
HIGH ENERGY ASTROPHYSICS
Compulsory Home Exercises. Problem set 5. Solutions.

Problems

5.1: Consider spherical accretion onto a black hole.
(a) Show that the sonic point is

rs =
GM

c2s (∞)

5− 3γ

4
.

(b) Show that the accretion rate is

Ṁ = πG2M2 ρ(∞)

c3s (∞)

[
2

5− 3γ

] 5−3γ
2(γ−1)

.

Compute the limit at γ → 5/3. Express

Ṁ = C

(
M

M�

)2(
ρ(∞)

10−24 g cm−3

)(
cs(∞)

10 km s−1

)−3
g s−1

and find constant C.
(c) Show that Ṁ = πR2

acccs(∞)ρ(∞) (for γ = 5/3).
(d) Obtain ρ(r), T (r) for r � rs. Hint: in this region v(r) is a free-fall velocity.

Solution: all the parameters of the solution may be found by considering the sonic
point. Let us assume γ < 5/3. As we found in the lectures, at the sonic surface

cs(rs) = v(rs) =

√
GM

2rs
.

If we substitute these expressions into the general expression for Bernoulli integral at
r = rs

B =
v2

2
+

c2s
γ − 1

− GM

r
=

c2s,∞
γ − 1

,

we get
GM

rs

[
1

4
+

1

2(γ − 1)
− 1

]
=
GM

rs

5− 3γ

4(γ − 1)
=

c2s,∞
γ − 1

,

or

rs =
5− 3γ

4

GM

c2s,∞
, (1)

which proves (a). The velocity at the sonic point is

c2s (rs) = v2(rs) =
2

5− 3γ
c2s,∞. (2)

The mass accretion rate does not depend on radius, hence let us estimate it at rs, where
we already know the velocity. Density is still missing, and this is expectable as we did



not use the boundary condition for density at infinity so far. From the equation of state
we use,

c2s = c2s,∞

(
ρ

ρ∞

)γ−1
.

Solving this expression for density at r = rs, we get

ρ(rs) = ρ∞

(
v(rs)

cs,∞

)2/(γ−1)

= (5− 3γ)−1/(γ−1) ρ∞. (3)

Now we are ready to collect equations (1)–(3) to calculate the mass accretion rate

Ṁ = 4πr2vρ = 4πr2s v(rs)ρ(rs) = π

(
2

5− 3γ

) 5−3γ
2(γ−1) G2M2ρ∞

c3s,∞
. (4)

This expression provides the answer to the first question of item (b).
In the limit γ → 5/3, the coefficient in equation (4) becomes

lim
γ→5/3

(
2

5− 3γ

) 5−3γ
2(γ−1)

= e−
1

γ−1
limx→0 x lnx = 1, (5)

where x = (5− 3γ)/2. As x lnx approaches zero, the coefficient becomes unity, and

Ṁ(γ = 5/3) = π
G2M2ρ∞
c3s,∞

. (6)

This provides the answer to the second question of item (b) and to (c), as Racc ' GM
c2s,∞

,

and equation (6) may be re-written in the form

Ṁ ' πR2
accρ∞cs,∞.

In a normalized form, expression (6) becomes

Ṁ ' 5.5× 1010

(
M

M�

)2(
ρ(∞)

10−24 g cm−3

)(
cs(∞)

10 km s−1

)−3
g s−1 (7)

(d) In the limit r � rs, v � cs � c∞, Bernoulli integral conservation implies

v2

2
' GM

r
,

that means that the velocity field is indistinguishable from free fall. Mass conservation
allows to express density as

ρ(r) =
Ṁ

4πr2v
' Ṁ

4π
√
GM

r−3/2. (8)

For the sound speed, we have

c2s (r � rs) ' c2s (rs)

(
r

rs

)− 3
2
(γ−1)

.

2



Since the pressure for the ideal gas is

P =
ρ

µmp

kT,

where µ is the mean molecular weight, and

c2s = γP/ρ = γ
kT

µmp

,

we get for the temperature

kT =
µmp

γ
c2s ,

therefore

kT (r � rs) '
µmp

γ

GM

2rs

(rs
r

) 3
2
(γ−1)

.

For γ ' 5/3 and pure hydrogen plasma (µ = 1/2), we get temperature proportional to
the virial one:

kT (r � rs) '
3

20

GMmp

r
.

