
HIGH ENERGY ASTROPHYSICS
Compulsary Home Exercises. Problem set 6. Solutions.

Problems

6.1: The X-ray spectrum of an accreting black hole GX 339–4 is shown in Fig. 1. Es-
timate the photon spectral index Γ of the Comptonized component (shown with dashed
line) in the standard X-ray band 2–10 keV. Estimate the electron temperature that is
needed to produce the observed spectrum by Comptonization. Compute the X-ray lumi-
nosity of the object, assuming the distance of 5 kpc.

Figure 1: Broad-band spectrum of GX 339–4 as observed by Ginga and OSSE/CGRO in
1991 (from Zdziarski et al. 1998).

Solution:
Let us first estimate the photon index:

Γ = 1− d logFE
d logE

= 2− d log(EFE)

d logE
≈ 2− log[EFE(10 keV)]− log[EFE(2 keV)]

log 10− log 2

= 2− log[EFE(10 keV)/EFE(2 keV)]

log(10/2)
≈ 2− 0.3

0.7
≈ 1.57. (1)

The electron temperature can be estimated from the characteristic energy of the cut-off
in the spectrum, i.e. approximately 100 keV (or 109 K).

The flux can be calculated by integrating over the flux energy distribution, FE =
F0E

1−Γ, where E is in keV and F0 ≈ 10−9 erg cm−2 s−1:

F =
∫ 100

0
FEdE =

∫ 100

0
F0E

1−ΓdE = F0
E2−Γ

2− Γ

∣∣∣∣∣
100

0

≈ 17× F0 = 1.7× 10−8erg cm−2 s−1.

(2)
The X-ray luminosity (D is distance, 1 kpc ≈ 3× 1021 cm):

L = 4πD2F = 4π(15× 1021)2 1.7× 10−8 = 4.8× 1037 erg s−1. (3)



6.2: Consider photon gas with the intensity given by the Planck (blackbody) dis-
tribution of temperature of kTBB = 0.33 keV. The photons are penetrating into a hot
medium with electron temperature kTe = 100 keV and are being Compton up-scattered.
Compute how many scatterings are needed for a typical photon to achieve the final energy
Ef = 100 keV.

Solution:
Number of scatterings Nsca can be estimated assuming the energy in each scattering

grows as ∆E/E = 4kTe/(mec
2), so to get to the final energy we need

Ef = Eseed(1 + ∆E/E)Nsca . (4)

Peak of the blackbody spectrum with seed photons is at ∼ 3kTBB = 1 keV. To get to
100 keV, we need

Nsca = log(Ef/Eseed)/ log(1 + ∆E/E) ≈ log(100)/ log(1 + 4× 100/511) ≈ 8. (5)

6.3: Consider an accretion disc illuminated by an isotropic X-ray source located 30 km
above the centre of the disc. The disc has a hole in the centre with radius of 100 km,
but otherwise is flat and extends to infinity. Assuming flat space, calculate the reflection
factor R = Ω/2π from such a disc, where Ω is the solid angle occupied by the disc as
viewed from the X-ray source.

Solution:
Let us introduce spherical coordinate system with the z-axis directed from the X-ray

source towards the disc centre. The solid angle of the disc with the hole is given by the
integral:

Ω =
∫ 2π

0
dφ
∫ cos θ0

0
d cos θ = 2π cos θ0, (6)

where θ0 is the polar angle at which the disc edge is seen from the X-ray source with

tan θ0 =
100

30
≈ 3.3. (7)

Thus the reflection factor is

R =
Ω

2π
=

2π cos θ0

2π
= cos θ0 =

√
1

1 + tan2 θ0

≈ 0.3. (8)
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6.4: Consider a light curve with the counts per bin sk, k = 1, ..., N . Show the relation

rms2 ≡ s2 − s2

s2
= ∆f

∑
j>0

P (fj), (9)

where P (fj) = 2|Sj|2/(R2T ), R = sN/T - mean count rate per second, fj = j/T ,
∆f = 1/T ,

Sj =
N−1∑
k=0

ske
2πijk/N , j = −N/2, ..., N/2− 1, (10)

is the discrete Fourier transform of the count rate and

s =
1

N

N∑
k=1

sk, s2 =
1

N

N∑
k=1

s2
k. (11)

Solution:
First, let’s expand and simplify the right-hand side:

∆f
∑
j>0

P (fj) = ∆f
2

R2T

∑
j>0

|Sj|2 = ∆f
2T 2

s2N2T

∑
j>0

|Sj|2 =
2

s2N2

∑
j>0

|Sj|2. (12)

