Standard accretion disc theory

references: Shakura, Sunyaev 1973, A&A, 24, 337 Frank, King, Shu: Accretion power in astrophysics Kato, Fukue, Mineshige: Black-hole accretion disks

Accretion discs

- Keplerian rotation in Newtonian and pseudo-Newtonian potentials
- Main equations: mass conservation, angular momentum conservation
- Viscous heating, radiation flux
- alpha-prescription

• Gas in Keplerian rotation

$$
\frac{V_{\varphi}^2}{r} = \frac{GM}{r^2} \Rightarrow V_{\varphi}(r) = \sqrt{\frac{GM}{r}}
$$

the velocity of rotation at a radius *r*

$$
\Omega = \frac{2\pi}{P_K} = \frac{V_{\varphi}}{r} \Rightarrow \Omega(r) = \sqrt{\frac{GM}{r^3}}
$$

the angular velocity

$$
l = rV_{\varphi} \Rightarrow l(r) = \sqrt{GMr}
$$

the angular momentum (specific,i.e. per unit mass)

- Shear and viscosity Ω(*r*) increases inwards, Ω ∝*r* -3/2, i.e. inner rings rotate faster. Shear $= r$ *d*Ω *dr* $\neq 0$
- Viscous forces lead to an angular momentum exchange between the adjacent rings: the inner fast rings pass their angular momentum to the outer slower rings. As a result, angular momentum is transported outwards.

• Near a black hole or a neutron star, Newtonian gravity is a poor approximation to the real gravitational field. The gas in circular Keplerian rotation in fact has an angular momentum which is different from √*GMr.* The exact *l*(*r*) is calculated in General Relativity. It turns out that

$$
\frac{dl}{dr} > 0 \text{ at } r > 3R_{\text{S}} \text{ and } \frac{dl}{dr} < 0 \text{ at } r < 3R_{\text{S}}
$$

 Therefore, as soon as the gradually spiraling gas reaches $r_* = 3R_{\rm S}$, it plunges to the central object with a constant angular momentum $l_*=l(r_*)$.

- To stay at the circular orbit, the gas would need to increase its angular momentum. Instead, gas just falls freely with constant *l*.
- The circular orbit of radius r_* at which $d/dr=0$ is called the marginally stable orbit (*innermost stable circular orbit*).

Pseudo-Newtonian potential (1)

• The ability of a compact object to trap circularly rotating gas from $r_* = 3R_s$ can be approximately described by replacing Newtonian gravitational potential $\varphi_{\rm N} = -\,\frac{GM}{r}$

r

 by the so called pseudo-Newtonian potential (Paczynski & Wiita 1980): $\varphi_\mathrm{PN} = -\, \frac{GM}{r}$ $r - R_{\rm S}$

At $r \gg R_{\rm S}$, $\phi_{\rm PN} \approx \phi_{\rm N}$. At $r=R_{\rm S}$, $\phi_{\rm PN} = -\infty$, which corresponds that nothing can escape from inside $r=R_S$ (effectively, an infinite potential at R_S). Though one cannot describe the exact gravity of compact object just by changing the gravitational potential, ϕ_{PN} is a much better approximation to reality that ϕ_{N} .

Pseudo-Newtonian potential (2)

• The rotational velocity v_{φ} on a circular orbit in a gravitational potential is determined by equation

inner edge of the disk

Mass conservation equation

• The continuity equation

$$
\frac{\partial \Sigma}{\partial t} + \frac{1}{r} \frac{\partial}{\partial r} \left(r V_r \Sigma \right) = 0
$$

- is the surface density of the disk $\lceil g/cm^2 \rceil$ Σ
- *V_r* is the radial velocity (accretion velocity) [cm/s]

In steady-state

 $\partial \dot{M}(r)$

$$
\frac{\partial \Sigma}{\partial t} = 0 \Rightarrow \frac{\partial}{\partial r} (rV_r \Sigma) = 0
$$

(1) $\dot{M}(r) = 2\pi r \Sigma V_r = \text{const}$

 would lead to matter accumulation with time at some radius, which is impossible by definition of the steady-state. ∂*r* $\neq 0$

Conservation of angular momentum

- The advected angular momentum at a radius *r*
	- $\dot{\mathscr{L}} = \dot{M}$ $\mathcal{L} = M l(r)$
 $\dot{A} = \text{const}$ in
	- \dot{M} = const in steady state

 $l(r) = \sqrt{GMr}$

assuming $v_r \ll v_\varphi$ i.e. slow accretion, the gas is in almost circular rotation.