For rs � r � GM/c2∞, temperature scales with the virial one as well, as one may neglect
the dynamical term in Bernoulli integral.
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5.2: Prove that the internal energy density ε of a gas with an adiabatic equation of
state (P ∝ ργ) satisfies the relation

ε =
P

γ − 1
.

Hint: use the 1st law of thermodynamics d(εV ) = −P dV and fact V ∝ 1/ρ.

Solution: According to the first law of thermodynamics, for an adiabatic process,

d(εV ) = −PdV.

Volume is inversely proportional to density, therefore we can re-write the equation as

d

(
ε

ρ

)
= −Pd1

ρ
.

Integrating this equation yields

ε

ρ
= −

∫ ρ′=ρ

ρ=0

P (ρ′)d
1

ρ′
,

where we assumed that zero pressure means zero energy density. Substituting P = Kργ

(where K is constant), we get

ε

ρ
= K

∫ ρ′=ρ

ρ=0

ρ′
γ−2

dρ′ =
K

γ − 1
ργ−1,

that implies

ε =
K

γ − 1
ργ =

P

γ − 1
.
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5.3: Compute γ for ultra-relativistic gas kT � mpc
2.

Solution: A straightforward way to calculate it is to use the two properties of ultrarel-
ativistic particles: (i) their velocities are close to c and (ii) their energies E and momenta
p are related as E ' pc. Pressure in general may be calculated as the momentum flux

P =

∫
f(E)pxvxdEd cos θdϕ,

where f(E) is the particle distribution function over energy per unit solid angle, px =
p cos θ = E

c
cos θ is the momentum of the particle, vx = c cos θ is its velocity. Momenta

and velocities are assumed to be isotropically distributed. Isotropicity allows to integrate
over the angles:

P =

∫
f(E)EdE

∫
cos2 θd cos θdϕ =

∫
f(E)EdE×2π

∫ 1

−1
cos2 θd cos θ =

4π

3

∫
f(E)EdE.

A similar expression may be written for the energy density

ε =

∫
f(E)EdEd cos θdϕ = 4π

∫
f(E)EdE.

Finally, we get

P =
1

3
ε.

Together with the result of the previous problem, this implies γ − 1 = 1/3, or γ = 4/3.

5.4: Prove
T (r)

T∗
≈
(r∗
r

)2/3
, r � r∗,

where kT∗ ≈ GM/r∗ ≈ mec
2 is the temperature at r = r∗ = Rgmp/me.

Thus at Rg = 2GM/c2, kT (Rg) ≈ mec
2(mp/me)

2/3 ∼ 70 MeV.

Solution: In this regime, electrons get relativistic, but ions are still non-relativistic.
Adiabatic index is equal to γ = 13/9 (see lecture notes). Density changes (see problem
5.1d) as

ρ ∝ r−3/2,

and pressure as
P ∝ ργ ∝ r−

3
2
γ ∝ r−13/6,

that implies T ∝ P/ρ ∝ r−2/3. As T (r∗) = T∗ ' GM/r∗, r∗ = Rgmp/me,

T (r) ' T∗

(r∗
r

)2/3
,

and

T (Rg) ' T∗

(
mp

me

)2/3

' mec
2

(
mp

me

)2/3

.
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5.5: M87 is a giant elliptical galaxy in the core of the Virgo cluster. It contains
a central supermassive black hole with a mass of ∼ 3 × 109M�. The nuclear region
also contains a diffuse, hot interstellar gas with density n = 0.5 cm−3 and sound speed
500 km s−1. Some of this gas will accrete onto the black hole. Show that the expected
accretion rate is ∼ 0.1M�/yr. What fraction of the Eddington accretion rate is this?
What would be the produced luminosity if the radiative efficiency η were 0.1?

Solution: Hydrogen number density n = 0.5 cm−3 corresponds to mass density ρ '
5
6
× 10−24 g cm−3. Substituting all the numerical values into equation (7), we get

Ṁ ' 3.3× 1024g s−1 ' 0.05M�yr−1.

The Eddington mass accretion rate, at the same time, is

ṀEdd =
LEdd

c2
=

4πGM

κc
' 4.2× 1026g s−1 ' 6.6M�yr−1,

where κ = 0.4 cm2 g−1 is the mass absorption coefficient for electron scattering in hydrogen
plasma. (Sometimes the Eddington accretion rate is defined as ṀEdd = LEdd/ηc

2, resulting
in ten times larger value.) This means that the accretion rate is ∼0.8% of the Eddington
one. The estimated luminosity for η = 0.1 is

L = ηṀc2 ' 3.0× 1044erg s−1.

6


