
International Conference on Computer Systems and Technologies - CompSysTech’15

A Comparison of Security Assurance Support of
Agile Software Development Methods

Kalle Rindell, Sami Hyrynsalmi, and Ville Leppänen

Abstract:
Agile methods increase the speed and reduce the cost of software projects; however, they have been crit-

icized for lack of documentation, traditional quality control, and, most importantly, lack of security assurance
- mostly due to their informal and self-organizing approach to software development. This paper clarifies the
requirements for security assurance by using an evaluation framework to analyze the compatibility of established
agile security development methods: XP, Scrum and Kanban, combined with Microsoft SDL security framework,
against Finland’s established national security regulation (Vahti). We also analyze the selected methods based
on their role definitions, and provide some avenues for future research.

Key words: secure agile development, security assurance, DESMET, SDL, XP, Scrum, Kanban, Vahti.

INTRODUCTION
The need for software security has been a main driver in software development since the

dawn of first shared mainframes. While quality assurance remains a key process to ensure
software robustness, effectiveness and usability, security assurance provides the means to de-
velop and deploy software components and systems that protect the system’s data, their users’
privacy and the system resources.

The operating environment of the software products has been evolving and changing due
to extensive use of the Internet and public services, and also the software industry itself has gone
through an unprecedented shift from waterfall-type sequential development methods towards
iterative agile and lean methods. The need for security has also been realized into the form
of several commercial, international and national standards, such as payment card industry’s
PCI, USA’s HIPAA and SOX, and international security-related standards, most importantly
ISO/IEC 27002. Also, several security frameworks and security-focused development methods
have been developed. For the purposes of this study, we have selected three widely-used devel-
opment methods, Scrum, XP and Kanban and ‘enhance’ them with elements from Microsoft
SDL, an industry standard security framework. The security requirement used are teh Finnish
government’s security guidelines, called Vahti1. The compliance of the selected development
methods and the SDL framework is then evaluated against the requirements of Vahti, and
the applicability and adaptability of the ‘security-enhanced’ methods themselves are evaluated
using Kitchenham’s DESMET evaluation framework [15].

Agile methods promote iterative development and informal interaction, and give a lesser or
even negative value to strict processes. This is particularly stressed in cases where documenta-
tion is used as a means of communication, whether used to convey the customer requirements
to the development team, or for communication within the team itself, e.g., in the form of
specifications [7, 16, 17]. Introducing strict security requirements to the software development
process usually results in creation of a formal security architecture out of necessity to fulfill the
strict external security criteria. When the security process elements, such as reviews, security
testing, processes and documentation, are incorporated into the agile method itself, this has

1https://www.vahtiohje.fi/web/guest/home



International Conference on Computer Systems and Technologies - CompSysTech’15

the potential of causing considerable delays in the form of rework, and increase the cost of the
development effort [7]. All this is extra ‘management overhead’, and appears to be in direct
contradiction with agile methods’ core philosophy of leanness and informality [6]. Applying the
security process to the agile or lean development methods has the potential of rendering the
methods, by definition, something that is neither agile nor lean.

The research objective of this study is to show that the selected agile methods are adapt-
able to security development using SDL, and selecting an agile method can have a positive
effect on the security assurance, while reducing development time and cost.

RELATED WORK
One of the starting points for this study was a formal categorization of security aspects for

software development, and conduction of a DESMET feature analysis [15]. A similar approach
has earlier been selected by Beznosov and Kruchten [7], albeit they do not use an established
security criteria or framework, nor an external evaluation criteria in their study. Also, there
exists a number of studies concerning secure software development concept in general, also
covering the topic of security-focused testing [9]. Abrahamsson et al. [3] made an early contri-
bution comparing agile software development methods by their suitability for different stages
of development life cycle, and their support for project management – both important aspects
from the security point of view.

