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Standard accretion disc theory



Accretion discs

• Keplerian rotation in Newtonian and 
pseudo-Newtonian potentials 

• Main equations: mass conservation, 
angular momentum conservation 

• Viscous heating, radiation flux 
• alpha-prescription 



• Gas in Keplerian rotation 

• Shear and viscosity 
Ω(r) increases inwards, Ω ∝r -3/2, i.e. inner rings 

rotate faster. 

Viscous forces lead to an angular momentum 
exchange between the adjacent rings: the inner 
fast rings pass their angular momentum to the 
outer slower rings. As a result, angular 
momentum is transported outwards. 
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• Near a black hole or a neutron star, Newtonian 
gravity is a poor approximation to the real 
gravitational field. The gas in circular Keplerian 
rotation in fact has an angular momentum which 
is different from √GMr. The exact l(r) is calculated 
in General Relativity. It turns out that 

    

   Therefore, as soon as the gradually spiraling gas 
reaches r*=3RS, it plunges to the central object 
with a constant angular momentum l*=l (r*).  

• To stay at the circular orbit, the gas would need 
to increase its angular momentum. Instead, gas 
just falls freely with constant l.  

• The circular orbit of radius r* at which dl/dr=0 is 
called the marginally stable orbit (innermost 
stable circular orbit). 
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Pseudo-Newtonian potential (1)
• The ability of a compact object to trap circularly 

rotating gas from r*=3RS can be approximately 
described by replacing Newtonian gravitational 
potential  

    
    by the so called pseudo-Newtonian potential 

(Paczynski & Wiita 1980): 

    At r » RS , ϕPN≈ ϕN . At r=RS, ϕPN=−∞, which corresponds 
that nothing can escape from inside r=RS (effectively, 
an infinite potential at RS). Though one cannot 
describe the exact gravity of  compact object just by 
changing the gravitational potential, ϕPN is a much 
better approximation to reality that ϕN.  
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Pseudo-Newtonian potential (2)
•  The rotational velocity    on a circular orbit in a 

gravitational potential  is determined by equation  

• With ϕ= ϕPN one gets

Check that dl/dr =0 at r=3RS 
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• The continuity equation 
     is the surface density of the disk [g/cm2] 
     is  the radial velocity (accretion velocity) [cm/s] 

In steady-state  

    

                  would lead to matter accumulation with time 
at some radius, which is impossible by definition of the 
steady-state.
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∂ ·M(r)

∂r
≠ 0



• The advected angular momentum at a radius r 

   

   assuming             i.e. slow accretion, the gas is in 
almost circular rotation.  

   Consider a ring                    (static in the lab frame, 
i.e. Euler coordinate system). The accreting gas enters 
the ring with specific angular momentum                         

  and comes out with                  Angular momentum is 
pumped away from the ring with the rate

Conservation of angular momentum

·ℒ = ·M l(r)
·M = const in steady state

l(r) = GMr

vr ≪ vφ

Δr = r2 − r1

l2 = l(r2)
l1 = l(r1) ⇒

·ℒ2 − ·ℒ1 = ·M (l2 − l1)



It must be done by external forces applied to the ring. 
There are two external forces due to viscous torques 
applied to the ring at  and  which have opposite sign 

The torque G at a radius r is  
f(r) is the viscous force acting between the two  
rings with a common boundary at radius r.      
    is applied along 
Note that equation (*) is valid for any radius, we can 

choose   at the inner edge of the disk  r*=3RS  where 
G(r*)=0.    Then at arbitrary r>r*  we have 

Here             is the angular momentum at the inner 
edge. This      is “swallowed “ by the black hole.     
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Conservation of angular momentum

·M (l2 − l1) = G2 − G1 ( * )
G(r) = rf(r)
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⃗f ⃗eφ ⇒ ⃗f ⊥ ⃗r

(2) ·M [l(r) − l*] = G(r)
l* ≡ l(r*)

l*



The viscous force is dissipative, i.e. the work it does on 
the adjacent rings goes into heat. Reminder: the work 
done by a force    which is exerted on a body while the 
body passes a distance      is                . The power 
(work per unit time) is                  . Consider the disk 
as a set of narrow rings of radii  

Each ring is in Keplerian rotation 
In the frame corotating with the i-th ring, the (i+1)-th 

ring has a shear velocity                   where  r is the 
boundary between the two rings, 

The work done per unit time by viscous force is  

The power dissipated per one ring is  
and the power dissipated 
per unit radius is  

Viscous heating
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= ⃗f ⋅ ⃗V shear = f Vshear < 0

ΔW = −
dA
dt

= − frΔΩ

(3)
dW
dr

= − fr
dΩ
dr

= − G(r)
dΩ
dr



The main approximation of the standard model is that 
the locally dissipated heat is radiated away locally. 

