/Collision Cross section O

Point @
atoms

RADIATIVE PROCESSES in ASTROPHYSICS

. Introduction

. Basics of radiative transfer

. Radiation fields

. Radiation from moving charges

(|
2
3
4
5. Relativistic covariance and kinematics
6. Bremsstrahlung

7

8

0.

1

. Synchrotron radiation
. Compton scattering
Pair production
0. Cherenkov radiation TURKU 2026




BASICS of RADIATIVE TRANSFER

Definitions

Electromagnetic SPectrum

refraction, diffraction § interference indicate /\ — / 1
em-radiation behaves as waves: —
photo-electric effect shows energy is givew to or

taken from radiation field in discrete quanta, E — hl/

or photons, with energy:

For thermal energy ewmitted by matter in thermo-

dywnamic equilibrivum, the characteristic photon T _ E / k
energy is related to the temperature of the emitting _

material:




BASICS of RADIATIVE TRANSFER
Definitions

Macroscol:)ic DescriPtion of Radiation

describe the energy flux associated with electro-magwnetic
radiation.

The relationship between intensity and the energy flux,
momentum flux, radiation pressure and energy density.

Solid Ang|e
dQY=dA | /r?
- . thot:%dﬂzilﬂ'Sl“



BASICS of RADIATIVE TRANSFER
Definitions

Descri Ption of a Radiation Field

dE

D) dmsmodods The amount of energy that the
rays carry Lnto cone L timee dt

Figure 9.1 Intensity I,

dE
d)\ dt dA cosf dS)

dE = I, d\ dt dA cosf dS) = I)\d/\dtdAcosﬁsianHdgb

1
<I)\> — /I)\dQ - - / I)\S’tneded(b
47 47 9—0

Average intensity of rays is defined: [y =

Solid angle in spherical

For isotropie radiation field <I A\ > =1 A coordinates dQ=sinfddOd¢



BASICS of RADIATIVE TRANSFER
Definitions

transport of energy via
rdlahon 5pec:|ﬁc:

dE

1,(Q) dA dt dQ dv

erg/cm?/s/steradian/H z

The intensity provides a fairly complete description of the
transport of energy via radiation.



BASICS of RADIATIVE TRANSFER

Moments of intensity

Constancy of SPec:h(ic: Intensity in vacuum
Cownsider the energy carried by that set of rays passing through both dA, dA,

dEl == IVl dAldlL dQldl/l = dEQ = L,QdAth dQQdVQ
dledAz/Rz, szZdA 1/R2

ViI= Vv, = Loy = Lo,
thus the intensity is constant along a ray I,, = constant
Awnother way of stating this is by the al, 0
differential velation ds

Ruestion in class: how brightness of
the Sun changes with the distance?
Read about Olbers' paradox.

where ds is a differential
elemwent along the ray



BASICS of RADIATIVE TRANSFER

Moments of intensity

Energg FlUX energy carried by a set of rays
dA| = dAcosf

dF,, = I,cos0df
differential flux

I — / I,,cos8dS)
Multiplying a function of direction by n-th
power of cos 0 and integrating is often called net flux

“taking the n-th moment”. vy S )

Net flux is the first moment of the intensity
Bnergy flux not truly intrinsic since it depends on the orientation

of the surface element, energy propagating downwards Ls negative
energy flux. If I, is isotropic (not a fn. of angle) then net flux = o.



BASICS of RADIATIVE TRANSFER
Moments of intensity

Inverse SC]UE:)T'C Iaw 'FOI" energg HUX

lsotropio radiation: Sy c

emits energy equally in all directions (e.g., a star)

CONSERVATION OF ENERGY

F(rq)-4mrs = F(r) - 47r?

F( ) _ const If we can regard
r)= 2 sphere s, as fixed

F o 1/r?