Consider a ring $\Delta r = r_2 - r_1$ (static in the lab frame, i.e. Euler coordinate system). The accreting gas enters the ring with specific angular momentum $l_2 = l(r_2)$ and comes out with $l_1 = l(r_1) \Rightarrow$ Angular momentum is pumped away from the ring with the rate

$$
\dot{\mathcal{L}}_2 - \dot{\mathcal{L}}_1 = \dot{M} (l_2 - l_1)
$$

Conservation of angular momentum

It must be done by external forces applied to the ring. There are two external forces due to viscous torques applied to the ring at r_1 and r_2 which have opposite sign

.
/ *M* ($l_2 - l_1$) = $G_2 - G_1$ (*)

The torque G at a radius r is $G(r) = rf(r)$

f(r) is the viscous force acting between the two rings with a common boundary at radius *r*. f is applied along $\vec{e}_{\varphi} \Rightarrow f \perp \vec{r}$ Note that equation (*) is valid for any radius, we can choose r_1 at the inner edge of the disk $r_* = 3R_s$ where $G(r_*)=0$. Then at arbitrary $r>r_*$ we have ⃗

(2)
$$
\dot{M} [l(r) - l_*] = G(r)
$$

Here $l_* \equiv l(r_*)$ is the angular momentum at the inner edge. This l_* is "swallowed " by the black hole. $l_* \equiv l(r_*)$

Viscous heating

The viscous force is dissipative, i.e. the work it does on the adjacent rings goes into heat. Reminder: the work done by a force \vec{f} which is exerted on a body while the body passes a distance $d\vec{s}$ is $dA = \vec{f} \cdot d\vec{s}$. The power (work per unit time) is $dA/dt = f \cdot V$. Consider the disk as a set of narrow rings of radii r_i , $i = 1, 2, ..., N$; $r_{i+1} - r_i = \Delta r$ Each ring is in Keplerian rotation $\Omega_i = \sqrt{GM/r_i^3}$

In the frame corotating with the *i*-th ring, the (*i*+1)-th r ring has a shear velocity $V_{shear} = r\Delta\Omega$ where *r* is the boundary between the two rings, $\Delta \Omega = \Omega_{i+1} - \Omega_i$

The work done per unit time by viscous force is *dA*

The power dissipated per one ring is $\Delta W = -\frac{dA}{L}$ and the power dissipated per unit radius is *dt dt* $=-f r \Delta \Omega$ (3) *dW dr* = − *fr d*Ω *dr* $= - G(r)$ *d*Ω *dr*

⃗

 $f \cdot V_{\text{shear}} = f V_{\text{shear}} < 0$

The radiative flux

The main approximation of the standard model is that the locally dissipated heat is radiated away locally.

 From eq(3) we get (4) 2*F* = Q_+ = 1 2*πr dW dr*

and from eq(2) $G(r) = \dot{M} [l(r) - l_*]$

Hence we have $Q_+ = -$ Note the final formula for *Q*+ does not depend on the nature of viscous force, the torque *G=rf* drops out of the problem. Assuming that the disk radiates as a black body, $F = \sigma_{SB} T^4$, we can evaluate the surface temperature as a function of radius ·
/ *M* 2*πr* $[l(r) - l_*]$ *d*Ω *dr*

$$
T_{\rm s}(r) = \left(\frac{Q_{+}}{2\sigma_{\rm SB}}\right)^{1/4} \qquad \sigma_{\rm SB} = \frac{ac}{4} = 5.67 \times 10^{-5} \text{erg/(cm}^2 \text{K}^4 \text{s})
$$
\nStefan-Boltzmann constant

