
HIGH ENERGY ASTROPHYSICS
Compulsary Home Exercises. Problem set 2. Solutions.

Problems
2.1: Show that the accretion rate of the wind accreting object is

Ṁ = Ṁw

(
Mx

Mn

)2 (v/vw)4

[1 + (v/vw)2]3/2
,

where Ṁw is the mass loss rate, Mx and Mn are the masses of the X-ray and normal star,
respectively, v is the orbital velocity of a compact object around a companion and vw is
the wind velocity.

Solution:
Let us use the equations shown in class. First, we write the equation for the accretion

radius Racc:

(1)
mv2rel

2
=
GMxm

Racc

.

The relative velocity (because wind and neutron star move perpendicular to each other)
is

(2) v2rel = v2 + v2w,

where vw is the wind velocity and v is the orbital velocity:

(3) v2 =
GMn

a
.

The mass accretion rate
(4) Ṁ = πR2

accvrelρw,

where a is the binary separation and ρw is the wind density at that distance. The mass
conservation law for the wind

(5) Ṁw = 4πa2vwρw.

Now divide (4) by (5):
Ṁ

Ṁw

=
R2

acc

4a2
vrel
vw

.

Substituting expressions for Racc from eq (1) and for a from eq (3), we get

Ṁ

Ṁw

=
M2

x

v4rel

v4

M2
n

vrel
vw

=
M2

x

M2
n

v4

v4w

v3w
v3rel

=
M2

x

M2
n

(v/vw)4

[v2rel/v
2
w]3/2

.

And finally using eq (2), we get what was desired.



2.2: (a) In class we derived the Eddington limiting luminosity assuming the accretion
of pure ionized hydrogen. Show that more generally the Eddington limit can be written
as

LEdd =
4πGMc

κ
,

where κ is the mass absorption coefficient. It has units of cm2 g−1 and is the absorption
cross-section per unit mass, κ = σ/m, where σ is the cross-section, m is the particle mass.

(b) What is the Eddington limit for a plasma composed entirely of completely ionized
helium? Compute the numerical coefficient x in LEdd = (x erg s−1)(M/M�).

(c) What is the Eddington limit for a plasma composed entirely of electron-positron
pairs? Compute the numerical coefficient x in LEdd = (x erg s−1)(M/M�). Note that
the positron will also now scatter photons. The small Eddington limit here is one of the
reasons people believe some jets may have large number of electron-positron pairs.

(d) What is the (pure ionized hydrogen) Eddington limit for an ∼ 10M� black hole
(like Cygnus X-1), an ≈ 4 × 106M� black hole (like on our Galactic center), and an
≈ 109M� black hole (like in a luminous quasar)?

Solutions:
In a general case, the balance between gravity force and radiation pressure force is

Lσ

4πr2c
=
GMm

r2
.

Defining κ = σ/m, we get

LEdd =
4πGMc

κ
.

For an atom of charge Z and atomic mass A, the total electron scattering cross-section
is σ = ZσT and the total mass m = Amp. Since the proton mass m ≈ (5/3)10−24 g and
the Thomson cross-section is σT ≈ (2/3)10−24 cm2, we get κ ≈ 0.4(Z/A) cm2 g−1.
(a) For the hydrogen gas, A = 1, Z = 1, we have κ ≈ 0.4 cm2 g−1 and

LH
Edd = 1.26× 1038(M/M�) erg s−1.

(b) Helium has four nucleons and two electrons, so κ = 0.2 cm2 g−1 and LHe
Edd = 2LH

Edd =
2.52× 1038(M/M�) erg s−1.
(c) Here we just take m = me and σ = σT and get κ = 0.4(mp/me) cm2 g−1 and

Le±

Edd = (me/mp)L
H
Edd = 6.86× 1034(M/M�) erg s−1.

(d) For M = 10M�, the limit is LH
Edd = 1.26 × 1039 erg s−1. For the Galactic center

black hole M = 4 × 106M�, LH
Edd ≈ 5 × 1044 erg s−1. For a quasar with M = 109M�,

LH
Edd = 1.26× 1047 erg s−1.
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2.3: Calculate the terminal velocity, v (i.e. velocity at r = ∞), for an electron-
positron pair under radiation and gravitational force alone, if it starts from rest at distance
R = 10RS from the black hole. (RS = 2GM/c2 is the Schwarzschild radius.)

