
HIGH ENERGY ASTROPHYSICS
Compulsary Home Exercises. Problem set 7. Solutions.

Problems

7.1: Derive formulae for rotational velocity, angular velocity and specific angular
momentum in pseudo-Newtonian potential. Show that dl/dr = 0 at r = 3RS. Here
RS = 2GM/c2 is the Schwarzschild radius.

Solution:
Paczynski-Wiita potential has the form

Φ = − GM

r −RS

, (1)

where RS = 2GM/c2. Force per unit mass

f = −dΦ

dr
=

GM

(r −RS)2
.

Circular velocity may be obtained by balancing this force with centrifugal force of inertia
v2/r. This yields

v =
√
rf =

√
GMr

r −RS

. (2)

Rotation frequency is

Ω = v/r =

√
GM√

r(r −RS)
, (3)

and net angular momentum

l = rv =

√
GMr3

r −RS

. (4)

To calculate the position of the minimum of Keplerian momentum, let us differentiate l.

dl

dr
=

r − 3RS

2(r −RS)2

√
GMr. (5)

The derivative becomes zero when r = 3RS.



7.2: Compute the radiative efficiency

ε ≡ L

Ṁc2
= −

v2
ϕ(r∗)

2c2
− φ(r∗)

c2

of the accretion disc around a black hole for Newtonian φ = φN and pseudo-Newtonian
(Paczynski-Wiita) φ = φPN potentials. Here r∗ = 3RS. At what accretion rate Ṁ the
black hole should accrete to produce Eddington luminosity? Compute the numerical value
of this Ṁ (in g/s and M�/year) for 10 M� and 108M� black holes.

What is the luminosity of a 10 M� black hole accreting at a rate Ṁ = LEdd/c
2? What

is the corresponding luminosity of a quasar of 108M�?
Solution:
For Newtonian potential v2

ϕ(r) = GM/r and φ(r) = −GM/r. Thus the Newtonian
efficiency for r∗ = 3RS is

εN = − GM
2r∗c2

+
GM

r∗c2
=

GM

2r∗c2
=

1

12
. (6)

For Paczynski-Wiita’s potential, the potential according to equation (1) is φ(r∗) =

−GM/(r − RS) = −c2/4 and, according to equation (2), the velocity vϕ(3RS) =
√

6
4
c.

Hence

εPW = − 3

16
+

1

4
=

1

16
. (7)

The Eddington accretion rate can be defined as

εṀEddc
2 = LEdd =

4πGMc

κ
, (8)

or

ṀEdd =
4πGM

κc
1

ε
. (9)

For M = 10M� (and taking opacity κ = 0.34), for the Paczynski-Wiita potential we get:

ṀEdd ' 2.6× 1019g s−1 ' 4.1× 10−7M� yr
−1. (10)

Using Newtonian potential results in a 30% smaller value, as Newtonian efficiency is 4/3
times larger. For a supermassive black hole with M = 108M�,

ṀEdd ' 2.6× 1027g s−1 ' 4.1M� yr
−1. (11)

The luminosity of a black hole accreting at a rate Ṁ = LEdd/c
2 is smaller than the

Eddington limit by the efficiency factor ε (say 1/16). Thus for a 10 M�, the luminosity is
10×1.3×1038/16 = 0.8×1038 erg/s. For a quasar of 108M�, the corresponding luminosity
is 0.8× 1045 erg/s.
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7.3: Compute the radius (in units of RS) where the effective temperature of standard
accretion disc reaches the maximum for Newtonian and pseudo-Newtonian potentials.
Compute the numerical value of the maximum temperature (in K and keV) for a 10 M�
black hole accreting at a rate Ṁ = LEdd/c

2. How the maximum temperature scales with
the mass of the central object? What would be the corresponding temperature for a
1.4M� neutron star and a 108M� quasar? How the maximum temperature scales with
the accretion rate?

Solution:
Effective temperature is defined by the local energy balance

2σSBT
4
eff = Q+ = − 1

2πr

dΩ

dr
[l(r)− lin] Ṁ. (12)

In Newtonian case, rotation is Keplerian, ΩN =
√
GM/r3. In the pseudo-Newtonian

case, rotation profile is given by equation (3). In Newtonian case, the specific angular
momentum l =

√
GMr, and for the Paczynski-Wiita potential l is given by equation (4).

Zero-torque boundary condition at the last stable orbit is assumed, hence lin = l(rin =
3RS).

In Newtonian case, we get

2σSBT
4
N(r) = Q+ =

3

2

√
GM

r3

Ṁ

2πr2

(√
GMr −

√
GMrin

)
=

3

4π

GMṀ

r3

(
1−

√
rin

r

)
.

(13)
Effective temperature in Newtonian case

Teff, N(r) =

(
3

8πσSB

GMṀ

r3

(
1−

√
rin

r

))1/4

. (14)

By differentiating T 4
eff , one can find the position of the temperature maximum:

d

dr

(
1

r3

(
1−

√
rin

r

))
=

1

r4

(
−3 +

7

2

√
rin

r

)
, (15)

that suggests an extremum at

rmax,N =
49

36
rin =

49

12
RS =

49

6

GM

c2
. (16)

Maximal temperature is

Tmax, N(rmax,N) =

(
3

8πσSB

GMṀ

r3

(
1−

√
rin

r

))1/4

= 0.488T∗, (17)

where

T∗ =

(
3

8πσSB

GMṀ

r3
in

)1/4

=

(
3

8πσSB

GMṀc6

63G3M3

)1/4

=

(
1

9× 64πσSB

Ṁc6

G2M2

)1/4

. (18)
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For the mass accretion rate Ṁ = LEdd/c
2,

