
Fast variability of X-ray binaries
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Shot noise vs propagating fluctuations
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Truncated disc and propagation model
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PSD shape changes as the source makes transition towards the 
soft spectral state. The idea of a stable disc and fluctuating corona. 
Data from high-mass X-ray binary Cyg X-1.



Truncated disc and propagation model
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PSD has a low-frequency break which moves to higher f as the sources 
softens. Consistent with the picture where fluctuations arising from outer 
parts of the hot accretion flow becomes damped as the flow shrinks. 
Data from low-mass X-ray binary MAXI J1820+070.



Cross-spectrum
• Consider two light curves, in “soft” and “hard” energy bands, s(t)

and h(t). Let Sj and Hj be their discrete Fourier transforms

• (!) Recall that for real signal we have Sj= S*-j
• Phases themselves        are usually not interesting, but their 

difference                                is.
• The cross-spectrum is defined as

•We define the Fourier time lag as
• One should note that both phase and time lags are generally 

functions of the Fourier frequency.

  

� 

S j = S j e
iϕ j ,s ,H j = H j e

iϕ j ,h

  

� 

Δϕ j = ϕ j,h −ϕ j,s

  

� 

ϕ j,h,ϕ j,s

  

� 

Cj = S j

*H j = S j H j e
i(ϕ j ,h −ϕ j ,s )

= S j H j e
iΔϕ j    (12)

  

� 

Δt( f ) = Δϕ( f ) /2πf     (13)
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Time lags in Cyg X-1. Shot noise model

Time lags are function of 
frequency, can be explained 
by spectral variability.
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Δt ∝ f −1
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Time lags in Cyg X-1. Shot noise model
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Time lags are function of 
frequency, can be explained 
by spectral variability.
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Time lags in Cyg X-1. Propagation model

• Cold outer disc+hot inner accretion flow
• Harder spectra for smaller regions
• Time lags are inverse of the 
characteristic local frequency
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Time lags in Cyg X-1. Propagation model

• Cold outer disc+hot inner accretion flow
• Harder spectra for smaller regions
• Time lags are inverse of the 
characteristic local frequency



Time lags at soft energy bands. Reverberation
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Time lags at soft energy bands. Reverberation



• QPOs = quasi-periodic oscillations
• Peaks in the power spectra, broader than the window function, but 

narrower than the peaked noise
• Can be described by Lorentzian profile:

• Characterized by quality factor:  

• Frequency of maximal power:
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Black hole quasi-periodic oscillations



Black hole quasi-periodic oscillations
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Low-frequency QPOs

High-frequency QPOs



Relativistic precession model for 
low-frequency QPOs

14



Relativistic precession model for 
low-frequency QPOs

𝑎 = 𝐽𝑐/𝐺𝑀&

Units: 𝑐 = 𝐺 = 1



• Mercury perihelion advance: 43” per Julian century
• Binary pulsar PSR 1913+16 (Hulse-Taylor pulsar): 4.2o per year
• Double supermassive black hole OJ 287: 39o per orbit (12 years)

Relativistic precession model for 
low-frequency QPOs



Lense-Thirring precession

• The BH and orbital spins are misaligned
• BH is dragging the space-time -> precession
• If tLT>tsound, then a solid body precession

Relativistic precession model for 
low-frequency QPOs
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Simultaneous changes of QPO frequency, low-
frequency break of the PSD and the spectral softening
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• Low-frequency QPO moves in 
frequency as the spectrum 
softens/hardens
• QPO frequency is correlated with 

the low-frequency break of the 
power spectrum
• Plausible explanation: changes of 

the disc truncation radius
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Quasi-periodic oscillations in neutron stars



Frequency-resolved spectroscopy
• Assume the spectral variability can be represented as

• The Fourier transform is  
0𝑆 𝐸, 𝑓 = 𝑆(𝐸) 0𝑓(𝜈)𝑒'(())

• And the power spectrum
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𝑆 𝐸, 𝑡 = 𝑆* 𝐸 + 𝑆 𝐸 𝑓(𝑡)

𝑃 𝐸, 𝜈 = 𝑆&(𝐸) 0𝑓(𝜈)
&



Boundary layer and disk in NS
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Fourier frequency resolved spectra

S(Ei,fj) is the countrate of the 
spectrum at frequency fj in 
the energy chanel Ei



Boundary layer and disk in NS

Fourier frequency resolved spectra
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Boundary layer and disk in NS

total
disk

boundary layer
~Wien, kT~2-3 keV

Fourier frequency resolved
spectroscopy shows that boundary
layer produces QPOs

Fourier frequency resolved spectra
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