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Accretion discs

Keplerian rotation in Newtonian and
pseudo-Newtonian potentials

Main equations: mass conservation,
angular momentum conservation

Viscous heating, radiation flux
alpha-prescription



e Gas in Keplerian rotation

2
Ve _ GM SV (F) = GM  the velocity of rotation at a
— = — ) =/ —— .
r r2 r radius r
2V, GM _
Q=—=—=Qrn=4/— the angular velocity
Py r r

the angular momentum

V= 10) ' (specific,i.e. per unit mass)

e Shear and viscosity

Q(7) increases inwards, Q «r-32, i,e. inner rings

. dQ
rotate faster Shear = r%2 4

dr
Viscous forces lead to an angular momentum
exchange between the adjacent rings: the inner
fast rings pass their angular momentum to the
outer slower rings. As a result, angular
momentum is transported outwards.




e Near a black hole or a neutron star, Newtonian
gravity is a poor approximation to the real
gravitational field. The gas in circular Keplerian
rotation in fact has an angular momentum which
is different from VGMr. The exact /() is calculated
in General Relativity. It turns out that

dl dl
— >0 at r > 3Ry and — < 0 at r < 3Rq

dr dr

Therefore, as soon as the gradually spiraling gas
reaches ».=3R., it plunges to the central object

with a constant angular momentum .=/ (r.).
e To stay at the circular orbit, the gas would need

to increase its angular momentum. Instead, gas
just falls freely with constant /.

e The circular orbit of radius . at which d//d=0 is

called the marginally stable orbit (innermost
stable circular orbit).



Pseudo-Newtonian potential (1)

e The ability of a compact object to trap circularly
rotating gas from r».=3R, can be approximately
described by replacing Newtonian gravitational

potential GM
(e
r
by the so called pseudo-Newtonian potential
(Paczynski & Wiita 1980): GM
PPN = —
I"—RS

At 7 » Ry, bp= by - At r=R, dp =00, Which corresponds
that nothing can escape from inside =R (effectively,
an infinite potential at R.). Though one cannot

describe the exact gravity of compact object just by
changing the gravitational potential, ¢, is @ much

better approximation to reality that ¢,.



Pseudo-Newtonian potential (2)

e The rotational velocity v, on a circular orbit in a
gravitational potential is determined by equation

centrifugal Vo do PEPPR
acceleration B, dr ~cceleration

e With ¢=¢,,0ne gets

v v GMr
¥ o r _RS
. & _ \V/GMr
r  r(r—Rg)
l(}") — ]/‘qu — \/ GMr Check that dl/d]’ =0 at 7":3RS

r — RS
bpy allows one to mimic the marginally stable orbit =
inner edge of the disk



Mass conservation equation

e The continuity equation 5 " 5
2. is the surface density of the disk [g/cm?]

V. is the radial velocity (accretion velocity) [cm/s]
In steady-state a_z —0=> i (rV z) — (0
ot or :
(1) M(r) = 2arZV. = const
oM(r) 40
or would lead to matter accumulation with time

at some radius, which is impossible by definition of the
steady-state.



Conservation of angular momentum
e The advected angular momentum at a radius r

L =M I(r)

M = const in steady state

[(r) =/ GMr

assuming v, <v, i.e. slow accretion, the gas is in
almost circular rotation.

Consider a ring Ar =r,—r (static in the lab frame,
i.e. Euler coordinate system). The accreting gas enters
the ring with specific angular momentum [, = [(r,)

and comes out with [; = I(r;) = Angular momentum is
pumped away from the ring with the rate

P— L =M (L — 1))



Conservation of angular momentum

It must be done by external forces applied to the ring.
There are two external forces due to viscous torques
applied to the ring at r, and r, which have opposite sign

M(Ul,-1)=G,—G, (*) 7 __
The torque G at a radius ris G(r) = rf(r) dr
f(r) is the viscous force acting between the two
rings with a common boundary at radius r.
f is applied along ¢, >fL7F

Note that equation (*) is valid for any radius, we can
choose r; at the inner edge of the disk ».=3R, where

G(r.)=0. Then at arbitrary »>r. we have

2) M [I(r) - L] = G@&)
Here ;. = /) is the angular momentum at the inner
edge. This /. is “swallowed ™ by the black hole.