The radiative efficiency of the disk

In the process of accretion from $r \gg R_S$ down to $r_* = 3R_S$ gas changes its orbital energy from 0 to (this is the specific energy, i.e. per unit mass). $\ket{E=}$ $V^2_{\varphi}(r_*)$ 2 $+\phi(r_*)$

Hence, when the rate of mass accretion is M , the rate of energy release in the disk is ·
/ *M* $L = -\dot{M}$ $M \mid$ $V^2_{\varphi}(r_*)$ 2 $+\phi(r_*)$ \mathbf{I}

(by assumption this power is radiated away)

Inside *r**, no energy is dissipated since the gas is in fact free-fall and viscosity is negligible.

The disk radiative efficiency is by definition

$$
\varepsilon \equiv \frac{L}{\dot{M}c^2} = -\frac{V_{\varphi}^2(r_*)}{2c^2} - \frac{\phi(r_*)}{c^2}
$$

The height of the disk

Hydrostatic balance in the vertical direction

$$
\frac{\partial P}{\partial z} = -\frac{\partial \phi}{\partial z} \rho, \qquad \phi = -\frac{GM}{R} = -\frac{GM}{\sqrt{r^2 + z^2}} \Rightarrow \frac{\partial \phi}{\partial z} = \frac{GMz}{R^3}
$$

For a geometrically thin disk, we have $R=r$ (since $z\ll r$) $\frac{\partial P}{\partial z} = -\frac{GMz}{r^3}\rho$

The typical scale-height of the disk can be estimated from equation *P H* = *GMH* $\frac{1}{r^3}$ *ρ* → *H r* = c_s *Vφ*

where isothermal sound speed $c_s^2 \equiv \frac{P}{\Delta}$

alpha-prescription

 The viscous force at a radius *r* can be written in the $f = 2H \times 2\pi r \times t_{rq}$ where $2H \times 2\pi r$ is the area of the vertical cross-section of the disk

 $t_{r\varphi}$ is the <u>viscous stress</u> (= force per unit area), it has dimension of pressure *t yx* ∝ dV_x *dy*

The α -prescription (Shakura 1972) $t_{r\varphi} = \alpha P$ where P is pressure in the disk and $\alpha < 1$ is a numerical factor

Dynamic and kinematic coefficients of viscosity

 t_{ro} can be written as

$$
t_{r\varphi} = \eta r \frac{d\Omega}{dr}
$$

viscous force per unit area of the cross-section is proportional to the shear. The coefficient of proportionality *η* is called <u>dynamic viscosity</u>.

ν = *η/ρ* is called <u>kinematic viscosity.</u>

[ν]=cm²/s has the meaning of the diffusion coefficient

In terms of
$$
t_{r\varphi} = v\rho r \frac{d\Omega}{dr} = v \frac{\Sigma}{2H} r \frac{d\Omega}{dr}
$$

$$
G = rf \Rightarrow \qquad G = 2\pi r^3 v \Sigma \frac{d\Omega}{dr}
$$

Turbulent disk

 As a result of turbulent pulsations in the disk, each gas element diffuses from one circular orbit to another, with a diffusion coefficient V

Let V_t be the typical turbulent velocity and d be the typical scale of the turbulent motions. Then the diffusion coefficient is $\nu \approx V_t d$

Compare with the standard problem of a drunk sailor: $x^2(t) = Dt$ if $x(0) = 0$.

$$
D = \frac{(\Delta x)^2}{\tau}
$$
, where Δx is a one random step, τ is the time of one step

$$
V = \frac{\Delta x}{\tau}
$$
 is the random velocity, $D = V \Delta x$

As home you will show that $t_{rq} = \alpha P$ is equivalent to the prescription $v = \frac{2}{2} \alpha c_s H$ This scaling is expected

on physical grounds $V_t < c_s$ and $d < H \rightarrow \nu \leq c_s H$

From eq.1, mass conservation, we get The accretion is caused by the torque The velocity of accretion $V_r =$ 2*πr*Σ

$$
G = rf = 4\pi Hr^2 t_{r\varphi} = 4\pi Hr^2 \alpha P
$$

On the other hand, from eq.2 (angular momentum conservation), we have $G(r) = M [l(r) - l_*]$

