
HIGH ENERGY ASTROPHYSICS
Compulsary Home Exercises. Problem set 3. Solutions.

Problems

3.1: Show that the Alfven radius is

RA ≈
(

B2
0R
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2Ṁ
√
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)2/7

,

where B0 is the surface magnetic field of the neutron star of radius R∗ and mass M , and
Ṁ is the accretion rate.

Solution: The equality between the magnetic pressure and the ram pressure

(1)
B2

8π
= ρV 2.

The dipole magnetic field
B = B0(R∗/R)3.

For the velocity, we take the free-fall velocity

V 2 =
2GM

R
,

and we can find the density from the mass conservation law

ρ =
Ṁ

4πR2V
.

Putting everything to eq (1), we get
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Collecting terms with R on one side and the rest on the other side, we get
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0

R6
∗

2Ṁ
√

2GM
,

which is identical to what was asked.



3.2: A non-magnetized neutron star of mass M = 1.4M� and radius R = 13 km is
accreting matter at 10−10M�/yr via an accretion disk. How long does it take to spin up
the star by the accreting matter from the initially large period to 3 ms? How much mass
do you need to accrete to spin the star to such a period? Assume a constant moment of
inertia I = 1045 g cm2.

Solution: The angular momentum conservation equation reads

IΩ̇ = Ṁ
√
GMR.

Note that we put R instead of Rm in the formula, because the neutron star is non-
magnetized. Assuming that neither mass nor moment of inertia significantly change, we
get the evolution of spin rate with time t:

Ω(t) =
2π

P (t)
= Ω0 + t

Ṁ
√
GMR

I
.

Neglecting Ω0, we get the time needed to reach period P :

t =
2π

P

I

Ṁ
√
GMR

.

The mass accretion rate is Ṁ ≈ 6.3 × 1015 g s−1. Substituting the numbers we get
t = 6.8 × 108 yr. The total accreted mass ∆M = Ṁt = 0.068M� is much smaller than
the neutron star mass.
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3.3: The period of the X-ray pulsar Cen X-3 has changed from 1971 to 1975 from
4.844 to 4.837 seconds. Estimate the magnetic field of the pulsar if its average luminosity
is L ≈ 2× 1037 erg s−1.

Solution: The period derivative is

Ṗ =
(4.837− 4.844) s

4 yr
=
−7 ms

4 yr
= −5.5× 10−11s s−1.

Note, that Ṗ is negative! For estimation of the magnetic field, one cannot use magnetic
dipole radiation formula, because it is not a radio pulsar and it is not spinning down!
Change in the rotational frequency occurs due to the angular momentum brought in
by the accreting gas. Accounting only for the accretion torque, the angular momentum
conservation equation reads

(1) 2πI
Ṗ

P 2
= −Ṁ

√
GMRm.

The luminosity is related to the accretion rate

L = ηṀc2.

Taking the accretion efficiency of 0.15, we can estimate the accretion rate Ṁ ≈ 1.5× 1017

g s−1. From eq (1), we get the magnetospheric radius

Rm = ξRA =
1

GM

(
−2π

Ṗ

P 2

I

Ṁ

)2

= 5× 107 cm,

where we assumed I = 1045 g cm2 and M = 1.5M�. Using the formula for the Alfven
radius we get

B2
0 =

(
Rm

ξ

)7/2
2Ṁ
√

2GM

R6
∗

= 6× 1022R−6
∗,6 G2,

where we assumed ξ = 0.5. Thus we get B0 ≈ 2.5× 1011 G.
From the observed cyclotron line at ∼30 keV, however, one can deduce the magnetic

field of B0 ≈ 3.5×1012 G. This discrepancy likely results from our wrong assumption that
the spin up is fully determined by the accretion torque. In reality, there is a magnetic
torque that tries to decelerate the star, and the magnetospheric radius is larger than we
have estimated.
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3.4: A small spot of area S at the magnetic pole of the neutron star radiates as a
black body (i.e. radiation intensity is the same in all direction). Assume the frequency
integrated intensity is I0. Derive first the formula for the frequency-integrated flux F
observed from such a spot by an observer at distance D from the star as a function of
inclination i (angle between the direction to the observer and the rotational axis), the
angle between the rotational and magnetic pole θ, and the phase of the pulsar. Assume
flat space-time (i.e. no photon bending) and neglect gravitational redshift. Compute then
the amplitude of pulsation

A =
Fmax − Fmin

Fmax + Fmin

,

where Fmax and Fmin are the maximum and minimum of the flux, respectively. Consider
the case when the spot is visible all the time. How the result changes when gravitational
bending is accounted for? Use approximate Beloborodov’s formula for the light bending.