A bulk of papers seems to have an approach of documenting a proprietary corporate soft-
ware development method, or even specify their own, such as Baca and Carlsson [5] and Boström
et al [8]. Their study also compares existing software methodologies, including SDL, with a pro-
prietary method, and claims also a new proprietary method of their own. Other studies, such
as Alnatheer et al. [4] conduct empiric research on the impact of agile methods on software se-
curity. Fitzgerald et al. [10] have completed a case study, adapting Scrum-based methods in an
environment with strict formal security regulations. Their study discusses security regulations
and Scrum in considerable depth, yet only within the scope of a single company and a single
development method. This paper aims to extrapolate on those results by using a nationwide
criteria and new development methods, and the SDL security framework. In contrast to most
of the previous approaches, security is in this paper considered to be an absolute requirement
for software. In the agile method terminology, security is considered an essential part of the
customer satisfaction, which the agile methods aim to promote [7]. We also concentrate on the
challenges this brings into the development process and the quality assurance closely associated
with security controls, as discussed by Fitzgerald et al. [10]. The effect of the introduction of
security element is evaluated by applying DESMET feature analysis. This study also makes
the security requirement more specific by using a well-established security criteria, Vahti, and
inspecting the applicability of the selected software methodologies against this criteria. The
term ‘security assurance’ is used to describe the drive to mitigate security vulnerabilities in a
measurable and evidence-backed way, comparable to the term ’quality assurance’, which aims
to mitigate software discrepancies in general.

BACKGROUND
Software security cannot simply be declared by the software publisher: the security claims

also need proof, backed by evidence. To verify the security claims stated by the software, the
security evidence is gathered through such activities reviewing the software, its documentation
and processes, security testing, and security auditing. Combined, these requirements create a
need for the software developers to be able to choose a development methodology that supports
not only the creation of software for the selected software domain, but also satisfies the security
requirements [1]. Preferably this is done in the most efficient way possible, taking into account
the organization and the operational environment.



International Conference on Computer Systems and Technologies - CompSysTech’15

Vahti guidelines
The specific set of security requirements used in this paper is Vahti (literally translated

‘Guard’, a mnemonic acronym in Finnish for ‘Government Information Security’). Vahti is
one of the earliest and most comprehensive sets of open and public information system secu-
rity regulations. The guideline comprises of 51 documents, published since 2001, and covers
various aspects of information systems’ use, development and other stages of the life cycle.
The guideline covers also various aspects of information systems management, governance, use,
and, ultimately, help implementing Finland’s national information security strategy, published
in 2009. The guidelines were originally targeted only for government’s internal information
systems work; due to public sector’s integral part in the Finnish society, Vahti’s basic security
level in in the process of becoming a de facto security standard in all information systems that
are connected to or interact with a government system. To harmonize the security require-
ments among the public institutions, a set of national standards has been developed, based
on standards such as ISO/IEC 27002 [14], and derived from Systems Security Engineering –
Capability Maturity Model [13]. These requirements aim to cover the life cycle and various use
cases of the public information systems, and span over several dozen documents available at the
appropriate ministry’s website (see footnote). The Vahti guidelines specify three security levels:
Basic, Heightened and High. Compliance with the Basic level is required of all government’s
software.

Software development methods and evaluation framework
For this study, we have chosen three agile methods: eXtreme Programming (XP), Scrum,

and Kanban. Several derivatives of these methods exist, and there is an abundance of software
development models presented to public both by industry professionals as well as academic
researchers. Some examples of these are covered in the section Related Work.

Microsoft’s effort to improve the security of their software has them to develop a quite
fundamental security framework, dubbed the Security Development Lifecycle (SDL) process.
Currently in version 5.2, the SDL is based on iterative spiral model borrowed from and adapt-
able to agile methodologies [2, 5]. SDL’s approach is heavy on processes, documentation and
organization, which is why this study aims to identify the minimal set of SDL elements required
to fulfill the security requirements. SDL divides agile activities into three categories: one-time
requirements, bucket requirements and every-sprint requirement. The naming seems to suggest
that SDL for Agile is meant for Scrum or Scrum-like methods.

Extreme Programming (XP) is one of the first and widely used agile development models.
The XP method itself is merely a collection of practices and values [6]. The guidelines given by
the method are quite practical, such as the use of pair programming or continuous integration.
Popularity of XP method especially in the beginning of the first decade of the 21st century
has spun attempts to bring security elements into the method. Earlier examples of security
enhancements to XP consist of security-related user stories and abuser stories in the planning
phase [8, 12].

Scrum may be considered as the current mainstay of the software industry. In the litera-
ture, earlier examples of security enhancement to Scrum consist of loosely SDL-based security
features specifically aimed for regulated environments, such as Fitzgerald et al. [10]. These
features and processes include ‘hardening sprints’, which consist entirely of security-related
planning and documentation, and additional security and quality assurance reviews and checks.
This methodology includes new roles that are not included in baseline Scrum. The organiza-
tional requirements are also discussed in this paper. Scrum was selected due to its overwhelming
popularity in the current software development industry [19].