BASICS of RADIATIVE TRANSFER
Moments of intensity

Momentum lleX Photons carry momentum
p = ﬁE/C 1l , Unit vector tn dirvection of photon
motLon

component of momentum in the direction normal to the surface
elemwent ts P |

pL =|p|cosd

Differential momentum flux Ls dF cos@c and inktegrating over
all directions gives 1

Dy = — /L,cosQHdQ

C

the momentum flux is the second moment of the Lntensity



BASICS of RADIATIVE TRANSFER
Moments of intensity

Speciﬁ'c Energy Density
u, (2) = energy /volume/solid angle/frequency
o Intensity 23 Q
To determine constant of proportionality "; Ek <o
the energy enclosed: / U“z &
l dI- - JdA

dE = u,(N)dQ dl dA dv |
will pass out of cylinder in time, dt = dl /¢
From our definition of specific intensity: I, = dE/dt dA dQ) dv

UV(Q) - IU(Q)/C
1

ntegrating over direction: Uy, = / U, (2)d2 = . / I,(9)d$2

Bunergy density Ls proportional to the zeroth moment of Lntensity

47 1
v = —4dJy v = 5 v
u Jy= o /1 (Q)dO

C 4ﬂ- ’ ’ ’,
u= [ u,dv=— [ J,dv 1S the mean tntensity
C



BASICS of RADIATIVE TRANSFER

Moments of intensity

Radiation Pressure

transfer of momentum: AP = 2(E/c)cosf

..:_:W::-\:f_'_"‘__\--\-\ tume between reflections: At = 2L /(c cost)

Rate of transfer of momentum to the wall per
wnit area, or radiation pressure

AP/(L*At) = (E/L?)c0s*0 = u cos*0
for isotropic radiation:  (cos*6) = 1/3

For Lsotropie radiation, the radiation pressure is: P=u / 3
: 2
€a
ch photon transfers twice the normal P, = = [ I,cos20d
component of momentum

ntegrating over 2T steradians, |, =)

2 y
Pe=E / J,dv / c0s20d) = -
C 3

Radiation pressure of an isotropic radiation field is 1/3 the energy density



BASICS of RADIATIVE TRANSFER

Radiative transfer equation

Radiative Transfer

Now we consider radiation passing through matter,
which may absorb, emit and/or scatter radiation into
or out of our beam.. we will derive the equation
governing the evolution of the intensity



BASICS of RADIATIVE TRANSFER

Radiative transfer equation

Radiative Transfer ’.ic]uation

dl, B

Intensity is conserved along a ray /
ds

U

Unless there Ls emLsslon or absorp’ciow

dl,

s

— _Of}/ ];_/ + j}_/

The Equatiow 0-(: radiative Tva wsfer



BASICS of RADIATIVE TRANSFER

Radiative transfer equation

EMWLLSSLON

we define an emission coefficient such that matter in a volume element, dv
adds to the radiation field an amount of energy, dE.

dE = j dV dt d dv

emission coefficient 7, (erg s'emstr _IHZ_I)

The (angle averaged) EMISSIVITY ¢, is the energy per unit mass per unit
time per unit frequency, and is defined, such that:

dE =€, p dV dt dv (dS)/4m)

with p the mass density, from which follows the relatiown, ] y = %
for Lsotropic emission A7
n going a distance ds, a beam of cross section dA
travels through a voluwme dv=dAds, thus the intensity d i y = ] > dS
added to the beam by spontaneous emissiow is:



BASICS of RADIATIVE TRANSFER

Radiative transfer equation

Absorptﬁow

absorption will remove from the beam an amount of intensity proportional to
the incident intensity and the path length, ds.
dl, = —«, I, ds

where the absorption coefficient, @, has units (length)™*

For a simple model of randomly placed absorbing spheres with a cross-section 0
and number density w the mean coverina factor for objects itn a tube of area A
and length ds is dA/A = nodVv/A = wods sp the attenuation of intensity:

dl = —n o I ds
o, = PRy

Here «,is the cross-section per unit mass [cm? g!]



BASICS of RADIATIVE TRANSFER

Radiation force

rRadiation Force

(f a medium absorbs radiation thew the radiation exerts a force on the medium,
because radiation carries momentum.

radiation flux vector FV = /IU n df)