·
/ *M*

Thus
$$
4\pi H r^2 \alpha P = \dot{M} \left[l(r) - l_* \right] \Rightarrow \frac{M}{\Sigma} \left[l(r) - l_* \right] = 2\pi r^2 \alpha c_s^2 \Rightarrow
$$

\n
$$
V_r = \frac{\alpha c_s^2 r}{l(r) - l_*}
$$

Since $l(r) \equiv rV_{\varphi}$ we get $V_r =$ αc_s^2 $V_{\varphi}[1 - l_{*}/l(r)]$ $\sim \alpha V_{\varphi}$ *H r*) 2

 $\mathsf{Note that } V_r \propto a, \Sigma \propto a^{-1}$ disks with small α are dense

Radiative cooling

 Let *T* be the temperature inside the disk (in the midplane). If the disk is sufficiently dense (low alpha), so that its opacity to radiation is high, then the accreting gas is a close to a black body = $>$ the radiation density inside is $w = aT^4$

The radiation diffuses out of the disk. The corresponding vertical flux is related to *w* by

$$
F = \frac{cw}{3\tau_0} = \frac{caT^4}{3\tau_0} = \frac{4\sigma_{SB}T^4}{3\tau_0}
$$

where $\tau_0 = \Sigma \sigma_{\tau}/2m_p$ is the Thomson optical depth from the disk surface to the midplane. Substituting, we get

$$
F = \frac{8m_p \sigma_{SB} T^4}{3\Sigma \sigma_T}
$$

Radiative cooling

The stationary diffusion of radiation:

 $F(\tau) = const, \quad 0 \leq \tau \leq \tau_0 \qquad d\tau = -\frac{\rho}{\sigma_r} \sigma_r$ $F = \frac{c}{3} \frac{dw}{d\tau} = -\frac{c\lambda}{3} \frac{dw}{dz}$

where $\frac{c\lambda}{3}$ is the diffusion coefficient, is the photon mean free-path. Integrating, we get I $w = w_s + \frac{3F}{c} \tau_0$ where $w_s = w(0)$ at surface $w_s \sim F/c$ At $\tau_0 \gg 1$ one gets $w \approx \frac{3F}{c} \tau_0$

c_s^2 : The sound speedThe pressure of a mixture of ionized gas and radiation is
 $P = 2nkT + \frac{aT^4}{3}$ ionized radiation gas $\rho = m_p n = \frac{2}{2H}$ **Density** Thus the sound $c_s^2 = \frac{2kT}{m_p} + \frac{2aT^4H}{3\Sigma}$ speed is

The complete set of equations for the alpha-disk ·
/ mass conservation $M(r) = 2\pi r \Sigma V_r$ angular momentum conservation plus alpha- αc_s^2 $[1 - l_*/l(r)]^{-1}$ $\frac{1}{p}$ **prescription** $V_r =$ *Vφ* c_s *H* vertical balance = *r Vφ* heating=cooling balance 2*F* = $c_s^2 = \frac{2kT}{m_p} + \frac{2aT^4H}{3\Sigma}$ Sound speed in a black body gas

 5 unknown Σ , V_r , c_s , H , T and 2 parameters

How to solve?

Since the values of the variables vary from 10^{-27} to 10^{33} , it is necessary to introduce dimensionless variables to describe the equations 1-5.