Kanban, much like XP, can be understood simply as a set of development concepts, ideas
and principles, rather than a tightly-defined set of processes, practices and roles. It therefore



International Conference on Computer Systems and Technologies - CompSysTech’15

provides a rather flexible framework for development, focusing on the workflow: the workflow
is visualized, the amount of work in progress is limited, and the development lead time is
measured. This helps the developers to stay informed of the work backlog, aims to ensure that
the team members do not get overloaded, and provides metrics to optimize the development
time.Kanban is typically combined with more prescriptive methods, leading into creation of
e.g. Scrumban [18] and other hybrid methods.

DESMET framework was developed in the 1990s for evaluation of software development
methods. The evaluation may be quantitative or qualitative, and based on experiments, case
studies, screenings, effect analyses, feature analyses or surveys. The nature of this study sug-
gested a screening feature analysis, with easily quantitative results: the requirement is either
fulfilled or not, and each method and security process are analyzed as a simulated case study,
based on expert opinions and without instantiation.

EVALUATION AND RESULTS
Vahti security criteria for application development comprises the whole life cycle of soft-

ware. From the complete list of 118 requirements [11], 22 requirements were deemed to apply
directly to the development methods and were included in this study (see Table 1). The selec-
tion was made based on the relevance of the requirement to the software development method:
the selected criteria are either requirements for the documentation, reviews or the development
process itself. The only selected organizational requirement, the one for security training, was
included due to the fact that SDL emphasizes this security-enhancing mechanism, and it affects
all the development roles.

Table 1 lists the methodologies’ compliance with each requirement. The following values
are used: I = Integral to the method; A = Adaptable; method can be adjusted to support the
requirement; and N = Needs improvement; incompatible.Each criteria is assessed by its security
level: basic (1), heightened (2) and high (3). While these levels strictly apply to a system’s criti-
cality (a combination of required availability and the sensitivity of data), it has been selected to
define the security requirement of the software. The other assessment criteria is the frequency
requirement for the appropriate technique set by SDL. The frequency is encoded into three
values: one-time requirements (1), bucket requirements (2) and every-sprint requirements (3).
Each task is further ranked to either Automated (A=0.5), Semi-automated (S=1) or Manual
(M=2). Semi-automated means the bulk of the work is done by automated tools, which in turn
may require a considerable amount of manual configuration. Cost is calculated by multiplying
the level of automation with the frequency of the task

1. Application Risk Analysis is an essential security element, and well integrable (I)
into all methods. 2. Test Plan Review is an internal security personnel review of the test
plan. Supported by all (I). 3. Threat Modeling consists of compiling the list of the threats
and keeping that up to date during every sprint. Cornerstone of SDL and essential to any
security related development. Provides base for risk analysis and guides architectural choices,
among other things. The threat ‘landscape’ is dependent on the software’s intended users
and use environment. Essential to all methods (I). For some reason, this requirement was not
mandatory even at Vahti’s highest level - a clear omission unless included in other tasks.

4. Goal and criticality requirement means classification of the software and documentation
of its purpose. Both XP and Scrum (A) were found lacking in this respect, with the Scrum-based
method more readily adaptable to produce planning phase documentation. Kanban-based
methods are also deemed adaptable (A). 5. Business Impact Analysis is basically method
independent requirement, and as such, deemed adaptable (A) to all methods. This document
should be produced in the planning phase, and updated during the implementation when the
application’s incremental threat analyses implicate further threats to the business environment.