Solution: Let us choose coordinate system with the z-axis along the rotation axis and
the observer line of sight lying in the plane x− z, see Fig. 1. The unit vector towards the
observer is then

~k = (sin i, 0, cos i).

The radius vector of the spot varies with phase as

~r = (sin θ cosφ, sin θ sinφ, cos θ).
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Figure 1: Geometry of the problem.

The angle between these vectors ψ is given by

cosψ = ~k · ~r = cos i cos θ + sin i sin θ cosφ.

In flat space the spot is observed at the same angle α = ψ. The observed flux is

F = I0dΩ = I0
S

D2
cosψ.
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The maximum/minimum flux is reached when cosφ = ±1. The amplitude of pulsation is
then

Aflat =
cosψmax − cosψmin

cosψmax + cosψmin

=
sin i sin θ

cos i cos θ
= tan i tan θ.

Accounting for light bending using Beloborodov’s formula gives the observed flux

F ∝ cosα = u+ (1− u) cosψ,

where u = RS/R. Again the extrema of F are reached at cosφ = ±1 and we get

AGR =
cosαmax − cosαmin

cosαmax + cosαmin

=
(1− u) sin i sin θ

u+ (1− u) cos i cos θ
=

sin i sin θ
u

1−u
+ cos i cos θ

< Aflat.
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3.5: Computer exercise. Swift J1749.4−2807 is an accreting millisecond pulsar (ν =
518 Hz) discovered in 2010. It shows X-ray eclipses. From variations of the pulsar
frequency the following quantities have been measured (Altamirano et al. 2011): the
orbital period Porb = 31740.73 s, projected semimajor axis ax sin i = 1.89953 light seconds,
the pulsar mass function was measured fx = M3

n sin3 i/(Mn +Mx)2 = 0.0545278M�. The
duration of the eclipse was determined to be 2172 seconds (Markwardt & Strohmayer
2010). Determine the inclination of the orbit i, the mass Mn and the radius Rn of the
companion star. Assume neutron star mass of Mx = 1.5M�. Use the Faulkner formula
for the size of the Roche lobe:

Rn ≈ RL = 0.459a

(
q

1 + q

)1/3

,

where q = Mn/Mx is the mass ratio and a is the binary separation.
Hint: use the results of exercise 2.4, where we showed that the inclination of the binary

orbit i and the half-angle θe of the eclipse are related by

(
Rn

a

)2

= cos2 i+ sin2 i sin2 θe.

Solution: The duration of the eclipse is related to the orbital period and the half-angle
of the eclipse as

Tecl = Porb
2θe
2π

.

Thus we get

(1) θe = π
Tecl

Porb

≈ 0.215 rad.

The size of the Roche lobe in units of the binary separation from Faulkner formula is

(2)
Rn

a
= 0.459

(
q

1 + q

)1/3

=
[
1− sin2 i cos2 θe

]1/2

From the definition of the pulsar mass function we get

fx
M�

=
Mx

M�

q3 sin3 i

(1 + q)2
= 0.0545278,

or

(3)
q3 sin3 i

(1 + q)2
=

0.0545278

1.5
= 0.03635187.

The two equations (2) and (3) make a system of equation for two unknowns q and
sin i. We can solve them, e.g., by iterations. Or one can substitute sin i from eq (3) to eq
(2) and find the root of the function

f(q) = 0.459

(
q

1 + q

)1/3

−
[
1− 0.1047

(1 + q)4/3

q2

]1/2

.
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The root is q ≈ 0.4322 and thus we get the companion mass Mn = qMx = 0.6483M�.
Substituting q to eq (3), we get sin i = 0.973844 or i = 76.9◦. The projected size of the
pulsar orbit ax sin i = 5.6946× 1010 cm and the binary separation is

a = ax + an = (ax sin i) (1 + 1/q)/ sin i = 1.9377× 1011 cm.

Using Faulkner formula we get

Rn = 0.30787 a = 5.966× 1010 cm.
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