I -
.:




Fourier transform

Fourier transform of signal = decomposition of signal into sine waves.
X — 9P

time

At w, best-fit sinusoid is: a cos(wt — ¢) = A coswt + Bsinwt
(a =A% + B? and tan¢ = —B/A)

Do this at many frequencies wj, then

1 1
x(t) = N Z a; cos(wjt — ;) = N Z (Aj coswjt + Bjsinwjt)
J J

Fourier: A; =), rpcoswjty 1 Bj =), o sinw;ty /\AWV\AW\/\WV\/M/
So: correlate data with sine and cosine wave.

Good correlation: large A, B — bad correlation: small



Fourier transform

A way of handling the two numbers (A, B or a, ¢) you get at each w.
Im

a; = Z :Ukezwjtk
k

1 .
T = Nza’je ijtk
J

Re

The Fourier amplitudes a; are complex numbers:
aj = |aj|e’®’ = |aj|(cos ¢; + isin ¢;)

If the signal z is real then imaginary terms at +7 and —j cancel out in Z ,

j
to produce strictly real terms 2|a;| cos(w;tx — ¢;)



Discrete Fourier transform

-
< >
Time series: rx, k=0,...,N -1 LIt
| N N 0 N-1
Transform: a;, j=-——+1,...,—
2 2
N-1
k=0
| N/2
TE =+ a;e”ZFIk/N - —0,... N -1
j=—N/2+41

Time step ot = % ;| Frequency step dv = %
kT O i
N refers to frequency w; = 27y; = 1

tx we have written e

x) refers to time t; =

So, for e 2mijk/N



Discrete Fourier transform

e Fourier theorem: transform gives complete description of signal
e Highest frequency you need for this is the Nyquist frequency

N . 1 N
UNy =VN/2 =55 = half the sampling frequency 5 = 70 as

11T 1]1] 7"up-down” is the fastest observable frequency.

anjo = Y zke™ =3, xp(—1)F for real z; is always real

1
e Lowest frequency (>0) = frequency of first frequency step = 7=

= frequency of sinusoid that fits exactly once on T

e At zero frequency you get ap = ), zi, also always real for real x.
(Called the DC component)

e At all frequencies in between you get complex Fourier amplitudes a;, so:

e NV, the number of input values ;. = number of output values; count them:
ao; (|aj|,@;) pairs for j =1,...,N/2 —1; ay/s.

e Orthogonal, if the z;. are uncorrelated then the a; are uncorrelated.



Continuous Fourier transform

Decomposes a function into an infinite number of sinusoidal waves.

Signal z(t) —oco<t< o
Transform a(r) —oco<v<oo
w -
a(v) = / z(t)e*™ " dt —00 < vV < 00
—oo |
x(t) = / a(v)e 2™ dy —00 <t < o0
— 00

What 1s the relation of this 'ideal case’ with the discrete Fourier transform
when we define =y = z(ty), tx =kT/N 7

Oumm\

T N-1



CONVOLUTION THEOREM

If a(v) is the Fourier transform of z(¢) and
b(v) is the Fourier transform of y(¢) then:

the transform of the product z(t) - y(¢) is the convolution of a(v) and b(v):

o0

a(v) ® b(v) = / o Yb(v — ')/

—0o0

"the transform of the product is the convolution of the transforms” (and vv).
[Convolution denoted by @®)]
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Contmuous VS Dlscrete FT
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So: the discrete Fourier amplitudes are values at the Fourier frequencies of the
windowed and aliased continuous Fourier transform.

Windowing: due to finite duration of the data convolve with window transform.

Aliasing: due to discrete sampling of data reflect around Nyquist frequency.



Power spectrum. Leahy normalization

Leahy et al. (1983)

1
Parseval’s theorem: Z mi = N Z | aj|2
k J

Variance in the real time series xj.:
1 ’ 1 1
_ =2 _ 2 _ 12 2
Var(z) = Ek (zp — )" = Ek Ty — v (Ek rk) =N Ej la;|* — Nao
1
=5 2 lajf*

§#0

Leahy normalized power spectrum

2
Pi=—2|a;; j=0,...,~;: where Ny =Y, ar=
J Nphlajl ’ J ) 19 where [Vyp k Lk Qg

N/2-1

Then: Var(zp) = % ( Z P; + %PN/z) : variance is sum of powers.
7j=1

As a; has the same dimension as zj, the dimension of P; o |a;|?/ag is also the

same as zx: [P;] = [a;] = [zi].