International Conference on Computer Systems and Technologies - CompSysTech’15

Table 1: Methodologies compliance with security requirements
No. Requirement Lvl. Aut. Freq. Cost XP Scr. Kan.
1 Application Risk Analysis 1 M 3 6 I I I
2 Test Plan Review 1 M 2 4 A A A
3 Threat Modeling 1 S 3 3 I I I
4 Goal and Criticality Definition 2 M 1 2 A A A
5 Business Impact Analysis 2 M 1 2 A A A
6 Documentation of Security Solutions 2 M 1 2 A A A
7 App. Security Requirement Definition 2 M 2 4 I I I
8 App. Security Settings Definition 2 M 2 4 A A A
9 Security Testing 2 A 3 1.5 I I I
10 Security Auditing 2 M 1 2 A A A
11 Arch. and App. Devel. Guidelines 3 M 1 2 A A A
12 External Interfaces Review 3 M 2 4 I I I
13 Use of Secure Design Patterns 3 M 1 2 I I I
14 Attack Surface Reduction 3 M 3 6 I I I
15 Architectural Security Requirements 3 M 1 2 I I I
16 Internal Communication Security 3 S 3 3 I I I
17 Security Test Cases Review 3 M 3 6 A A A
18 Test Phase Code Review 3 M 3 6 I I I
19 Use of Automated Testing Tools 3 A 3 1.5 I I I
20 Security Mechanism Review 3 M 1 2 N A A
21 Development-time Auditing 3 M 1 2 N N N
22 Security training for Developers 3 M 3 6 A A A
M = Manual, S = Semi-Automated, A = Automated; I = Integral, A = Adaptable, N = Incompatible

6. Documentation of Security Solutions is a direct requirement to communicate the security
requirements to the developers through documentation. Both agile methods are fundamentally
against this approach, and will need improvement (N). 7. Application Security Requirements is a
high-level document, covering the criticality of the information handled by the software, threat
analysis, and other functional security requirements. All security-related development methods
were deemed to support creation of this document in the planning phase (I). 8. Application
Security Settings Definition is an extensive documentation step, where all the software settings,
interfaces, administration steps, test data, encryption details etc. are listed and thoroughly
documented. Suggested action would be a separate documentation sprint, to be added into the
agile methods (A). 9. Security Testing states that security testing should be incorporated into
the standard testing procedure. Supported by all (I). 10. Security Auditing is a requirement for
Heightened and High Vahti levels; requires an external auditor. This requirement was included
due to its strain on the development process, mainly through architecture auditing. Supported
by all methods (I).

11. Architecture guidelines define the principles guiding the application development, in
this context especially from the security point of view. This requirement is adaptable to all
development methods (A). 12. External Interface Review is an analysis of the software’s ex-
ternal interfaces and comparison to architectural and application level principles. All methods
support the performance of this action (I). 13. Use of Secure Design Patterns mandates classi-
fying the software due to its architecture type, such as client-server, mobile, web or embedded
application. The design pattern is then selected based on the architectural type. All methods
support this requirement (I). 14. Attack Surface Reduction means identifying and analyzing
all software functionality where the participants cannot completely trust each other, such as



International Conference on Computer Systems and Technologies - CompSysTech’15

open services, user or administrator actions or database connections. All methods support
this step (I). 15. Architectural Security Requirements means and analysis of the application’s
architecture against known or anticipated threats. All methods support this (I). 16. Internal
Communication Security concerns especially applications utilizing multi-tier architecture and
ties the deployment of the application into the development phase. Largely method independent
planning-phase activity, but still supported by each method (I). 17. Security Test Cases Defi-
nition this is an absolute requirement for almost all security-related development, and Vahti
gives here specific instructions how the test cases should be defined, such as use of empiric
evidence, known issues and several sources. Adaptable to all methods (A). 18. Test Phase
Code Review is informally performed by the internal security personnel, and documented either
separately or even straight into the source code. Supported by all (I). 19. Use of Automated
Testing Tools is more or less standard practise for all agile methods. Tools include fuzzers,
vulnerability scanners, code analyzers and continuous integration tools. Supported by all (I).
20. Security Mechanism Review is a code-level review of how security components are imple-
mented. Basically method independent, but may be difficult to implement in iterative methods
as after changes this review has to be done again. XP-based methods will need improvement to
support this (N), whereas the Scrum and Scrum-based methods with specific hardening sprints
may include this step into those (A). 21. Application Development-time Auditing is a high-level
security audition at various points of application development. Intrinsically a waterfall-type
approach, causing difficulties with iterative methods (N). 22. Security training means organiz-
ing purpose-oriented and role-based training for the personnel responsible for the application
development, such as product owner, developers and testers. Adaptable to all methods (A).

