HIGH ENERGY ASTROPHYSICS

Compulsary Home Exercises. Problem set 5. Turn in Exercises by Friday, November 1, 2024

Problems

5.1: Consider spherical accretion onto a black hole.(a) Show that the sonic point is

$$r_{\rm s} = \frac{GM}{c_{\rm s}^2(\infty)} \frac{5 - 3\gamma}{4}.$$

(b) Show that the accretion rate is

$$\dot{M} = \pi G^2 M^2 \frac{\rho(\infty)}{c_{\rm s}^3(\infty)} \left[\frac{2}{5-3\gamma}\right]^{\frac{5-3\gamma}{2(\gamma-1)}}$$

Compute the limit at $\gamma \to 5/3$. Express

$$\dot{M} = C \left(\frac{M}{M_{\odot}}\right)^2 \left(\frac{\rho(\infty)}{10^{-24} \text{ g cm}^{-3}}\right) \left(\frac{c_{\rm s}(\infty)}{10 \text{ km s}^{-1}}\right)^{-3} \text{ g s}^{-1}$$

and find constant C.

(c) Show that $\dot{M} = \pi R_{\rm acc}^2 c_{\rm s}(\infty) \rho(\infty)$ (for $\gamma = 5/3$).

(d) Obtain $\rho(r), T(r)$ for $r \ll r_s$. Hint: in this region v(r) is a free-fall velocity.

5.2: Prove that the internal energy density ε of a polytropic gas $(P \propto \rho^{\gamma})$ satisfied the relation

$$\varepsilon = \frac{P}{\gamma - 1}.$$

Hint: use the 1st law of thermodynamics $d(\varepsilon V) = -P \, dV$ and fact $V \propto 1/\rho$.

5.3: Compute γ for ultra-relativistic gas $kT \gg m_{\rm p}c^2$.

5.4: Prove

$$\frac{T(r)}{T_*} \approx \left(\frac{r_*}{r}\right)^{2/3}, \quad r \ll r_*,$$

where $kT_* \approx GM/r_* \approx m_{\rm e}c^2$ is the temperature at $r = r_* = R_{\rm g}m_{\rm p}/m_{\rm e}$. Thus at $R_{\rm g} = 2GM/c^2$, $kT(R_{\rm g}) \approx m_{\rm e}c^2(m_{\rm p}/m_{\rm e})^{2/3} \sim 70$ MeV.

5.5: M87 is a giant elliptical galaxy in the core of the Virgo cluster. It contains a central supermassive black hole with a mass of ~ $3 \times 10^9 M_{\odot}$. The nuclear region also contains a diffuse, hot interstellar gas with density $n = 0.5 \text{ cm}^{-3}$ and sound speed 500 km s⁻¹. Some of this gas will accrete onto the black hole. Show that the expected accretion rate is ~ $0.1 M_{\odot}/\text{yr}$. What fraction of the Eddington accretion rate $\dot{M}_{\text{Edd}} = L_{\text{Edd}}/c^2$ is this? What would be the produced luminosity if the radiative efficiency η were 0.1?