
HIGH ENERGY ASTROPHYSICS
Compulsary Home Exercises. Problem set 8. Solutions.

Problems

8.1: The Imaging X-ray Polarimeter Explorer (IXPE) has observed the central part of
the Milky Way (Marin et al. 2022), in particular a molecular cloud Sgr A, which is
situated at a projected distance of 25 pc from Sgr A*. The detected X-rays are polarized,
with the polarization degree P = 31 ± 11% and the polarization angle perpendicular to
the direction to Sgr A*. Polarization is likely produced as a result of single Thomson
scattering of photons that originated from a short X-ray flare of Sgr A* some time ago.
Estimate the time when this flare has occurred.
Hint: The polarization degree for Thomson scattering is P = 100%× (1− µ2)/(1 + µ2),
where µ = cos θ and θ is the scattering angle.

Solution: From the observed polarization degree we can estimate the scattering angle
(here P is measured in the range [0,1]):

µ2 =
1− P
1 + P

± 2σP
(1 + P )2

=
1− 0.31

1 + 0.31
± 2× 0.11

(1 + 0.31)2
= 0.53± 0.13, (1)

where σP is the uncertainty of P . Thus for µ we get two solutions

µ = ±0.73± 0.09. (2)

The time delay is
τ = (1− µ)R/c, (3)

where R is the distance of Sgr A cloud from Sgr A*. On the other hand, from the projected
distance R sin θ = R

√
1− µ2 = 25 pc, we get R for given µ. Thus we get for the time

delay

τ =
1− µ√
1− µ2

25 pc

c
= 81.5 yr

1− µ√
1− µ2

= 32± 6 yr, or τ = 207± 40 yr. (4)

This gives you an estimate how long time ago the flare occurred. The shorter time
can be rejected, because Japanise ASCA satellite has observed the center of our Galaxy
about 30 years ago and Sgr A* was not bright. Thus the only solution is that the center
of our Galaxy, Sgr A*, was bright about 200 year ago.



8.2: In Figure 2, the infrared SED of a distant quasar at z = 5.34 is shown. Assuming that
the infrared bump at about 100 microns is produced by an optically and geometrically
thick torus consisting of molecular gas and dust, estimate the parameters of the torus:
its bolometric luminosity, size, and the range of temperatures in the reference frame of
the quasar. What should the variability of the infrared component look like? Estimate
the minimal possible variability time scale and the time lag with respect to the big blue
bump emission component.
Hints: To estimate the luminosity, you can use any of the freely available cosmology
calculators (note the cosmological parameters!) to convert the redshift to luminosity
distance. Assume that the infrared emission is reprocessed ultraviolet emission.

Figure 1: Spectral energy distribution of J1340+2813. Taken from Leipski et al. (2012).

Solution:
Wavelengths are already given in the rest frame of the quasar. Planck function (mul-

tiplied by frequency) νBν = λBλ has a maximum at νmax ' 4kT/h or λmax = c/νmax =
hc/4kT , that allows to estimate the temperature range of the dust as T ∼ hc/4kλmax '
100−300 K. Note that the emission of the dust is evidently broader than the colder thermal
component with T = 68 K outlined in the plot, that suggests a spread in temperatures.

The flux in the original paper is the flux in the reference frame of the observer, related
to the luminosity of the object as

F =
L

4πD2
L

, (5)

where the luminosity distance for the given redshift is DL ' 50 Gpc. To convert
approximately νFν to bolometric flux, note that the width of the Planck function is
about an order of magnitude. More precisely, integration of the Planck function yields∫ +∞
0

x3/(ex − 1)dx ' 6.5, while the maximal value of x4/(ex − 1) is about 5. Hence, the
maximal value of the flux may be used as a proxy for the bolometric flux to an accuracy
much better than the accuracy of our approximation of the SED by a Planck function.