A photon has mowmentum E/¢, so the vector momentum per wunit area per wntlt
time per unit path length absorbed by wmedium is:

momentum force 1
A —_— —— aVFV dI/
volume X time volume C

dz, 1s the probability for photon to be absorbed -
within ds. Momentum absorbed per unit length is FV dTV / (C dS) =F v &y ds / (C dS)

force 1
= acceleration = — / k, ¥, dv

Imass C



BASICS of RADIATIVE TRANSFER

Radiative transfer equation

Solutions to two simeple Limiting cases:

emission only, a, =0
dl,

Pv _ = 1,(s) = 1(0) + / j, ds
ds

ncrease in brightness s equal to emission coeff integrated along Los
absoprtion only, j, =0

dl, _
e T T I, — I,(s) = I,(0)e /45

brightness decreases by exponential of absorption coeff integrated along Los



BASICS of RADIATIVE TRANSFER

Radiative transfer equation

O‘PticaL Pepth § Souwrce Function

The RTE takes a particularly simple form if we replace path length, s by
tical depth, T,
P i dr, = «,ds -
7, = | «a,ds

n terms of pure absorption: IV (S) = I,/ (O)B—T
A wmedium s said to be optically thick, or opague whew 7, integrated along a
typical path through the medivum > 1

whewn 7, < 1 thew the medium is said to be optically thin or transparent

Iy
d_:_IV+SV Sy = —

dTI/ al/

Thus the formal solution of the RTE Ls:

I,(r)=1,0)e " —|—/0 e~ T8, (") dr'




BASICS of RADIATIVE TRANSFER

Radiative transfer equation

Cownstant source function
I,(r)=1,(0)e " —I—/ e~ (T=T)S, () dr!
0

Constant source function IV(TU) = IU(O)e_TV + Sy(l _ 6—7'1/)

— S, +e ™ (I,(0)—S,)

as7T 7> then(, 7> S,



BASICS of RADIATIVE TRANSFER

Scattering

Meawn Free Path

(T,) = /T,,e—T”dT,, =1
0

Cownstder a single atom of radius . dy moving with speed othrough a collection
of stationary points that represent the centres of other atoms:

: Collision cross ssotion V:jl'a 02 0\/ l‘: O'Uv Z’
i L @ ®
dy | {istds = B ® |
o b ™ |
. *
5 = Nuwber of collisions by the atom
within voluwme, Vv, are NV=no0-t point-like vt 1
atoms with which the moving atom has collided, | — —_J—
thus the average distance between collisions: nouwvt n o

The meawn free path is the reciprocal of the absorption coeff, a, for a
homogeneous material.



BASICS of RADIATIVE TRANSFER

Scattering

Random walks Net displacement of photon after N free
paths:

L d=1, +1ly+13+ ..+ 1y

i S Meaw vector displacement vanishes
: £ B
B e & o <d> —_ N<l2> —_— O

but mean square dispLaccmcwt traveled
a o bg photown:

~
e
-
&

12 =(d)= (D) + B) + .. + (&) + 2(1 - L) +2(11 - 13) + ...

Now all the cross terms Like <l1 . lg) vawnish since the divections of
different path segments are presumed uncorrelated. < d2> — N < l2>

As an example, consider the escape of a photon from a clowd of size R if the
mean free path is [ < L thenthe optical depth of the cloud is 7 ~ L/L. In N
steps the photon will travel a distance [, ~ \/ N[ . Equating this with the
size of the clowd L yields the required number of steps for escape, N ~ 72 for
optically thick regiow, for optically thin, 1 - 7" ~ 7,50 N~7
N~ 7° N = 2
~T°4+T  or ~ max(7,T)



BASICS of RADIATIVE TRANSFER

Scattering

Escape time.
This 1s the time 1t takes for a photon to diffuse from the medium:

(R
-7, > 1, (R=L)
. _N[_NR/T_{ C
esc — (‘ - (‘ - R
—, T 1.
. C

Note that it grows as 7, not as the number of scatterings oc 72, because for
large 7 the distance travelled between scatterings decreases as 1/7.



BASICS of RADIATIVE TRANSFER
Scattering

Scatterin g

whew scattering is present, solution of RTE becomes more difficult
because emission into dQ2 depends ow I, in solid angles d€2’
integrated over dQ2 (Le, scattering from dQ’ into dQ2).