Now, from the condition that the all counts in the light curve are real numbers, we deduce
that the Fourier amplitudes with subscripts j and −j obey the condition S∗−j = Sj (where
∗ denotes complex conjugation). Hence, the summation over positive frequencies can be
rewritten as

2
∑
j>0

|Sj|2 =
∑
j>0

|Sj|2 +
∑
j<0

|Sj|2 =
∑
j

|Sj|2 − S2
0 . (13)

Using Parseval’s theorem
∑
k

s2
k =

1

N

∑
j

|Sj|2 and substituting the expression for S0, we

get

∆f
∑
j>0

P (fj) =
N
∑
k s

2
k − (

∑
k sk)

2

s2N2
=
s2 − s2

s2
. (14)
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6.5: Prove a relation between the discrete autocorrelation function and the power-
density spectrum:

Ap =
1

N

N/2−1∑
j=−N/2

|Sj|2e−2πijp/N (15)

using the formal definition
Ap ≡

∑
k

sksk−p (16)

and the orthogonality condition

N/2−1∑
j=−N/2

e2πij(m−n)/N = Nδmn. (17)

Solution:
Using the inverse Fourier transforms

sk =
1

N

∑
j

Sje
−2πijk/N , (18)

we get

Ap =
1

N

∑
k

∑
j

Sje
−2πijk/N

∑
j′
Sj′e

−2πij′(k−p)/N =
1

N2

∑
k

∑
j

∑
j′
SjSj′e

−2πi(kj+kj′−pj′)/N .

(19)
From orthogonality condition we have∑

k

e2πik(j+j′)/N = Nδj,−j′ . (20)

Using the Kronecker symbol, we get:

Ap =
1

N

∑
j

∑
j′
SjSj′e

−2πi(−pj′)/Nδj,−j′ , (21)

the summation
∑
j′ becomes trivial, everywhere instead of j′ we need to substitute −j.

Using the property S−j = S∗j , we get

Ap =
1

N

∑
j

SjS
∗
j e
−2πipj/N =

1

N

∑
j

|Sj|2e−2πijp/N . (22)

4



6.6: Consider the shot noise model with the shot profile at soft energies described by

gs(t) = e−t/τs , t ≥ 0. (23)

(a) Compute the PDS of the light curve.
(b) Let the hard photons have a similar shot profile with time-constant τh = γτs. Assume
that the start time of the shots in both energies coincide. Compute the phase and time
lags, ∆φ(f) and ∆t(f). Are they positive or negative? Explain.
(c) Compute the low (f � 1/2πτs) and the high (f � 1/2πτs) frequency limits for ∆φ(f)
and ∆t(f).

Solution:
(a) The continuous Fourier transform for soft photon light curve is

Gs(f) =
∫ ∞

0
e−t/τse2πiftdt =

e2πift−t/τs

2πif − 1/τs

∣∣∣∣∣
∞

0

=
τs

1− 2πifτs
. (24)

The PDS is

PDS = G∗sGs =
τs

1 + 2πifτs

τs
1− 2πifτs

=
τ 2
s

1 + (2πfτs)2
. (25)

(b) For the hard photons, the Fourier transform is

Gh(f) =
τh

1− 2πifτh
=

γτs
1− 2πiγfτs

. (26)

The phase lags are computed from the cross spectrum. For the hard lags:

CS = G∗sGh =
τs

1 + 2πifτs

γτs
1− 2πifγτs

=
γτ 2

s (1 + γ(2πfτs)
2 + i(γ − 1)2πfτs)

[1 + (2πfτs)2][1 + (2πfγτs)2]
. (27)

The phase lags can be computed as

tan ∆φ =
Im(CS)

Re(CS)
=

(γ − 1)2πfτs
1 + γ(2πfτs)2

. (28)

For γ > 1, the lag is positive, i.e. the hard band lags behind the soft band. Time lags
are ∆t = ∆φ/(2πf). At low frequencies, f � 1/(2πτs), ∆φ(f) ∼ (γ − 1)2πfτs � 1
and ∆t(f) ∼ (γ − 1)τs=const. At high frequencies, f � 1/(2πτs), ∆φ(f) ∼ (γ −
1)/(γ2πfτs)� 1 and ∆t(f) ∼ (γ − 1)τs/γ(2πfτs)

2 ∝ 1/f 2. The absolute value of phase
lag reaches maximum when 2πfτs = 1/

√
γ and it is tan ∆φmax = (γ − 1)/2

√
γ.
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