For the luminosity distance of 50 Gpc, 4πD2
L ≈ 3 × 1059 cm2. Taking the maximal
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flux (νFν)max = (2− 3)× 10−13erg cm−2 s−1, we arrive at the bolometric luminosity of

L ≈ (νFν)max 4πD2
L ≈ (6− 10)× 1046erg s−1. (6)

Combining the luminosity with the temperature allows to estimate the effective radiating
area of the torus as A ' L/σSBT

4, where σSB is Stephan-Boltzmann’s constant. The
shape of the torus is still unknown. If its two dimensions are comparable to each other,
we get the following estimate for its spatial size

R '
√
L/σSBT 4 ' 1021 cm ' 300 pc, (7)

with the uncertainty of about half an order of magnitude. In terms of light travel time,
this corresponds to several hundreds or thousands of years.

The obtained value of & 100 pc is large compared to the dusty tori observed in low-z
quasars and Seyfert galaxies, where dust temperatures may be significantly higher (up
to ∼1500 K) and the spatial sizes are fractions of a parsec to parsecs. Reverberation
mapping for dust emission is possible if the light travel time is about several years or
smaller.
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8.3: The apparent velocity (in units of c) of a blob moving with relativistic velocity v is

βapp =
β sin θ

1− β cos θ
, (8)

where β = v/c and θ is the angle the velocity makes to the line of sight. Compute the
maximum possible apparent velocity for a given β. Show that there is minimum velocity
β = βmin = βapp/

√
1 + β2

app required to produce the apparent velocity βapp. Show that
this minimum corresponds to the angle between the blob velocity and the line of sight
tan θmin = 1/βapp.

Solution:
Take a derivative of Eq. (8) and find extremum:

dβapp
dθ

= β
cos θ − β

(1− β cos θ)2
. (9)

The derivative is zero when cos θ = β and the maximum velocity is

βapp,max =
β
√

1− β2

1− β2
=

β√
1− β2

= Γβ, (10)

where Γ is the corresponding Lorentz factor.
Now express β via βapp:

β =
βapp

sin θ + βapp cos θ
. (11)

The derivative
dβ

dθ
= −βapp

cos θ − βapp sin θ

(sin θ + βapp cos θ)2
(12)

reaches zero when tan θ = tan θmin = 1/βapp and it is easy to see that β reaches a minimum
here. Noting that sin θmin = 1/

√
1 + β2

app and cos θmin = βapp/
√

1 + β2
app, we get from

Eq. (11):

βmin =
βapp

1√
1+β2

app

+
β2
app√

1+β2
app

=
βapp√

1 + β2
app

. (13)

The same result can be obtained directly from Eq. (10), expressing β via βapp,max.
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8.4: The observed proper motion of approaching and receding blobs ejected from GRS
1915+105 are µa = 17.6 mas day−1 and µr = 9.0 mas day−1, respectively. Assuming the
distance to the source of D = 12 kpc, compute the velocity β = v/c and the angle θ
between line of sight and jet direction.

Solution:
The proper motion for an approaching and receding part of the jet are

µa =
β sin θ

1− β cos θ

c

D
, µr =

β sin θ

1 + β cos θ

c

D
. (14)

Since arcsec×pc= 1 AU= 1.5 × 1013 cm, and mas×day−1 × D/c = 10−3 × 1.5 × 1013 ×
12000/3×1010×86400 = 0.06944, we get the respective apparent dimensionless velocities

βaapp =
β sin θ

1− β cos θ
= 0.06944× 17.6 = 1.222, (15)

βrapp =
β sin θ

1 + β cos θ
= 0.06944× 9.0 = 0.625. (16)

Noting that

β cos θ =
βaapp − βrapp
βaapp + βrapp

, β sin θ = 2
βaappβ

r
app

βaapp + βrapp
, (17)

we get

tan θ = 2
βaappβ

r
app

βaapp − βrapp
≈ 2.56, (18)

i.e. θ ≈ 69 deg and

β =
√

(β cos θ)2 + (β sin θ)2 =

√
(βaapp − βrapp)2 + (2βaappβ

r
app)2

βaapp + βrapp
≈ 0.89. (19)
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8.5: The jet in the nearby active galaxy M87 is probably inclined at 40o to the line of
sight. Superluminal motion has been seen by radio astronomers within the core of the jet
with vapp = 2.5c. Estimate the velocity of the jet β, the bulk Lorentz factor of the jet Γ
and the Doppler factor for each side of the jet. Note that even the approaching side has
a Doppler factor smaller than 1; what is the physical reason for that?