The agile methods were found to have certain issues with adaptability of security tasks.
Repetitive (i.e., multi-sprint or every-sprint) documentation and review tasks were found specifi-
cally incompatible with these methods. However, it was deemed unjustifiable to claim that e.g.
Scrum does not support security documentation at all; security requirement simply needs to
be included in the stories and backlog, and appropriate tasks assigned to the developers. In-
corporating security reviews and auditing into the development processes proved to be a bigger
issue, as they are more difficult to incorporate into the iterative process. All three methods
were found inherently compatible with or adaptable to all planning and implementation phase
activities. The key findings were that constant iterative planning has the potential to im-
prove the security of the finalized product. On the higher security levels, incorporating the
required the every-sprint security reviews and audits make it difficult to retain the ‘agility’ of
the method. Simply incorporating so-called ‘hardening sprints’, as suggested in some studies
[10], or focusing on security only in the planning phase of the project [8, 12], may simply lead
to superficial fulfillment of the requirements and has the potential to lead to security issues
afterwards. Methodology-based evaluation suggests, that security assurance is best achieved
through both planning and balanced security-related resourcing.

Scrum is the only one of the methods that includes role definitions. Security processes,
on the other hand, have specific role definitions and push for strict separation of duties. Table
2 presents a summary of key tasks and properties required from a security assured software
development method. The table states whether the selected methods have the roles defined (Y
or N ), or support the extension of existing roles to cover the more security-specific one. This
comparison reveals a more worrying side of the secure agile methods, especially regarding role
definition.

SDL defines several security-related roles to complement the development team, and pro-
motes strict and vigorous separation of duties, while the agile methods typically define only a
minimum set of roles, or none at all. Scrum, in its basic form, defines only the roles of Product
Owner, Developers and the Scrum Master. Of these, the Developer is the most appropriate
one to assume the responsibilities of a security specialist. This, however, is a clear violation of



International Conference on Computer Systems and Technologies - CompSysTech’15

Table 2: Security task role definition
No. Task XP Scrum Kanban
1 Security specialist roles defined N Y N
2 Documentation and guidelines produced Y Y Y
3 Support for development time security reviews N Y N
4 Support for delivery time security reviews N Y N
5 Compliant development process roles defined N N N
Y = Yes, role or task defined; N = No, role or task not defined.

the industry standard ‘separation of duties’ rule: the developers themselves are rarely the best
persons to break their own code. Even if the team is split into developers and security team,
they cannot discuss the security openly, as that might lead into group think. This issue is
anti-agile in two ways: teams not sharing information is a clear transgression against the agile
philosophy, and having separate teams working in parallel bogs down the development speed
while ramping up the cost. The lack of defined security roles also characterizes XP and Kan-
ban, while giving the developing organizations even more freedom in choosing the development
tools, mechanisms and processes.

SUMMARY AND FUTURE WORK
This study used an established and widely-used Finnish government’s security criteria,

Vahti, as a basis for evaluation of three approaches to software development for a regulated
environment. The selected security framework was Microsoft SDL and methods XP, and Scrum,
and Kanban. The research objective of this study was to use light-weight DESMET evaluation
criteria to analyse the adaptability of agile methods to security development, and to estimate
the cost of security-related tasks.

The study, although conducted only in a theoretical framework, shows that agile devel-
opment is readily adaptable to even the most strict security requirements. Also, the message
in the studied literature is clear about certain benefit of employing agile methods to develop
security-oriented software: developing the software in numerous iterations towards the finalized
product may actually improve security assurance, as the product is kept potentially shippable
after every sprint. This greatly helps in tracking the changes in security development and de-
tecting possible security threats. Also, the promoted use of automated testing and other tools
is an inherent part of security development, directly applied to e.g. fuzz testing.

The limitation of this study was a lack of empiric evidence, and the logical next step
would be to instantiate the methods and possibly include more of them. While security should
be based on ‘defined’ rather than ‘empiric’ logic, practice will show not only the applicability
of the methods themselves, but also the real cost of security mechanisms to the development
process. Security cost is becoming increasingly necessary to pay, as Finland’s public sector’s
software security regulations show. As the cost of development is much smaller than rewriting
and refactoring an existing codebase, integrating the security processes to the development
method is crucial. The ultimate objective should be nothing less than finding a framework
for the software developers to choose the correct set of roles, methods and processes for each
situation and purpose.

REFERENCES
[1] Practical security stories and security tasks for agile development envi-

ronments. http://www.safecode.org/publication/SAFECode_Agile_Dev_Secu-
rity0712.pdf. Referenced 9th March, 2015.