   From eq(3) we get  

and from eq(2) 

Hence we have  
Note the final formula for Q+ does not depend on the 

nature of viscous force, the torque G=rf drops out of 
the problem. Assuming that the disk radiates as a 
black body,   , we can evaluate the surface 
temperature as a function of radius 
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= 5.67 × 10−5erg/(cm2K4s)



 In the process of accretion from r RS down to =3RS  gas 
changes its orbital energy from 0 to      

 (this is the specific energy, i.e. per unit mass). 

Hence, when the rate of mass accretion is  , the rate of energy 
release in the disk is 

(by assumption  this power is radiated away) 

Inside r*, no energy is dissipated since the gas is in fact free-fall 
and viscosity is negligible.  

The disk radiative efficiency is by definition 
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 Hydrostatic balance in the vertical direction  

For a geometrically thin disk, we have R=r (since z r) 

The typical scale-height of the disk can be estimated 
from equation  

where isothermal sound speed

≪
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r3
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The height of the disk



 The viscous force at a radius  r can be written in the 
form     where                 

    is the area of the vertical cross-section of the disk   

 is the viscous stress (= force per unit area), it has 

dimension of pressure    

The  -prescription (Shakura 1972)           
where P is pressure in  the disk and  is a 

numerical factor

f = 2H × 2πr × trφ 2H × 2πr

trφ

tyx ∝
dVx

dy

α trφ = αP

α < 1

alpha-prescription



   can be written as 

viscous force per unit area of the cross-section is 
proportional to the shear. The coefficient of 
proportionality  is called dynamic viscosity.        

    is called kinematic viscosity. 
[ ]=cm2/s has the meaning of the diffusion coefficient  

In terms of                  

η
ν = η/ρ
ν

Dynamic and kinematic coefficients 
of viscosity 



 As a result of turbulent pulsations in the disk, each gas 
element diffuses from one circular orbit to another, 
with a diffusion coefficient  

Let   be the typical turbulent velocity and d be the 
typical scale of the turbulent motions. Then the 
diffusion coefficient is   

As home you will show that  is equivalent to the 
prescription                    This scaling is expected  

on physical grounds  and  

Vt

ν ≈ Vtd

trφ = αP

Vt < cs d < H → ν ≤ csH

Turbulent disk



From eq.1, mass conservation, we get 
The accretion is caused by the torque 

On the other hand, from eq.2 (angular momentum 
conservation), we have 

Thus   

 

Since     we get  

Note that   disks with small   are dense
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s r
l(r) − l*

l(r) ≡ rVφ Vr =
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∼ αVφ ( H

r )
2
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The velocity of accretion
Vr =
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G(r) = ·M [l(r) − l*]



 Let T be the temperature inside the disk (in the 
midplane). If the disk is sufficiently dense (low 
alpha), so that its opacity to radiation is high, then 
the accreting gas is a close to a black body=> the 
radiation density inside is  

The radiation diffuses out of the disk. The 
corresponding vertical flux is related to w by  

where                        is the Thomson optical depth 
from the disk surface to the midplane. Substituting, 
we get

Radiative cooling



 The stationary diffusion of radiation:  

                                 

where      is the diffusion coefficient, 
      is the photon mean free-path. Integrating, we get 
                          
                            where               at surface 

At             one gets 

Radiative cooling



  
The pressure of a mixture of ionized gas and radiation is 

Density  

Thus the sound 
speed is 

The sound speed



  
mass conservation   
angular momentum conservation plus alpha-

prescription   

vertical balance  

heating=cooling balance  

Sound speed in a  
black body gas  

5 unknown  and 2 parameters

·M(r) = 2πrΣVr

Vr =
αc2

s

Vφ
[1 − l*/l(r)]−1

H
r

=
cs

Vφ

Σ, Vr, cs, H, T

The complete set of equations 
for the alpha-disk

2F =



How to solve?
•
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How to solve?
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How to solve?
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Black holes (Cyg X-1)

25



Black holes 

26

GX 339 4−

1: GX 339 4 
2: GRS 1915+105 
3: XTE J1550 564 
4: Cyg X-3

−

−



Observations
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Neutron starBlack hole

Boundary layer and disk in NS

total
disk

boundary layer
~Wien, kT~2-3 keV Boundary layer:

• spectral component
• variability component

"̇ > 5 − 10%"̇!""
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Boundary layer and disk in NS

19

Fourier frequency resolved spectra

S(Ei,fj) is the countrate of the 
spectrum at frequency fj  in 
the energy chanel Ei
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Boundary layer and disk in NS

Fourier frequency resolved spectra Gilfanov et al. 2003
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