T∗ =
1

2
√

3

(
c5

GMκσSB

)1/4

= 1.6× 107K

(
M

M�

κ
0.34

)−1/4

. (19)

and thus

Tmax, eff(rmax,N) = 7.8× 106K

(
M

M�

κ
0.34

)−1/4

= 0.67 keV

(
M

M�

κ
0.34

)−1/4

. (20)

As we can see, Tmax, N ∝ M−1/4. For M = 1.4M� (and κ = 0.34), Tmax, N ' 0.62 keV,
for a 10M� black hole, Tmax, N ' 0.38 keV, and for a supermassive black hole with
M = 108M�, Tmax, N ' 7.8× 104K. Note, that for a mass accretion rate that would give
the Eddington luminosity, i.e. Ṁ = LEdd/(ε c

2), the maximum temperature is larger by
a factor ε−1/4 ∼ 2.

For the Paczynski-Wiita case,

dΩ

dr
= − 3r −RS

2(r −RS)2

√
GM

r3
= −

√
GM

R5
S

3x− 1

2(x− 1)2x3/2
. (21)

where x = r/RS. The specific angular momentum term is

l(r)− l∗ =

√
GMr3

r −RS

−
√
GM33R2

S

2RS

=
√
GMRS

[
x3/2

x− 1
− 3
√

3

2

]
. (22)

To estimate the position of the temperature maximum, let us differentiate

Q+(x) ∝ 1

r

dΩ

dr
(l(r)− l∗) ∝

(3x− 1)

x(x− 1)3

(
1− 33/2

2

x− 1

x3/2

)
(23)

as a function of x, ignoring the constant multiplier. Numerical differentiation of this
expression yields xmax ' 4.75. This is somewhat larger than the value xmax,N = 49/12 '
4.08 we got for the Newtonian case.
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7.4: Show that the prescription of the viscous stress trφ = αP is equivalent to the
prescription

ν =
2

3
αcsH.

Solution:
The viscous stress for pure Keplerian rotation is

trϕ = −νρrdΩ

dr
= νρ

3

2
Ω, (24)

This implies for viscosity

ν =
2

3

trϕ
ρΩ

. (25)

According to (local) α-prescription, we can replace trϕ = αP , and

ν =
2

3
α
P

ρ

1

Ω
. (26)

Hydrostatics in vertical direction

dP

dz
= −Ω2ρz, (27)

that approximately gives
P ' Ω2H2ρ, (28)

or c2
s ' P/ρ ' H2Ω2. That allows to re-write equation (26) as

ν ' 2

3
αH(HΩ) ' 2

3
αcsH. (29)
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7.5: (a) How long (in years) a stellar mass black hole (of say M = 7M�) has to
accrete matter at the Eddington limit (i.e. producing Eddington luminosity) in order to
reach a luminosity L = 1047 erg s−1? To determine this, write down and solve a simple
differential equation for how the mass changes with time due to accretion. Assume the
radiative efficiency of 0.1. Compare the time scale you get to the Hubble time (the age
of the Universe).
(b) If a galaxy with 1011 stars contains a dead quasar that grew as in a previous part (a)
until reaching 108M�, compare its total gravitational energy release to the energy release
due to thermonuclear burning (in stars) during the time it took for the black hole to grow.
You may take all stars to have M = 1M� (and L = L�).
(c) A quasar has luminosity L = 1047 erg s−1 and varies on the time-scale of a day. Deduce
a mass and a radius for the emitting region using Eddington limit and the light crossing
time arguments. How does the implied density compare with that of the Earth? What is
the mass accretion rate assuming the radiative efficiency of 10%? How does the amount
of mass accreted per second compare with the mass of the Earth?

Solution:
The differential equation in question may be written as an equation for mass

dM

dt
= Ṁ, (30)

where Ṁ should trace the instantaneous Eddington limit for the black hole (see eq. 9)

Ṁ =
LEdd

εc2
=

4πGM

εκc
, (31)

where ε = 0.1 is the accretion (radiative) efficiency and we can take κ = 0.34. This is an
equation linear in lnM , and its solution has the form

M(t) = M0e
t/tEdd , (32)

where
tEdd =

εκc
4πG

' 1.2× 1015 s ' 4× 107yr (33)

is Eddington-limited e-fold time for mass (and luminosity). The accretion luminosity will
grow proportionally to M . L = 1047erg s−1 corresponds to a mass of

Mfinal =
Lκ

4πGcε
' 7× 108M�. (34)

The time required to gain a factor of 108 in mass is

t8 ' tEdd ln 108 ' 18.4 tEdd ' 7.4× 108yr. (35)

This is still about a factor of 20 smaller than Hubble time.
(b) Growing to 108M� would require ∆t ' 6.5 × 108yr. The energy released by

accretion is
∆Ea = ε (M −M0) c2 ' εMc2 ∼ 2× 1061erg. (36)
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The total output of the stellar light is, on the other hand,

∆E∗ = NL�∆t ' 8× 1060erg, (37)

that is roughly the same order of magnitude.
(c) As we have seen, the mass of the quasar having the Eddington limit equal to

1047erg s−1 is about 7× 108M�.
The variability time scale, if interpreted as a light-travel time, allows to estimate the

radius of the emitting region as

R ' c∆t ' 2.6× 1015cm. (38)

At the same time, Schwarzschild radius for the considered mass is about 1014cm. The
mean density inside the estimated radius is M/R3 ∼ 8 × 10−5g cm−3, which is orders of
magnitude below Earth’s density.

The mass accretion rate

Ṁ =
L

εc2
' 1027g s−1, (39)

that is about 15% of the mass of the Earth per second.
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