> \bullet Radius: $x = \frac{r}{r_a} \iff r = xr_g$

•

$$
\hat{v} = \frac{v}{c} \iff v = \hat{v}c
$$

 \bullet Surface density:

$$
\tau = \frac{\Sigma \sigma_T}{2m_p} \iff \Sigma = 2\tau \frac{m_p}{\sigma_T}
$$

 \bullet Accretion rate:

$$
\dot{m} = \frac{\dot{M}c^2}{L_{EDD}} \iff \dot{M} = \dot{m}2\pi \frac{r_g m_p c}{\sigma_T}
$$

• Sound speed:

$$
\hat{c}_s^2 = \frac{c_s^2}{c^2} \iff c_s^2 = c^2 \hat{c}_s^2
$$

 \bullet Scale height:

$$
\hat{H} = \frac{H}{r_g} \iff H = \hat{H}r_g
$$

 \bullet Temperature:

$$
\hat{T}^4 = \frac{\sigma_T \sigma_{SB} r_g}{2\pi m_p c^3} T^4 \iff T^4 = \frac{2\pi m_p c^3}{\sigma_T \sigma_{SB} r_g} \hat{T}^4
$$

22

How to solve?

For the Newtonian gravitational potential

 \bullet Potential:

$$
\varphi_N(x) = -\frac{GM}{xr_g} = -\frac{c^2}{2x}
$$

 $\bullet\,$ Rotational velocity:

$$
v_{\varphi N}(x) = \sqrt{\frac{GM}{xr_g}} = \frac{c}{\sqrt{2x}}
$$

 $\bullet\,$ Angular velocity:

$$
\Omega_N(x) = \sqrt{\frac{GM}{x^3 r_g^3}} = \frac{c}{x r_g \sqrt{2x}}
$$

 \bullet Angular momentum:

$$
l_N(x) = \sqrt{GMxr_g}
$$

$$
\frac{d\Omega_N}{dr} \quad = \quad -\frac{3}{2}\sqrt{\frac{GM}{x^5r_g^5}} = -\frac{3}{2}\frac{c}{r_g^2\sqrt{2x^5}}
$$

How to solve?

For the Newtonian gravitational potential

 \bullet Mass conservation:

$$
\tau=\frac{\dot{m}}{2x\hat{v}}
$$

• Angular momentum conservation and α -prescription:

$$
\hat{v} = \alpha c_s^2 \sqrt{2x} \left[1 - \sqrt{\frac{3}{x}} \right]^{-1}
$$

 \bullet Vertical balance:

$$
\hat{H} = x(2x)^{1/4} \sqrt{\frac{\hat{v}}{\alpha} \left[1 - \sqrt{\frac{3}{x}}\right]}
$$

 \bullet Cooling = heating locally:

$$
\hat{T}^4 = \frac{9\tau \dot{m}}{64\pi x^3} \left[1 - \sqrt{\frac{3}{x}} \right]
$$

• Sound speed in black-body gas:

$$
\hat{c}_s^2 = A\hat{T} + \frac{8\pi\hat{H}}{3\tau}\hat{T}^4
$$

Where the constant
$$
A = \frac{2k}{m_p c^2} \left(\frac{2\pi m_p c^3}{\sigma_T \sigma_{SB} r_g} \right)^{1/4} \approx 7.35 \cdot 10^{-6}
$$
.

24

Black holes (Cyg X-1)

Black holes

, iayer and disk Boundary layer and disk in NS

Boundary layer and disk in NS

$$
R = N_{\gamma}/T
$$

$$
P_j = 2|a_j|^2/N_{\gamma}R
$$

$$
a_j = \sum_{k=1}^{2^m} x_k e^{i\omega_j t_k}
$$

S($E_{\mu} f_{j}$) is the countrate of the spectrum at frequency f_j in the energy chanel *Ei*

Fourier frequency resolved spectra

$$
S(E_i, f_j) = R_i \sqrt{P_i(f_j) \Delta f_j} = \sqrt{\frac{2|a_{ij}|^2}{T} \Delta f_j}.
$$

19

Boundary layer and disk in NS

Fourier frequency resolved spectra Gilfanov et al. 2003

$$
S(E_i, f_j) = R_i \sqrt{P_i(f_j) \Delta f_j} = \sqrt{\frac{2|a_{ij}|^2}{T} \Delta f_j}.
$$

20