
Spectral properties of accreting 
black holes and neutron stars      

in X-ray binaries



Black hole flavours

• Black hole has only 2 parameters: mass and spin
• Observational appearance depends on these parameters
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X-ray binaries
Radio, IR, optical, UV:
• outflows, jets
• donor star
• outer accretion disk
• hot accretion flow

X/γ-ray emission:
• hot accretion flow
• cold accretion disk
• neutron star 

surface/boundary layer
• outflows, jets ???

LX~1035-1039 erg/s

•HMXB: wind
•LMXB: Roche lobe overflow 



BH outbursts
Uhuru

Rossi X-ray 
Timing Explorer



BH outbursts
• Differential photon number:
dN/dE=N0 E-G [photons / s / keV], power law

– photon index G

• Differential flux:
E dN/dE = dF/dE = FE= F0 E-a [energy / s / keV]

– energy index a=G-1

• Differential energy distribution:
E2 dN/dE = EFE = nFn

• Plot EFE peaks at energy                                                           
where power output of source peaks
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soft spectrum
most power @ low E
a>1      G>2
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BH outbursts
• Differential photon number:
dN/dE=N0 E-G [photons / s / keV], power law

– photon index G

• Differential flux:
E dN/dE = dF/dE = FE= F0 E-a [energy / s / keV]

– energy index a=G-1

• Differential energy distribution:
E2 dN/dE = EFE = nFn

• Plot EFE peaks at energy                                                           
where power output of source peaks
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flat spectrum
equal power per decade



hard state soft state hard state

1 month

soft band

hard band

hard band
soft band

from Corbel et al.
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BH outbursts



BH outbursts



BH spectral states: 
optically thick and thin emission

hard/low state

soft/high state

optically thick
~black body
kTBB~0.1-1 keV

Optically thin
kTe~50-100 keV
τT~1



NS X-ray binaries



NS spectral states

hard state

soft state



BH & NS

BH NS

size
Rdisk~3RS~M ~100 km ~10 km

time scales
tK~M ~10 msec ~1 msec

hard surface NO YES



boundary layer
LBL~Ldisk

Ltot=Ldisk+LBL

NO boundary layer

Ltot=Ldisk

BH NS

Sunyaev & Shakura, 1986
Inogamov & Sunyaev, 1999



Boundary layer and disk in NS

total
disk

boundary layer
~Wien, kT~2-3 keV Boundary layer:

• spectral component
• variability component

𝑀̇ > 5 − 10%𝑀̇!""



Spectral states: BH and NS
black hole neutron star

Disk: kTNS > kTBH (difference in size + BL emission in NS)
Comptonization: ΓNS > ΓBH     kTNS < kTBH (hard surface in NS)
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Comptonization



Comptonization: thermal & non-thermal
Cygnus X-1

thermal

non-thermal

• thermal:

• non-thermal:

• soft state
non-thermal dominates

dE

dN
e ~ Maxwellian

� 

dNe
dE

∝E-p

Poutanen & Coppi 1998; Zdziarski & Gierlinski 2004

1 MeV



Relativistic non-thermal plasma –
(single inverse) Compton scattering

Soft
seed photons

Relativistic 
electrons

τ << 1

Hard
Comptonized

photons

Amplifier
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Non-thermal 
Compton scattering

100 keV

Single inverse
Compton scattering:
energy transfer from 
electrons to photons.

One scattering, but shift 
is large.
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•Inverse Compton scattering



•Inverse Compton scattering



Hot thermal plasma –
thermal Comptonization

Soft
seed photons

Hot thermal 
plasma

kTe ~ 100 keV
τ ~ 1

Hard
Comptonized

photons

Amplifier
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Comptonization

100 keV

Multiple inverse
Compton scattering:
energy transfer from 
electrons to photons. 

Small energy shift in 
one scattering, but 
many scatterings
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•Inverse Compton scattering

Emitted power by an electron moving through an isotopic 
background of photons

106 CHAPTER 8. COMPTON SCATTERING

where θ f is the angle between photon and electron momenta in the lab frame.
For a typical incident angle θi ≈ π/2, we get ν′i ≈ νiγ. In the electron frame,

the incoming photon moves at very small angle in the direction almost opposite to

the direction of motion of the electron. The photons are scattered in all direction

(according to ”peanut” pattern), i.e. typically at θ′
f
≈ π/2, so we have ν f ≈ ν′fγ ≈

ν′
i
γ ≈ νiγ2.