Hint: Write down effective force (gravitational minus radiation force), and use the
energy conservation equation. Use the relativistic formula for the electron (positron)
energy.

Solutions:
Since luminosity of the black hole was not given, we need to assume something. Let us

assume that the luminosity exceeds the Eddington limit for the electron-positron plasma
by a factor f . Total force acting on a electron (or positron) is then the difference between
the radiation pressure force and the gravitational force:

F = (f − 1)
GMme

r2
.

The total work that this force will do when moving electron from radius R to infinity is

E =
∫ ∞
R
Fdr = (f − 1)

GMme

R
.

This energy will be transferred to the electron kinetic energy (γ − 1)mec
2, where γ is the

Lorentz factor. Thus we get

γ − 1 =
1√

1− v2/c2
− 1 =

E

mec2
= (f − 1)

GM

Rc2
= (f − 1)

RS

2R
=
f − 1

20
.

For example, for f = 21, we get γ = 2 and

v = c
√

1− 1/γ2 = 0.866c ≈ 2.6× 1010 cm s−1.
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2.4: Show that the inclination of the binary orbit i and the half-angle θe of the eclipse
of the central compact object are related by(

Rn

a

)2

= cos2 i+ sin2 i sin2 θe,

where Rn is the radius of the companion star and a is the binary separation (see figure
below).

Solution: At the beginning of the eclipse the line of sight is tangential to the surface
of the companion star. Let ψ be the angle between the line of sight and the direction to
the center of the companion from the central compact source. Then at the start of the
eclipse ψ = ψe, which is given by the relation

Rn = a sinψe.

In the spherical coordinate system centered at the compact object with the z axis per-
pendicular to the orbital plane, define the unit vector in the direction to the observer

~k = (sin i, 0, cos i).

The coordinates of the center of the companion are

~a = a(cosφ, sinφ, 0),

where φ is the orbital phase (azimuth). The scalar product of the unit vectors is

cosψ =
~a

a
· ~k = sin i cosφ,

so that (
Rn

a

)2

= sin2 ψe = 1− cos2 ψe = 1− sin2 i cos2 φe = cos2 i+ sin2 i sin2 φe,

where φe = θe is the half-angle of the eclipse. Thus, we get the desired equation.
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2.5: XTE J1807−294 is an accreting millisecond pulsar. Using variations of the arrival
time of the pulse to the observer the pulsar mass function was measured

fx =
M3

n sin3 i

(Mx +Mn)2
= 1.49× 10−7M�.

Solve for the mass of the companion as a function of the inclination Mn(i) and plot that
relation. Assume that the neutron star mass is Mx = 1.4M�. What is the minimum value
for Mn? Since cos i is distributed randomly, obtain the upper limit on the mass with 90%
confidence.

Solution: Redefine all masses in units of the solar mass, m = M/M�. The equation
we need to solve is then

(1) f ′x =
m3

n sin3 i

(mx +mn)2
= 1.49× 10−7.

Use any programming language you know. First set an equally spaced grid of values for
cos i from 0 to 1. For each cos i compute i. Solve the equation above by iterations. As a
first guess for mn take (m2

xf
′
x)1/3/ sin i. Iterations of order k + 1 is then:

mk+1 = [(m2
x +m2

k)f ′x]1/3/ sin i.

Iterate until it converges. Plot mn versus cos i. The minimum mass for mn is reached
at cos i = 0. There is no upper mass, because for i = 0 it diverges, but the probability
to have zero inclination is exactly zero. To get the upper limit on the mass with 90%
confidence just read the value of mn at cos i = 0.9.

An interesting thing to notice here is that because f ′x is so small, the companion mass
is also very small and much smaller than the neutron star mass. Therefore we can ignore
mn in the denominator of eq. (1) and the zeroth approximation is actually very accurate.
Thus the companion mass is

mn ≈ (m2
xf
′
x)1/3/ sin i = 0.0066 / sin i.

The minimum mass is then 0.0066M� and the 90% upper limit is 0.015M�.
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