Power spectrum. Leahy normalization

Leahy et al. (1983)

Power density gives power per unit of frequency (i.e., per Hz),
so that integral over power density spectrum is sum of powers:

Vij2 j2
/ p(v)dv =) P;

71 Jj=jl
Now év = 1/T', so the Leahy normalized power density at v; is:
p(vj) = P;j/év =T P;. Dimension: [p(v)] = [z /V]

UL

s EREARRRR

= =
(Sl/ — III/T

P

p(v)
P,
/

10



Power spectrum. Rms normalization

Miyamoto et al. (1999)

Fractional rms amplitude of a signal in a time series:

\/iVar(:ck) N/2-1 N/2—1
N N 1
= = — Z PJ _PN/2 = N_ph Z R7+ PN/2

ph j=1

r is dimensionless and often expressed in %. rms=root mean square Varlab”'ty amphtude

"Rms normalized” power density: q(v;) =T PF; /Npn = pi/Npn

q(v) has the nice property that fractional rms is just|r =4/ [ (v
Dimension of ¢(v) is [q] = [1/v]| = [t]; physical unit of ¢(v) is (rms/mean)Q/Hz.
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LOG(POWER)

Some examples

* PSD of a sine wave
* PSD of white noise

TTTTTTTT

™ “TTTY

0 a | i i a

L 1 05 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 05
0 ! 2 Normalized Frequency
LOG(FREQUENCY)

w
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Flux

Some furtr

Time
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Figure 1. Simulated time senies (left) and their periodograms (right). The
upper panel shows a ‘flicker noise” time series which has a f—! PSD. The
lower panel shows a ‘random walk™ time series with a f —2 PSD. Note the
large scatter in the periodogram (dots) around the underlying PSD (solid
line). It 1s clear that the time series with the steeper PSD shows more power
i long-term variability while the time series with the flatter PSD shows
relatively more power in short term vanability (flickering). The two senes

were generated using the same random number sequence.

Vaughan et al. (2003)
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Some further examples
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Plotting power spectra

Average of M power spectra




Plotting power spectra

Plot log-log




Plotting power spectra

Subtract Poisson (counting) noise




Plotting power spectra

Logarithmic rebin




Plotting power spectra

Multiply power with Fourier frequency




Quantitying variability: PDS of Cyg X-1
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A gallery of black hole XRB PDSs
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Done & Gierlinski 2005
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Mathematical shot noise model

* Let the light curve consist of a superposition of uncorrelated shots
(flares) of the same shape, g(?). Let 4 be the mean number of shots
per second. The distribution of shots in time follows Poisson
distribution. The probability of appearance of n shots in the interval

L1+1): n
e ()

e—).f

n

n!
* For such a process the probability that the time interval between
successive shots lies between ¢ and #+dt is

P(t)dt = Ae " dt
* The light curve is then s(¢) = Zizog(f —1;)

t. - time of appearance of i" shot

2

* The PDS of the total light curve is proportional to the ‘G(f)
G(f) is the Fourier transform of g(?).

, Where



Modified shot noise model

* Example 20
{
8= {o, £<0 2
: 1 2 T
* The Fourier transform G(f)= — |G —
) 27if —1/7 G(f) 1+ (2nf7)*

* In Nature usually exist many time-scales, therefore we assume a
power-law distribution of time constants t

-1
p(T)_ T, Tmin<T<Tmax
0, otherwise

* Then the PDS of such a process .
PDS(f)=[ " p(©)PDS(f 1)dx

* For example, for #=2, X
T max 1
PDS, o(f) = [ 77— (; o 41 = g larctan(2aft,.,) — arctan7z,,,)]

< fHif12nt, << f<<1/27T_ .
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Pover ¢ Frequency [(rms/mean)* unts]
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PDS in the hard state can be decomposed into
a number of peaks of different time-scales



Flux

Propagating fluctuations

Lyubarski 1997

Time

2—20 Hz rms (count s

Linear light-curves are sum of sine
waves

I(t)=1+3a,cos(mt+p;)

But in the accretion disc the
fluctuations are multiplied at each
radius

X(t)=II[1+2a;cos(m;t+¢;)]
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