Solution:
Substituting βapp = 2.5 and θ = 40 deg to Eq.(11) we get

β =
βapp

sin θ + βapp cos θ
= 0.977. (20)

Thus Γ = /
√

1− β2 = 4.7, and the Doppler factors for the approaching and receding jets:

Da =
1

Γ(1− β cos θ)
= 0.85, Dr =

1

Γ(1 + β cos θ)
= 0.12. (21)

For small θ and large Γ, using expansions cos θ ≈ 1−θ2/2 and β =
√

1− 1/Γ2 ≈ 1−1/2Γ2,
the Doppler factor is

D ≈ 2Γ

1 + (θΓ)2
. (22)

We see that when θΓ� 1, the Doppler factor is large D ∼ Γ. In our case, the inclination
θ = 40 deg is much larger than 1/Γ = 0.21 rad, i.e. 12 deg. Therefore even the approaching
jet Doppler factor is smaller than unity.
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8.6: (a) Show that an observer moving with respect to a blackbody field of temperature
T will see blackbody radiation with a temperature that depends on the angle according
to

Tobs =
T

Γ(1− β cos θ′)
, (23)

where θ′ is the angle between direction of motion and observation in the observer’s frame.
(b) Cosmic microwave background radiation (T = 2.7 K) shows the anisotropy due to solar
motion relative to that radiation. Estimate solar velocity if the anisotropy of radiation
intensity at λ = 3 cm is

Imax − Imin

Imax + Imin

≈ 10−3. (24)

Solution:
Due to the Doppler effect the photon frequency ν as measured in the external frame

can be related to the frequency ν ′ as measured in the comoving frame as

ν =
ν ′

Γ(1− β cosα)
= ν ′ Γ(1 + β cosα′) = Dν ′, (25)

where α and α′ are the angles between the velocity vector of the observer β and the
photon momentum in the external and comoving frames, respectively, β = v/c is the
observer velocity relative to the blackbody field, Γ = 1/

√
1− β2 is the corresponding

Lorentz factor, and D = Γ(1 + β cosα′) is the Doppler factor. Noting that α′ = π − θ′,
the photon frequency as measured in the comoving frame is

ν ′ =
ν

Γ(1 + β cosα′)
=

ν

Γ(1− β cos θ′)
=
ν

D
. (26)

The observed specific intensity (in comoving frame of the observer) is related to the
intensity in the external frame (where CMB radiation is described by the Planck function
Bν(T )) as

Iobsν′ = D−3Bν(T ) =
ν ′3

ν3
2hν3/c2

exp(hν/kT )− 1
=

2hν ′3/c2

exp[hν ′D/kT ]− 1
= Bν′(Tobs), (27)

where now the temperature of the blackbody

Tobs =
T

D
=

T

Γ(1− β cos θ′)
. (28)

For the blackbody of 2.7 K, the wavelength 3 cm lies in the Rayleigh-Jean part of the
spectrum, i.e. λ = 3 cm � λmax = 0.29/T = 0.11 cm, where the Planck function scales
linearly with the temperature Bν ≈ 2(ν/c)2kT . Therefore, variation of the intensity
at a given wavelength follows variations of the temperature. The observed temperature
has maximum and minimum of ≈ T/Γ(1 − β) and T/Γ(1 + β) at cos θ′ = 1 and −1,
respectively. The intensity anisotropy is then

Imax − Imin

Imax + Imin

= 10−3 ≈
1

1−β −
1

1+β

1
1−β + 1

1+β

= β. (29)

Thus the solar system velocity is v = βc ≈ 300 km/s.
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