8.4 Energy loss by Compton scattering

Consider an electron of energy γmec
2 in an isotropic radiation field of energy den-

sity Urad [erg cm
−3]. For simplicity assume that radiation consists of the photons

of frequency νi. The energy density is proportional to the integral of the intensity
over solid angles

Urad =
1

c

∫

I dΩ. (8.17)

Let us define the number of photons per solid angle passing through unit area in

unit time dn/dΩ = I/(hνi), then for isotropic radiation

dn

dΩ
=

c

4π

Urad

hνi
. (8.18)

The number of interactions of the electron with the photons per unit time is

dN

dt
= σT

∫

(1 − β cos θi)
dn

dΩ
dΩ. (8.19)

The factor 1−β cos θi is related to the Doppler factor (the ratio dt/dtarr=1−β cos θ),
which accounts for the difference in the intervals between the emission of the

photons and their arrival to the moving electron. Each interaction produces more

energetic photons of energy given by equation (8.16). Thus the emitted power is

PCompton = σT 〈
∫

(1 − β cos θi)(hν f − hνi)
dn

dΩ
dΩ〉 (8.20)

= cσTUrad〈
1

4π

∫

[γ2(1 − β cos θi)2(1 + β cos θ′f ) − (1 − β cos θi)] dΩ〉,

where the angular brackets means averaging over directions in the electron rest

frame. Because in the electron frame we assume the scattering to be elastic and it
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is forward-back symmetric, the term with θ′
f
disappears after averaging. Comput-

ing the remaining integral we get

PCompton = cσTUrad[γ
2(1 + β2/3) − 1] =

4

3
cσTUradγ

2β2 erg s−1. (8.21)

Compare this expression to the synchrotron power emitted by isotropic electrons

moving in the magnetic field (consisting of virtual photons) with energy density

UB:

Psynchro =
4

3
β2γ2cσTUB erg s−1. (8.22)

The expressions are fully identical, although the processes seem so apparently

different. The γ2 factor in Psynchro comes from the observed photons having the

frequency ν ≈ γ2νL. Similarly, for Compton scattering, the photons with initial
energy νi are scattered to ν ≈ γ2νi.

The relative contribution of these processes in electron cooling can be esti-

mated from the ratio

PCompton

Psynchro
=

4
3
β2γ2cσTUrad
4
3
β2γ2cσTUB

=
Urad

UB

. (8.23)

It is determined only by the ratio of the energy densities of radiation and magnetic

field. By Urad one should understand the energy density of the radiation field that

can interact with the electron in the Thomson regime, i.e. γhνi/mec
2 < 1.

8.5 Spectrum from a single relativistic charge

In analogy with synchrotron radiation we write

Pν(γ) = PComptonφν(γ), (8.24)

where φν is the normalized frequency distribution. It is not exactly the same as for
synchrotron radiation but has similar properties. There are no photons with larger

ν than 4γ2νi due to momentum and energy conservation. Most power emitted at
ν ≈ νiγ2. The low-energy slope at ν$ νiγ2 is Pν ∝ ν1.



•Non-relativistic Compton scattering



•Non-relativistic Compton scattering: energy change



•Non-relativistic Compton scattering: energy change

•Head-on collisions are slightly more probable, therefore 
photons on average gain energy. 



Why non-thermal Comptonization ?

1 MeV

large kTe, small t are required



Why non-thermal Comptonization ?

1 MeV

kT=500 keV
t=10-2

large kTe, small t are required



Neutron stars

from Di Salvo et al., 2000

• nature of the high energy 
tail is unclear

• energetically unimportant

GX 17+2

???

Revnivtsev et al. 2014



Geometry

hard state

soft state• Hard state - standard 
cold outer disk + hot 
inner flow?

• Soft state - standard 
accretion α -disk, plus 
corona? 



Spectrum and geometry
(hard state)

Fcompt~90% Ftot

kTdisk ~ 150 eV

reflected

Comptonized
disk