Viscous heating

The viscous force is dissipative, i.e. the work it does on
the adjacent rings goes into heat. Reminder: the work
done by a force f which is exerted on a body while the
body passes a distance ds is dA = f-ds. The power
(work per unit time) is dA/dr = f- V. Consider the disk
as a set of narrow rings of radii 7.i=1.2,..N;r; | — 1, = Ar

Each ring is in Keplerian rotation ©;=+/GM/r}

In the frame corotating with the i-th ring, the (i+1)-th
ring has a shear velocity Ve, =rAQ  where ris the
boundary between the two rings, AQ=Q, ,-Q,

The work done per unit time by viscous force is

dA - —
= = V shear = Vshear < 0
The power dissipated per one ring is Aw = _aa — frAQ
and the power dissipated 3 aw —frﬁ :?G(r)@
per unit radius is dr dr dr




The radiative flux

The main approximation of the standard model is that
the locally dissipated heat is radiated away locally.

From eq(3) we get |4) 2p -, = 21 Ci:W
nr _dar

and from eq(2) G(r) = M [I(r) — L]

Hence we have p =5 [{(r) — L] —~

Note the final formula for O+ does not depend on the
nature of viscous force, the torque G=rf drops out of
the problem. Assuming that the disk radiates as a
black body, F =o0T*, we can evaluate the surface

temperature as a function of radius

1/4 I
Q+ ) Ogp = il 5.67 X 10™%erg/(cm?K%s)

Ts(r) — (26813

Stefan-Boltzmann constant



The radiative efficiency of the disk

In the process of accretion from r»>Rs down to r.=3Rs gas

changes its orbital energy from 0 to Vé(m)

(this is the specific energy, i.e. per unit mass). L= > + ¢(r+)

Hence, when the rate of mass accretion is M , the rate of energy
release in the disk is . [vg(r*)

+—¢(mJ]

(by assumption this power is radiated away)

Inside »+, no energy is dissipated since the gas is in fact free-fall
and viscosity is negligible.

The disk radiative efficiency is by definition

L V() gr)

€ = =

Mc?2 2c? c2




The height of the disk
Hydrostatic balance in the vertical direction
)Y GM GM 00 GMz
— == P> p=—— ===
07 07 R \/I"+Z' 0z R

For a geometrically thin disk, we have R=r (since z«r)
oP  GMz

07 P

The typical scale-height of the disk can be estimated
. P GMH H ¢
from equation — = p—> — =—
H r3 r V

p

A

.
where isothermal sound speed ¢~ =—
o,




alpha-prescription

The viscous force at a radius » can be written in the
form f=2H x2zr xt,, wWhere 2H x 2zr

IS the area of the vertical cross-section of the disk

t,, 1S the viscous stress (= force per unit area), it has
dV.

dy

dimension of pressure ¢, «

The a -prescription (Shakura 1972) ¢ =aP

re
where P is pressure in the disk and a< 1 is a
numerical factor



Dynamic and kinematic coefficients

of viscosity
t,,can be written as - ccil_Q

viscous force per unit area of the cross-section is
proportional to the shear. The coefficient of
proportionality » is called dynamic viscosity.

v =nlp is called kinematic viscosity.
[ v]=cm?2/s has the meaning of the diffusion coefficient

t y ’dQ y 2 dQ
= f—— = I
In termS Of re p (I'I' 2H (I’I'
G=rf = s d€)
y G=2nr'vi—
dr




Turbulent disk

As a result of turbulent pulsations in the disk, each gas
element diffuses from one circular orbit to another,
with a diffusion coefficient V

Let V. be the typical turbulent velocity and d be the

typical scale of the turbulent motions. Then the
diffusion coefficient is v~ V.d

Compare with the standard problem of a drunk saillor: x*(t)=Dt if x(0)=0.
(Ax)’

T

D =

,where Ax is a one random step, 7 1s the time of one step

Ax . :
V = =~ is the random velocity, D=V Ax
T

As home you will show that ¢, = aP is equivalent to the

prescription V:%acﬂ This scaling is expected

on physical grounds V, < ¢, and d < H - v < ¢,H



The velocity of accretion

From eq.1, mass conservation, we get , _
The accretion is caused by the torque 2nrX

G =rf =4rnHr’t,, = 4wHr oP

On the other hand, from eq.2 (ang.ular momentum
conservation), we have G(r) = M [Il(r) — L]

2 ) M 2 9,
ThUS 4rHrPop =M (-] = =[i)-1]=2nrac’ =
)) ((-3 _P_ 2HP]
ac’r p X
V. =
l(i") — [«
: ac? H\’
Since I(r) = rv, We getvV, = ~aV, <—>
V,[1 = L/1(r)] r

