HIGH ENERGY ASTROPHYSICS
Compulsary Home Exercises. Problem set 4. Solutions.

Problems

4.1: Consider a LMXRB that shows X-ray bursts. Estimate the interval between
bursts if the accretion persistent uminosity is 1% of Lggqq. Assume a neutron star mass
of 1.4M, and radius 10 km. Assume the efficiency of nuclear burning during the burst of
0.7% and you may also assume that the burst is a 5-second ’spike’ at Lgqq. Estimate (using
Stefan-Boltzmann law) the maximum effective temperature (in keV) reached during the
burst.

Solution: The Eddington limit for a neutron star of mass 1.4M is about

M,
Lpqq = 1.3 x 10°8 FNS ~ 1.8 x 10°® ergs".
®©

The mass "burned” during the time 7 = 5 s can be obtained from the total energy emitted
during the burst:
E = LEddT - nnuClMc27

where 7y, = 0.007 is the efficiency of nuclear burning. Thus we get

Lgaat

M = B
Thucl€

This mass has to be accreted during time T' between the bursts:
M = MT.
The accretion luminosity is related to the accretion rate as
Lace = 0.01Lpaq = nacc M,

where 7, = GMys/Rc* =~ 0.2 is the accretion efficiency. Thus we get

M L 2
T =~ = 2B Thee® 1007 7 — 143005 ~ 4 1hr.
M ThuclC Lacc Thucl
Stefan-Boltzmann law states:
senTh — Lgaq
5B eft AT R%g

Thus we get

/4 38 1/4

Leaa  \' 1.8 x 10 7

Typ= 24 ) = — 224 x 107K = 1.93keV.
ff (05347TR2NS> 5.67 x 1075 x 471012 . ¢




4.2: Neutron star in an X-ray burster EXO 0740-676 rotates 552 times a second.
Estimate what would be the observed physical width of the emission line due to the
Doppler effect for an observer at an inclination ¢ = 0, 60, 90 degrees to the rotational
axis. Assume that the line energy in the star frame is 1 keV, the neutron star mass is

M = 1.5M and the radius R = 12 km. Ignore light bending.
Solution: Consider spherical coordinates with the z-axis along the rotation axis of

the star. Let the direction to the observer be k = (sin,0,cosi). The largest rotational
velocity is reached at the equator (in units of speed of light):

. R
Bog = -t —op—— 2 T 0,175,

c J1—Rs/R ¢

Here we assumed the neutron star radius R = 12 km, mass M = 1.5M, (i.e. Schwarzschild
radius Rg = 4.45 km) and we have corrected the observed rotational frequency by the red-
shift 1+2 = 1/4/1 — Rg/R = 1.26. The corresponding Lorentz factor v.q = 1/,/1 — 8% =
1.032. Velocity depends on the azimuth ¢ of a point at the equator:

—

B(¢) = Beq(—sing, cos ¢,0).
Ignoring light bending, the angle ¢ velocity makes with the line-of-sight is

cosé = Be) k= — sin ¢ sin ¢.
Beq
The equatorial Doppler factor
1 1

Deq(i> ¢) =

Yea(Ll = Beq c05E)  oq(L + feq sini sin )
reaches extrema at sin ¢ = £1:
Degmin = 0.843,  Degmax = 1.144,  for i = 60°,
Deqmin = 0.826,  Deqmax = 1.177,  for i = 90°.

For zero inclination, we cannot just use the same formula, because the biggest effects
would come from variation of v from 1 at the pole to ., at the equator. Thus

Dmin — 1/7eq = 097, Dmax = ]_7 for 1 = 0°.

The observed energy of the line is

Eemit,l) . 1 keVD

Eobs = - >
1+ 2 142
and the width is D .
AEobs _ max ~ ~min
1.26

Thus we get
AFEgs(0) =0.024keV, AE.s(60°) =0.24keV, AFE;,5(90°) = 0.28keV.



4.3: The observed Eddington flux corresponds to the Eddington luminosity reached
at the neutron star surface:

LEdd,obs . GMec
47D? D2k (1 + 2)’

FEdd,obs =

where k. = 0.2(1 + X) cm? g~! is the electron scattering opacity, X is the hydrogen

mass fraction, D is the distance, M is the neutron star mass and z is the surface redshift.

Derive the relation between the neutron star radius R and the compactness u = Rg/R

(here Rg = 2GM/c?):

(1+ X)D3,F (1)
u/1—u

where F_7 = Fpaaons/107" erg em™2 s71, Dyg = D/10 kpe. What would be the neutron

star radius and mass if the redshift is measured from the spectral lines z = 0.267 Assume
Fradobs = 6 X 1072 erg cm™2 s7!, solar abundance X = 0.73, and distance D = 5 kpc.

R =14.138km

Solution: The mass can be immediately obtained from the observed Eddington flux:

D?*ke(1+2) 65 10-5 (5 x 3.09 x 1021)20.2 x 1.73 x 1.26

M = Frgqone
Edd,ob Ge 6.67 x 108 x 3 x 1010

=3.12x10** g = 1.57M,,.

We can now rewrite the definition of the Eddington flux as

R GMc/1—Rs/R 1 3
Frad.obs = R = —uv1—u R,

D2, 0.2(1+ X)D? 2

and now express the radius as

221

R = Fraqons0.2(1 4+ X)D*— ———.
pagars0- 21+ X) D75 A

and substituting the numbers we get

2 1 1+ X)D2 F_
:1.414><106(:m( + X)Dig T

R=10""F - 0.2(1+X)D?,(3.086 x 10??)?
7 0.2(14X) Do x107) (2.998 x 100)3 uy/1 — u uy'1l —u

If the redshift z = 0.26, then u = 1—1/(1+2)% = 0.37. The product (1+X)D},F_7 = 0.26.
Thus we get
R =1481km (1+ X)D?F_; = 12.5km

and
M Ruc? Ru

M, 2GM, 2.95km

consistent with the one we already obtained above.

= 1.57,



4.4: The spectrum of the photospheric radius expansion burst from 4U 1724-307 is
well described by a black body. From the touchdown flux the observed Eddington limiting
flux was determined as Frqq obs = 0.58 X 1077 erg cm~2 s~!. The blackbody normalization
in the cooling tail was K = 220 (km/10 kpc)?. Estimate the neutron star mass and
radius. Assume distance D = 5.0 kpc, solar abundance, the color correction factor in the
tail f, = 1.4.

Solution: From equation (1) of exercise 4.3 we get (D19 = 0.5, F_7 = 0.58, X = 0.73)

1.73 x 0.5 x 0.58 B 3.55km (2)
uv1—u _u\/l—u'

In the lecture note we show the relation between the radius at infinity, the actual neutron
star radius and the black body radius Ry,

R =14.138 km

R
Roo = e = Runf?.

IS

therefore the radius:

R = Rbbffvl — U.

Instead of Ryy, we measure the normalization K = (Ry,/D)? and we then get
R=VKDf*/1—u.

If we measure R in km, K in (km/10 kpc)?, we have

R = DiyWVK f>v/1 —ukm = 14.54y/T — ukm. (3)

Dividing equations (2) and (3) we get a quadratic equation for w:
(1 —u)u=0.244 = u® —u + 0.244 = 0.

The solutions are

U= ; £+ v0.25 - 0.244 = 0.5 £ 0.076.

The two solutions are u; = 0.576, uy = 0.424. Substituting those to equation (2) or (3),
we get 1 = 9.47 km and Ry = 11.04 km. The corresponding masses

M R

M, "2.95km

and M, /Mg = 1.85, My/Mg = 1.59. Both solutions are realistic.



