HIGH ENERGY ASTROPHYSICS
Compulsary Home Exercises. Problem set 6. Solutions.

Problems

6.1: The X-ray spectrum of an accreting black hole GX 3394 is shown in Fig. 1. Es-
timate the photon spectral index I" of the Comptonized component (shown with dashed
line) in the standard X-ray band 2-10 keV. Estimate the electron temperature that is
needed to produce the observed spectrum by Comptonization. Compute the X-ray lumi-
nosity of the object, assuming the distance of 5 kpc.
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Figure 1: Broad-band spectrum of GX 3394 as observed by Ginga and OSSE/CGRO in
1991 (from Zdziarski et al. 1998).

Solution:
Let us first estimate the photon index:
r — 1 dlog Fp 5 dlog(EFg) _ 9 log[EFE(10keV)] — log[EFE(2keV)]
B dlogE dlogE log 10 — log 2
log[EFE(10k EFe(2k .
_ o lelEFp(10keV)/EFp2keV)] ) 03 ) o (1)
log(10/2) 0.7

The electron temperature can be estimated from the characteristic energy of the cut-off
in the spectrum, i.e. approximately 100 keV (or 10° K).

The flux can be calculated by integrating over the flux energy distribution, Fr =
FyE'~T, where F is in keV and Fy ~ 107 erg cm ™2 s~ 1:
9T 100
~ 17 x Fy = 1.7 x 107 %erg em 2571

(2)

100 100
ja / FrdE — / RE'"TIE = F,
0 0 2—-T 0

The X-ray luminosity (D is distance, 1 kpc ~ 3 x 10*! cm):
L=47D*F = 47(15 x 10°")2 1.7 x 107® = 4.8 x 10% erg s~ . (3)



6.2: Consider photon gas with the intensity given by the Planck (blackbody) dis-
tribution of temperature of kTgg = 0.33 keV. The photons are penetrating into a hot
medium with electron temperature k7, = 100 keV and are being Compton up-scattered.
Compute how many scatterings are needed for a typical photon to achieve the final energy
Er =100 keV.

Solution:

Number of scatterings Ny, can be estimated assuming the energy in each scattering
grows as AE/E = 4kT,/(m.c?), so to get to the final energy we need

Et = Fueoa(1 + AE/E)Nses, (4)

Peak of the blackbody spectrum with seed photons is at ~ 3kTsg = 1 keV. To get to
100 keV, we need

Niea = 108(Et/ Eved)/ 108(1 + AE/E) ~ 1og(100)/ log(1 + 4 x 100/511) ~ 8. (5)

6.3: Consider an accretion disc illuminated by an isotropic X-ray source located 30 km
above the centre of the disc. The disc has a hole in the centre with radius of 100 km,
but otherwise is flat and extends to infinity. Assuming flat space, calculate the reflection
factor R = /27 from such a disc, where  is the solid angle occupied by the disc as
viewed from the X-ray source.

Solution:

Let us introduce spherical coordinate system with the z-axis directed from the X-ray
source towards the disc centre. The solid angle of the disc with the hole is given by the
integral:

27 cos 6
Q:/ dqb/ Odcos@zQWCOSQO, (6)
0 0
where 6, is the polar angle at which the disc edge is seen from the X-ray source with
100
tanfy = — ~ 3.3. 7
an to 30 (7)
Thus the reflection factor is
Q 27 cos b 1
R=_—_—-=22""9_ Oy = | ———— ~ 0.3. 8
or 2 T 1+ tan?6, ®)



6.4: Consider a light curve with the counts per bin s;, k=1, ..., N. Show the relation

N /) )

>0

I‘IHS2 =

where P(f;) = 2|5;|?/(R*T), R = SN/T - mean count rate per second, f; = j/T,
Af=1/T,
N_l ..
5= X s = NJ2 L N2 (10)
k=0

is the discrete Fourier transform of the count rate and

X 1y,
SZNkzzjlsk, s :NZsk. (11)

k=1

Solution:
First, let’s expand and simplify the right-hand side:

2 272 2
AfY P(fj) = Af por YoISiP = Afwz |1S;” = WZ 1S (12)

§>0 3>0 3>0 3>0

Now, from the condition that the all counts in the light curve are real numbers, we deduce
that the Fourier amplitudes with subscripts j and —j obey the condition S* ; = S; (where
* denotes complex conjugation). Hence, the summation over positive frequencies can be

rewritten as
23 IS5 = ISP + XIS = Y0 1S5* = S5 (13)

>0 >0 <0 j
1
Using Parseval’s theorem »_ sj = N > "15;]* and substituting the expression for Sy, we
k J

get o
B NY st — (g sk)? 82 — 32

52

(14)



6.5: Prove a relation between the discrete autocorrelation function and the power-
density spectrum:

1 N2 -
A= X ISfem (15)
j=—N/2
using the formal definition
Ap = Z SkSk—p (16)
k
and the orthogonality condition
N/2—-1 -
SO PN = NG, (17)
j=—NJ/2

Solution:
Using the inverse Fourier transforms

1 .

Sp = — Z Sje—szjk/N’ (18)
N J
we get
1 . i 1 I
A, = NZZSJ@ : Jk/NZSj,e 2mij'(k—p)/N _ ﬁZZZSjSJ”e 2mi(kj+kj'—ps')/N

kg 7 kg g ( )
19

From orthogonality condition we have

3" 2T RGHIIN = N§; i, (20)
k
Using the Kronecker symbol, we get:

1 —2mi(—pj')/N
Ap =5 22 55y RNy, (21)
Vi
the summation 3, becomes trivial, everywhere instead of j* we need to substitute —j.

Using the property S_; = 57, we get

1 - 1 g
Ap _ N Z Sjs;ef%zpj/N _ N Z ‘Sj‘2672m]p/N. (22)
J J



6.6: Consider the shot noise model with the shot profile at soft energies described by
gs(t) = e ™ t>0. (23)

(a) Compute the PDS of the light curve.
(b) Let the hard photons have a similar shot profile with time-constant 73, = 7. Assume
that the start time of the shots in both energies coincide. Compute the phase and time
lags, A¢(f) and At(f). Are they positive or negative? Explain.
(c¢) Compute the low (f < 1/277,) and the high (f > 1/277,) frequency limits for A¢(f)
and At(f).

(a) The continuous Fourier transform for soft photon light curve is

2mift—t/Ts |°

€ Ts

Gi(f) = [ etimermitta = - . 24
(/) o © ‘ 2mif —1/7, 1—2mifr, (24)
The PDS is )
T, T, T,
PDS = GG, = . . = . . 25
s L+ 2mifrs 1 —2mifrs 14 (27f7s)? (25)
(b) For the hard photons, the Fourier transform is
Th VTs
G prm— = . 26
n(f) 1—=2mifm, 1 —2mivfrs (26)
The phase lags are computed from the cross spectrum. For the hard lags:
s s (1 o2 fre)? 4+ i(y — 1)27 fr,
08 = GGy = TS g _ (L @2 fr)? +i(y — 1)2nf7s) (27)
1+ 27mifry 1 — 2mifryTs (14 (27w f7s)?][1 + (27 fy7s)?]

The phase lags can be computed as

_Im(CS)  (y—1)2nfT,
A0 = plE8) T 1@ n) (28)

For v > 1, the lag is positive, i.e. the hard band lags behind the soft band. Time lags
are At = A¢/(2nf). At low frequencies, f < 1/(27n7), AP(f) ~ (v — 1)2nfr, < 1
and At(f) ~ (y — 1)rs=const. At high frequencies, f > 1/(277s), Ao(f) ~ (v —
1)/(v2r frs) < 1 and At(f) ~ (v — 1)75/7(27f75)* o< 1/ f2. The absolute value of phase
lag reaches maximum when 27 f7, = 1/,/7 and it is tan Agpa = (v — 1)/24/7.



