
HIGH ENERGY ASTROPHYSICS
Compulsary Home Exercises. Problem set 4. Solutions.

Problems
4.1: Consider a LMXRB that shows X-ray bursts. Estimate the interval between

bursts if the accretion persistent uminosity is 1% of LEdd. Assume a neutron star mass
of 1.4M� and radius 10 km. Assume the efficiency of nuclear burning during the burst of
0.7% and you may also assume that the burst is a 5-second ’spike’ at LEdd. Estimate (using
Stefan-Boltzmann law) the maximum effective temperature (in keV) reached during the
burst.

Solution: The Eddington limit for a neutron star of mass 1.4M� is about

LEdd = 1.3× 1038 MNS

M�
≈ 1.8× 1038 erg s−1.

The mass ”burned” during the time τ = 5 s can be obtained from the total energy emitted
during the burst:

E = LEddτ = ηnuclMc2,

where ηnucl = 0.007 is the efficiency of nuclear burning. Thus we get

M =
LEddτ

ηnuclc2
.

This mass has to be accreted during time T between the bursts:

M = ṀT.

The accretion luminosity is related to the accretion rate as

Lacc = 0.01LEdd = ηaccṀc2,

where ηacc = GMNS/Rc
2 ≈ 0.2 is the accretion efficiency. Thus we get

T =
M

Ṁ
=
LEddτ

ηnuclc2

ηaccc
2

Lacc

= 100τ
ηacc

ηnucl

= 14300 s ≈ 4 hr.

Stefan-Boltzmann law states:

σSBT
4
eff =

LEdd

4πR2
NS

.

Thus we get

Teff =

(
LEdd

σSB4πR2
NS

)1/4

=

(
1.8× 1038

5.67× 10−5 × 4π1012

)1/4

= 2.24× 107 K = 1.93 keV.



4.2: Neutron star in an X-ray burster EXO 0740–676 rotates 552 times a second.
Estimate what would be the observed physical width of the emission line due to the
Doppler effect for an observer at an inclination i = 0, 60, 90 degrees to the rotational
axis. Assume that the line energy in the star frame is 1 keV, the neutron star mass is
M = 1.5M� and the radius R = 12 km. Ignore light bending.

Solution: Consider spherical coordinates with the z-axis along the rotation axis of
the star. Let the direction to the observer be ~k = (sin i, 0, cos i). The largest rotational
velocity is reached at the equator (in units of speed of light):

βeq =
veq

c
= 2π

ν√
1−RS/R

R

c
= 0.175.

Here we assumed the neutron star radius R = 12 km, massM = 1.5M� (i.e. Schwarzschild
radius RS = 4.45 km) and we have corrected the observed rotational frequency by the red-

shift 1+z = 1/
√

1−RS/R = 1.26. The corresponding Lorentz factor γeq = 1/
√

1− β2
eq =

1.032. Velocity depends on the azimuth φ of a point at the equator:

~β(φ) = βeq(− sinφ, cosφ, 0).

Ignoring light bending, the angle ξ velocity makes with the line-of-sight is

cos ξ =
~β(φ)

βeq

· ~k = − sin i sinφ.

The equatorial Doppler factor

Deq(i, φ) =
1

γeq(1− βeq cos ξ)
=

1

γeq(1 + βeq sin i sinφ)

reaches extrema at sinφ = ±1:

Deq,min = 0.843, Deq,max = 1.144, for i = 60◦,

Deq,min = 0.826, Deq,max = 1.177, for i = 90◦.

For zero inclination, we cannot just use the same formula, because the biggest effects
would come from variation of γ from 1 at the pole to γeq at the equator. Thus

Dmin = 1/γeq = 0.97, Dmax = 1, for i = 0◦.

The observed energy of the line is

Eobs =
Eemit

1 + z
D =

1 keV

1 + z
D,

and the width is

∆Eobs =
Dmax −Dmin

1.26
.

