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Conservation laws 
Gasdynamics can be applied if particles collide 
many times before crossing the region, i.e. the 
mean free path λ<< typical size L. Gas can be 
described by P, ρ, T, u.
Mass conservation. Continuity equation: 

In 3D: 
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Momentum conservation. Euler’s equation.
• We assume that the gas pressure is the only force acting on the gas.
• In astrophysics other forces are often important: magnetic, 

gravitational, viscous, and radiation pressure forces 

• In 3D: 
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Conservation of energy. Most complicated 
equation. Consider two simple limiting cases.
Adiabatic flow. No radiation losses or input, no conduction. 
Volume element perform work on surrounding. The equation of 
state:

Isothermal flow. Temperature is determined by heating=cooling 
balance. T is adjusted much faster than dynamical time-scale.

� 

P = Kργ ,    γ = cp /cV  is the ratio of specific heats.

 γ = 5 /3 monoatomic gas, = 7/5 for diatomic gas.

� 

T = const
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Sound waves
Instead of the energy equation:
Consider gas at rest 

and small perturbations

Continuity equation:

Momentum equation:

The wave equation

Solution:        if u0≠0  sound propagates with u0±cs.
Note
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Given a large cloud with T(∞ ) and 
ρ(∞). Black hole (BH) in the cloud 
is an ideal “vacuum cleaner”. 
Rg=2GM/c2 is the radius of the 
absorbing surface, the event 
horizon.
Racc is the radius of which the BH 
gravitational pull dominates over 
thermal motions in the cloud:
For M=M� and cs=10 km/s, 
Racc=1.3 1014 cm=10 au.
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•What is the accretion rate      ? 
•What is the inflow velocity profile V(r)? 
•What is the gas temperature profile T(r)? 
•What is the emission from the flow? 
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Spherical accretion



Consider steady-state solution for a spherically symmetric flow. 
Simple equations of hydrodynamics

v- speed of a given element. But if we are interested in velocity profile at a 
given space coordinate, we have to make a transformation:

Change of velocity consists of two parts.
- change of the velocity in a given point during time dt
- Difference in velocities (at the same moment t) in two points separated by dr, 

which is the distance the elements moves in dt: 

Continuity equation
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Equation of state

(3)  P =
ρkT

µm
H

   -  ideal gas, µ is  the mean mass per particle 

µ =1 for neutral H, µ =1/2 for ionized H.

The Mach number

Μ =
V
cs

   ,  where cs  is the sound speed 

Μ <1- subsonic flow. In the limit  Μ <<1 hydrostatics
Μ >1- supersonic flow. In the limit  Μ >>1 free-fall
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Polytropic flow

P = Kργ   

Examples : adiabatic flow, γ = 5/3 ; isothermal flow (T = const),  γ =1.
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Hence at some point   Μ =1 -  transonic flow
Let  Μ =1 at  r = rs  (sonic point)

Then from (4) at  r = rs    
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We choose a 

physical solution  

The general "regularity" condition for any transonic flow. After 
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For a polytropic gas, one can integrate 
the Euler equation (2) to get the 
Bernoulli equation
V 2

2
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r

=const     

The constant can be found by considering 
the limit r→∞. Then V→ 0,GM / r→ 0 
and const = cs

2 (∞) / (γ−1) . 
We thus get a set of algebraic equations 
describing the accretion problem:
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/
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   (the regularity conditions)

(the polytropic condition)



The case γ=5/3 (adiabatic accretion)

When  γ→ 5 / 3,   rs   decreases from GM / cs
2 (∞)  to rs = 0.

As a result, the transonic region  get "stretched out" into the whole range of radii
r <<GM / cs

2 (∞) . 
The flow is near the regularity condition. 
V (r) ≈ cs (r)
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At home you will show that
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The accretion velocity is about virial, Vvir ≈ GM / r  , and the gas temperature is about virial 
kTvir ≈GMmp / r   (since  cs

2 ≈ kTvir /mp ). The gas gets heated with decreasing r
(T ∝1/ r) owing to "adiabatic heating", dU = −PdVvol  (1st law of thermodynamics).
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Ionized non - relativistic plasma, kT << mec
2
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The temperature reaches  kT ≈ m

e
c

2at

Inside r*  the electrons are relativistic (their internal energy >>m
e
c

2 ).

Then the adiabatic index changes. 
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ε = P /(γ −1)
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At r* the index γ  changes from 5/3 to 13/9. Since  13/9 < 5/3, r
s
 shifts 

from 0 to a value ≤ r* and the flow becomes supersonic at r << r*.

One can show that internal energy density of a 
polytropic gas satisfies the relation



Emission from the accretion flow
Most of the energy is released in the very vicinity of the BH, at radii  r ≈ Rg
The innermost region makes the main contribution to the observed luminosity. 
Therefore, to estimate the luminosity and spectrum, one needs to know the flow 
parameters at r ≈ Rg << r*. Here the gas is nearly free-falling (Μ>>1) with velocity ≈ c.
The density can be found from the continuity equation (mass conservation):

!M = 4πr2ρV ⇒ρ =
!M

4πr2V
≈

!M
4πRg

2c
The temperature is determined from the Bondi solution with γ=13/9 which should match
the solution with γ=5/3 at r ≈ r*.

At home you proove:  T (r)
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(
)
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+
,

2/3

≈ 70 MeV. 

The observed spectrum is produced by a plasma cloud of size Rgwith temperature 
T (Rg ) and density ρ(Rg ).



For the densities and temperatures of interest, the dominant emission is 

free-free emission (if no magnetic field). 

Λ ff = Λei + Λee   erg/cm3 / s (emission rate per unit volume).

            Λei =12αre
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Here α=
e

2

hc
=1/137 - the fine structure constant,  re is the classical electron radius.

The luminosity from the accretion flow:

Lff = Λ ff 4πr
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The resulting (free-free) spectrum is L
ν
∝ν

0  with an exponential cutoff at 

hν ≈ kT ≈ 70 MeV. 

Note: the luminosity is low 
Lff

LEdd
≈10−17.
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In the presence of magnetic field, an important emission mechanism is synchrotron 

emission. The   synchrotron  emissivity of hot relativistic (kT >> mec
2 ) electrons:

        Λsyn =
16

3

e
2

c

eB

mec

⎛
⎝⎜

⎞
⎠⎟

2

kT

mec
2

⎛
⎝⎜

⎞
⎠⎟

2

n= 
16

3
re

2
cB

2
n

kT

mec
2

⎛
⎝⎜

⎞
⎠⎟

2

 erg/cm3 /s

The plausible magnetic field (Shvartsman 1971), is the "equipartition" field:

                              
B

2
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r
.

Show that the resulting synchrotron luminosity from the accretion flow:
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The luminosity from spherical accretion is thus low even in the presence of 

the equipartition magnetic field. 

The radiative efficiency of accretion 

                           η=
L
syn

Mc
2
≤10−4.



Where this theory is applicable?  In situations 
where a black hole is surrounded by low 
angular momentum gas
n Center of the Milky Way : the central black hole is 

surrounded by gas originating from stellar winds.  
Accretes with little angular momentum onto black 
hole.

n Center of elliptical galaxies : interstellar medium is 
hot (~5 million K; X-ray emitting) and accretes with 
low angular momentum onto central  supermassive 
black hole.

In both these cases the black holes are very 
quiescent, i.e., they produce little 
electromagnetic radiation.