RTE becomes an integro-differential equation which must
generally be solved by numerical techniques



BASICS of RADIATIVE TRANSFER

Scattering

(lsotropic) Scattering

Ewission coefficient for coherent, isotropic scattering can be found simply by
equating the power absorbed per unit volume and frequency ranges to
corresponding power emitted:

jl/ — astV

wherea_Ls the SCATTERING COEFFICIENT

pividing by, we find the source function for scattering equals mean
LwthsLtU of the emitting material: 1

Sy = — [ 1,df

v —
4m
Transfer equation for pure scattering:

dl,

ds
cannot use formal soln to RTE since source function Ls not Rnowwn a priori
and depends on solution to In at all directions through a givew point. It is

now an INTEGRO-DIFFERENTIAL ERQUATION, which Ls difficult to solve,
need to find approximate method of treating scattering problems.

= -, (I, — J,)



BASICS of RADIATIVE TRANSFER

Scattering and absorption

» Combined scattering and absorption (in a thermal medium)

d_I = —(ay + @ ), = S,)
ds

with
a,B, + ag.J,

S, =

@, + Qg

e Mean free path (for absorption and scattering).
The average distance a photon can travel without being absorbed or scat-
tered. The extinction coeflicient «, + @4 and the optical depth for both
processes 1s dr, = (@, + @, )ds. The mean free path 1s then

Lo S 1

@, + Qg a, + a'sc.

In (local)thermodynamic equilibrium (where collisions dominate),
the source functioni1s §,=;,/ a, = B, Planck function



BASICS of RADIATIVE TRANSFER

Scattering and absorption

e A chance that after the free path the photon will be absorbed 1s = €, =
a, /(@ + g ); chance that 1t will be scattered = 1 — €, = a../(@, + @s). The
quantity 1 — ¢, 1s called the single-scattering albedo. Source function is then

S, =1 -¢)J, +¢B,

e Thermalization length.
A photon 1s created by thermal emission of an atom. It scatters many times,
but at some point it can get absorbed by some other atom. The total path
between creation and absorption 1s called thermalization length. Because
the probability of getting absorbed in each interaction act (i.e. in the end
of each free path) 1s €, a photon on average has N = 1/€ scatterings before
absorption. Thus we have

|

Va,(ay + @)

or [,




BASICS of RADIATIVE TRANSFER
Scattering and absorption

e Effective optical thickness of the medium.

T, = \Ta(Ta + T5)

where 7, = o, R and 7, = a,.R are the optical thickness of the medium of
size R for absorption and scattering separately. If 7, > 1, the medium 1s
effectively optically thick. The radiation field 1s then close to thermalization
with the matterand [, ~ B,, S, ~ B,.



BASICS of RADIATIVE TRANSFER

Solution of RTE: Eddington approximation

outer 4
In plane-parallel atmosphere ds=dz/u, poundary |7 7
U=cos 0 : w
dx // AS
dl, ‘ 4
,ud—Z = _(Q'v + a/sc)(Iv -3 V) //
“centre of the star Y
5 = a, B, + ag.J, T
@, + g

e Eddington approximation.
Now assume that in a near-homogenous medium the intensity 1s almost

1sotropic, but no longer assume that total opacity 1s large. Expanding the

intensity into first-order terms of u:
L,(7, 1) = a,(7) + by(T)u.

1
: : J = %I\Idp:a,
three moments of the intensity =
1
H = —[Iydyzb/i
2 Ja

1,
[:J‘|'3H,Ll K ;\[ I du=a/3

= 1



BASICS of RADIATIVE TRANSFER

Solution of RTE: Eddington approximation

df _,_ g dr=—(@+adz S =(1-€J+eB

H dr =
. Integrating over u we get: E - J-5
dr
Multiplying RTE by u before integrating % —H = ld_]
dr 3dr
LoT _ i-p I=J+u dJ/dr
3 012

Introducing optical depth

T, = V3e 1 = \/3Ta(ra + T,

.
We get 2" order differential equation for J : o-J _J_B
012

General solution : J= c,exp(z«)+ c,exp(—7«)+B



BASICS of RADIATIVE TRANSFER

Solution of RTE: Eddington approximation

Two-stream approximation.

1 _
J = E(I++I )
H = : I"-1)
— 2\/3 .

|
K = 8(1++I"):J/3,

Need two boundary conditions

I"=I(t,u=1/ V3).
I =Ir.u=-1/ V3).

We can find a solution

e T | [‘)]’
V3 O
o7 | (‘)].
V3 0t

For example

I'(t=1,)=0,

I'(r=1,)=0.