[2] Microsoft security development lifecycle (SDL) process guidance - version 5.2, 2012.



International Conference on Computer Systems and Technologies - CompSysTech’15

Referenced 17th March 2015.
[3] P. Abrahamsson, J. Warsta, M. T. Siponen, and J. Ronkainen. New directions on

agile methods: A comparative analysis. In Proceedings of the 25th International
Conference on Software Engineering, ICSE ’03, pages 244–254, Washington, DC,
USA, 2003. IEEE Computer Society.

[4] A. Alnatheer, A. Gravell, and D. Argles. Agile security issues: A research study.
In Proceedings of the 5th International Doctoral Symposium on Empirical Software
Engineering (IDoESE), 2010.

[5] D. Baca and B. Carlsson. Agile development with security engineering activities. In
Proceedings of the 2011 International Conference on Software and Systems Process,
ICSSP ’11, pages 149–158, New York, NY, USA, 2011. ACM.

[6] K. Beck. Embracing change with extreme programming. IEEE Computer, 32, 1999.
[7] K. Beznosov and P. Kruchten. Towards agile security assurance. In NSPW ’04

Proceedings of the 2004 workshop on New security paradigms, pages 47–54, 2004.
[8] G. Boström, J. Wäyrynen, M. Bodén, K. Beznosov, and P. Kruchten. Extending XP

practices to support security requirements engineering. In Proceedings of the 2006
International Workshop on Software Engineering for Secure Systems, SESS ’06, 2006.

[9] B. Fitzgerald and K.-J. Stol. Continuous software engineering and beyond: Trends
and challenges. In Proceedings of the 1st International Workshop on Rapid Continuous
Software Engineering, RCoSE 2014, pages 1–9, New York, NY, USA, 2014. ACM.

[10] B. Fitzgerald, K.-J. Stol, R. O’Sullivan, and D. O’Brien. Scaling agile methods to
regulated environments: An industry case study. In Proceedings of the 2013 Interna-
tional Conference on Software Engineering, ICSE ’13, pages 863–872, 2013.

[11] FMoF. Sovelluskehityksen tietoturvaohje, 2013. Ref. 17th March 2015.
[12] X. Ge, R. Paige, F. Polack, and P. Brooke. Extreme programming security practices.

In G. Concas, E. Damiani, M. Scotto, and G. Succi, editors, Agile Processes in
Software Engineering and Extreme Programming, volume 4536 of Lecture Notes in
Computer Science, pages 226–230. Springer Berlin Heidelberg, 2007.

[13] ISO/IEC. information technology - security techniques - systems security engineering
- capability maturity model (SSE-CMM) iso/IEC 21817:2008.

[14] ISO/IEC. Information technology - security techniques - code of practice for infor-
mation security controls iso/IEC 27002:2013, 2013.

[15] B. Kitchenham, S. Linkman, and D. Law. Desmet: a methodology for evaluating
software engineering methods and tools. Computing & Control Engineering Journal.

[16] A. J. Ko, R. DeLine, and G. Venolia. Information needs in collocated software de-
velopment teams. In Proceedings of the 29th International Conference on Software
Engineering, ICSE ’07. IEEE Computer Society, 2007.

[17] T. D. LaToza, G. Venolia, and R. DeLine. Maintaining mental models: A study
of developer work habits. In Proceedings of the 28th International Conference on
Software Engineering, ICSE ’06, pages 492–501, New York, NY, USA, 2006. ACM.

[18] N. Nikitina, M. Kajko-Mattsson, and M. Stråle. From Scrum to Scrumban: A case
study of a process transition. In Proceedings of the International Conference on
Software and System Process, ICSSP ’12, pages 140–149. IEEE Press, 2012.

[19] VersionOne. 8th annual state of agile survey, 2013. http://www.ver-
sionone.com/pdf/2013-state-of-agile-survey.pdf, Referenced 17th March 2015.

ABOUT THE AUTHORS
Doctoral Candidate Kalle Rindell, Postdoctoral Researcher Sami Hyrynsalmi, Prof. Ville

Leppänen, Dept. of Information Technology, University of Turku, Finland. E-mail: {kakrind,
sthyry, villep}@utu.fi.


	Introduction
	Related Work
	Background
	Vahti guidelines
	Software development methods and evaluation framework

	Evaluation and Results

	Summary and Future Work

	About the authors

