theory is applicable? In situations
where a black hole is surrounded by low
angular momentum gas

= Center of the Milky Way : the central black hole is

surrounded by gas originating from stellar winds.
Accretes with little angular momentum onto black
hole.

s Center of elliptical galaxies : interstellar medium is
hot (~5 million K; X-ray emitting) and accretes with

low angular momentum onto central supermassive
black hole.

# In both these cases the black holes are very
guiescent, i.e., they produce little
electromagnetic radiation.