BASICS of RADIATIVE TRANSFER
Radiative transfer equation

Radiative Diffusion: Rosseland APProx

Derive a simple expression for the energy flux, relating it to the local

tewperature gradient - called wmm&mm =

dz ~ds

FLrst assume that the material (tcmpemtu.rc
absorp’cww coeff ete.) depend on depth tn the

medium - called Plane-Parallel agsum_p_tLQw.

Convenient to use 4 = cos 0 dz dz
ds = = —
cost
W w: 8111 <y [
Therefore, transfer Equn: 7 (r()z ) _ _(qu +asc)(IV . Bz/)

14 0B,
oy, +0a, 0z

L (2 1) ~ By(T) -

F,(z) = /I,,(z,,u)costQ = 27r/I,,(z,,u),u,dy =oT"
—1 3
dB, 1 dB, 1 16071 OT
1 Efdz_' a,+a, _de av+ascdv F(Z) - 3ag Oz
O de_VdV deVdv
dt dT




Black body radiation

The black body intensity is defined (following discovery by Max Planck in 1900) as
either

2he? 1 3
he N B(T)=2hv 1

T
)\.5 ehC/M _1 v CZ ehv/kT_l

BA(T) =

where ¢=2.99x10'° cm, #=6.63x10%7 erg s, k=1.38x10-1% erg/K

dv
Notethat: B, (T)dv = B,(T)dA=> B, = B,|—| =B, —
dA| " A
Let us compute the bolometric flux: Stefan-Boltzmann law
“2hv 1 2h/kT\ 2h(kT\ T’ 4
F=x|B(TYdv=n d = ol
f ()d f hv/kT 2\h/f€—1 2\h} 15
ok B
o=2 s ];h3 =5.67 10 erg cm™s” K™ — Stefan - Boltzmann constant x=hv/kT
c

Or)Bv (T) ~ 2h2v4 ehv/kT
oT c2kT? (ehv/kT _1)2

Planck function is monotonic with temperature: >0

Atany v, 1, B,T.T—0, B, >0. T —>x, B, >o.



Black body radiation

The source function for thermal radiation

Kirchhoft’s Law: material emitting thermal radiation has
Sy =B,(T)

and therefore
jv = (YVBV(T) .

The energy density of the black body radiation
”(T) — (7T4 a = 7.56x 107" erg cm™ K™ is the radiation constant.
Flux of the black body radiation from the surface

F = opT? osg = ac/4=5.67x 107 erg em™> K™ 57!

Since F = g B and = 47”3



Properties of the Planck law | T=300K
; ,/ -'\\\\\ T=250 K
2h(kT\" x’ | \ To200k
hl e S N\, T=150K

Maximum of the Planck function B,(T) = ~
x S
C _1 CY) ‘."‘,-" \

a x3 x2 . — ’ \ \ T 100 K
—— | [G-ne -3]=0= x=3(1-¢7) SN
e 1) (oo e
guess Wien displacement law

Xo=3, x=3(1-¢")=285 x,=282..
- 10
X, KT =2 82KT Vmax & 5.88 X 1077

X, . =282=hv__ =

e A T=029cmK

Do the same with B,: x,., =497, A = o
A =cl/lv_
max max For the Sun L.y =5175 A, but A=c/v . =8800A.

At long wavelengths A >> A.x (small frequencies v << v ax)
the Planck formulae can be approximated by the Rayleigh-Jeans law

2
% _ e
B,(T)=2—kT, B,(T)=2ckTX" T=30%K
C [\
At short wavelengths A < . (large frequencies v = v 14) R N
the Wien law is a good approximation & | N\ T=230K
] ~L N\ -
hv 2 ke [N\ T=200K
hv' - hc™ -— THED N
TN\
, B,(T) = 2—5 e M i ———
}L Alcm)

C



Colour and brightness temperatures

Define brightness temperature as I, =B, (T,)
In radio band we get

2 2

I =2v—2ka ,sothat7, = C2 I, for hv << kT
C 2v°k

Colour temperature T, is obtained by “fitting”
the observed spectrum with the Planck
function ignoring normalization. It gives
correctly the temperature of the black body
source of unknown absolute scale of the
intensity.

Effective temperature  F=osT}