Note that V.« a, X «x a™! disks with small « are dense



Radiative cooling

Let T be the temperature inside the disk (in the
midplane). If the disk is sufficiently dense (low
alpha), so that its opacity to radiation is high, then
the accreting gas is a close to a black body=> the
radiation density inside is w=aT"*

The radiation diffuses out of the disk. The
corresponding vertical flux is related to w by

- -
cw cal” 4o,T

3t, 37, 37,

where 7,=20,/2m, is the Thomson optical depth
from the disk surface to the midplane. Substituting,
we get )

8m, oy, T

320,

F =




Radiative cooling
The stationary diffusion of radiation:
F(t)=const, 0<t<71, dt= —LO'TdZ

m,
e cdw cA dw
3drt 3 dz

cA
where 3 is the diffusion coefficient,
yl is the photon mean free-path. Integrating, we get

3F
w=ws+—7T, where w =w@©) atsurfacew,~F/c
C
3F
At one gets e
T, >1 g W~ T,

C



The sound speed .2 _ £
P

LS‘

The pressure of a mixture of ionized gas and radiation is

4
al
P =2nkT
L 3
1onized
gas radiation
>

Density p=mn=—
g 2H

Thus the sound

speed is

, 2kT 2aT°H
*om, 3%

p

C




The complete set of equations
for the alpha-disk

mass conservation M(r) = 2zrXV,

angular momentum conservation plus alpha-
2

o ac;
prescription V. =—[1 - L/l(r)]™!
@
. H ¢
vertical balance — =
r Vo, .
heating=cooling bal op - OOl MIG) dO L
eating=cooling balance = 3%e, | 2nr dr I
Sound speed in a . 2kT 2aT*H
c.=—+
black body gas ~ - 3y

P

5 unknown X, V. ¢, H, T and 2 parameters M ,(



How to solve?

Since the values of the variables vary from 10~27 to 1033, it is necessary to
e ntroduce dimensionless variables to describe the equations 1-5.

Radius:

Velocity:

Surface density:

Yo m
T = r Yy=2r—2L
2m,, or
e Accretion rate:
Mc? . ToMypC
m = — M =m2r-L 2
Legpp or
e Sound speed:
2
) c 2 242
cs = C—; = c; =c"C
e Scale height:
A H A
H=— <= H=Hr,

Temperature:

3 22
A oTosBT 2mmy,c” -
1 9T4 . T4 P T4

2mmpc? OTOSBTg




How to solve?

For the Newtonian gravitational potential

e Potential:

GM c?
en(z) = — =—5=
Ty 2z
e Rotational velocity:
von (2) GM ¢
oN N Trg N V21
e Angular velocity:
GM c
Qn ()

e Angular momentum:

In(z) =+/GMzr,

o 3 [GM 3 ¢
dr 2\ 575 N 27-3 220

23



How to solve?

For the Newtonian gravitational potential

e Mass conservation:

m

T=—
2x0
e Angular momentum conservation and a-prescription:
3 —1
@zacg 2x [1— —]
x
e Vertical balance:

Q| =

H:$(2x)1/4\l [1— 3
T
e Cooling = heating locally:

pa_ 9 [ 3
64w’ x

e Sound speed in black-body gas:

2=t +

T4
2% 27rmp03
mpc?

24
1/4
) ~ 7.35 - 10—S.
OT0SBTg

-
Where the constant A =




Black holes (Cyg X-1)

optically thick
~black body
Te~0.1-1keV/ =4\

O . ra

.‘. ) \

“~ /

- "\, Optically thin

O "",-" . . B kT,~50-100 ke
/a' t. A | T~1

\soft/high state

hard/low state
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1038 kevxerg/sec/keV

VXL,

Boundary layer and disk in NS

0.1 -
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C disk

boundary layer
~Wien, kT~2-3 keV

|

GX340+0

total

10
Energy, keV

| M >5—10%Mgqq

Boundary layer:
e spectral component
 variability component



Boundary layer and disk in NS

e
— —

V?F , keV2xphot/sec/cm?/keV
o

10-3
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4U1608-52

upper kHz QPO

~45 Hz QPO

/ /
/
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RN

/
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10

Fnerov. keV

R = N,JT

Pj = 2|a;|*/NyR
2m

a; = Z;{:keiwjtk
k=1

S(E,f;) is the countrate of the
spectrum at frequency f; in
the energy chanel E;

Fourier frequency resolved spectra

S(E:i, f;) = Riy/ P.(f)Af; = \/

2|as; |

T Afj . 19



Boundary layer and disk in NS
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