Thus we get

∆Eobs(0) = 0.024 keV, ∆Eobs(60◦) = 0.24 keV, ∆Eobs(90◦) = 0.28 keV.
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4.3: The observed Eddington flux corresponds to the Eddington luminosity reached
at the neutron star surface:

FEdd,obs =
LEdd,obs

4πD2
=

GMc

D2κe(1 + z)
,

where κe = 0.2(1 + X) cm2 g−1 is the electron scattering opacity, X is the hydrogen
mass fraction, D is the distance, M is the neutron star mass and z is the surface redshift.
Derive the relation between the neutron star radius R and the compactness u = RS/R
(here RS = 2GM/c2):

R = 14.138 km
(1 +X)D2

10F−7

u
√

1− u
, (1)

where F−7 = FEdd,obs/10−7 erg cm−2 s−1, D10 = D/10 kpc. What would be the neutron
star radius and mass if the redshift is measured from the spectral lines z = 0.26? Assume
FEdd,obs = 6× 10−8 erg cm−2 s−1, solar abundance X = 0.73, and distance D = 5 kpc.

Solution: The mass can be immediately obtained from the observed Eddington flux:

M = FEdd,obs
D2κe(1 + z)

Gc
= 6×10−8 (5× 3.09× 1021)20.2× 1.73× 1.26

6.67× 10−8 × 3× 1010
= 3.12×1033 g = 1.57M�.

We can now rewrite the definition of the Eddington flux as

FEdd,obs =
R

D2κe

GMc
√

1−RS/R

R
=

1

0.2(1 +X)D2

c3

2
u
√

1− u R,

and now express the radius as

R = FEdd,obs0.2(1 +X)D2 2

c3

1

u
√

1− u
.

and substituting the numbers we get

R = 10−7F−7 0.2(1+X)D2
10(3.086×1022)2 2

(2.998× 1010)3

1

u
√

1− u
= 1.414×106 cm

(1 +X)D2
10F−7

u
√

1− u
.

If the redshift z = 0.26, then u = 1−1/(1+z)2 = 0.37. The product (1+X)D2
10F−7 = 0.26.

Thus we get
R = 48.1 km (1 +X)D2

10F−7 = 12.5 km

and
M

M�
=

Ruc2

2GM�
=

Ru

2.95 km
= 1.57,

consistent with the one we already obtained above.
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4.4: The spectrum of the photospheric radius expansion burst from 4U 1724–307 is
well described by a black body. From the touchdown flux the observed Eddington limiting
flux was determined as FEdd,obs = 0.58×10−7 erg cm−2 s−1. The blackbody normalization
in the cooling tail was K = 220 (km/10 kpc)2. Estimate the neutron star mass and
radius. Assume distance D = 5.0 kpc, solar abundance, the color correction factor in the
tail fc = 1.4.

Solution: From equation (1) of exercise 4.3 we get (D10 = 0.5, F−7 = 0.58, X = 0.73)

R = 14.138 km
1.73× 0.52 × 0.58

u
√

1− u
=

3.55 km

u
√

1− u
. (2)

In the lecture note we show the relation between the radius at infinity, the actual neutron
star radius and the black body radius Rbb

R∞ =
R√

1− u
= Rbbf

2
c ,

therefore the radius:
R = Rbbf

2
c

√
1− u.

Instead of Rbb, we measure the normalization K = (Rbb/D)2 and we then get

R =
√
KDf 2

c

√
1− u.

If we measure R in km, K in (km/10 kpc)2, we have

R = D10

√
Kf 2

c

√
1− u km = 14.54

√
1− u km. (3)

Dividing equations (2) and (3) we get a quadratic equation for u:

(1− u)u = 0.244⇒ u2 − u+ 0.244 = 0.

The solutions are

u =
1

2
±
√

0.25− 0.244 = 0.5± 0.076.

The two solutions are u1 = 0.576, u2 = 0.424. Substituting those to equation (2) or (3),
we get R1 = 9.47 km and R2 = 11.04 km. The corresponding masses

M

M�
= u

R

2.95 km

and M1/M� = 1.85, M2/M� = 1.59. Both solutions are realistic.

4


